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Chronic stress enhances
glycolysis and
promotes tumorigenesis
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Lei Yang1, Wei Gu3, Di Deng1, Jinlan Zhao1, Rong Zhang1*,
Haiquan Liu3* and Shasha Bai1*

1From the School of Pharmaceutical Science, International Institute for Translational Chinese
Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China, 2Pharmacy Department,
JiNan Authority Hospital, Jinan, China, 3Huizhou Hospital of Guangzhou University of Chinese
Medicine/Huizhou Hospital of Traditional Chinese Medicine, Huizhou, China
Depression is a well-known risk factor for tumors, but the mechanisms other

than inflammation are unclear. Aerobic glycolysis is considered to be a critical

element in the reprogramming of energy metabolism in malignant tumors, and

impaired glycolysis has been reported in the brains of chronic stress mice.

Therefore, this study aimed to explore the role of glycolysis in which

depression promotes tumorigenesis. We examined the impacts of chronic

unpredictable mild stress (CUMS) on the growth and metastasis of breast

cancer (BC) and lung cancer (LC). CUMS was used to construct a mouse

depression model, BALB/c mice were injected with 4T1-Luc cells in the right

subcutaneous mammary fat pad, and C57BL/6 mice were injected with Lewis-

Luc cells in the tail vein. The experiments were conducted through behavioral

experiments, live imaging techniques of small animals, Western blot, Glycolytic

metabolites measurement, Hematoxylin and eosin staining (H&E staining), Nissl

staining, and immunohistochemical (IHC) tests. The findings showed that both

CUMS and tumors induced depressive-like behavior, neuronal damage, and

impaired synaptic plasticity in mice, while CUMS also enhanced tumor

development and metastasis in both BC and LC. In the brain, both CUMS and

tumor alone and in combination less influence glycolytic products and enzyme

levels. However, CUMS significantly enhanced the levels of aerobic glycolytic

products and enzymes in tumor tissue. Collectively, our results provide insights

into how glycolysis is regulated in the brain, leading to depression-like behavior,

and how depression, in turn, enhanced glycolysis and promoted tumorigenesis.
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1 Introduction

Patients diagnosed with cancer often concurrently suffer from

depression (1, 2). The negative emotions induced by this

psychological condition can potentially stimulate tumor growth

and metastasis of tumors (3–5). Past studies have unequivocally

shown that chronic stress significantly affects every stage of cancer

development in patients, ranging from carcinogenesis to

angiogenesis stimulation and metastatic dissemination (6).

Chronic stress-induced inadequate coping, negative emotional

responses, or a diminished quality of life are associated with an

increased risk of cancer incidence (7). Annually, approximately one

million new cancer cases are diagnosed in young individuals aged

20-39 years, primarily attributed to chronic stress (8). A poor

prognosis and elevated mortality are observed among cancer

patients concurrently suffering from comorbid depression (6).

Cancer patients exhibit a depression morbidity of approximately

12.5%, which is up to fourfold higher than that of the general

population (9). Chronic stress has been demonstrated in studies to

raise plasma catecholamine levels, including epinephrine and

noradrenaline, and accelerate the aggressive development of BC,

ovarian carcinoma, and gastric cancer (10, 11). However, the

research concerning the relationship between chronic stress and

cancer remains limited.

Otto Warburg and colleagues ascertained in the 1920s that

tumor cells, under aerobic conditions, exhibit a preference for

generating energy via a process termed aerobic glycolysis. This is

manifested by excessive glucose absorption and lactate

accumulation, a phenomenon known as the Warburg effect (12,

13). To fulfill uncontrolled biosynthesis and energy demands,

cancer cells frequently tend to perform aerobic glycolysis (13). In

numerous cancer patients, clinical investigations utilizing the

imaging technique of positron emission tomography (PET) with

the glucose analog tracer 18 fludeoxyglucose (FDG) 6-8 have

unambiguously demonstrated a substantial elevation in glucose

absorption in the majority of metastatic and primary human

cancer patients (14). Tumor cells facilitate the formation of new

blood vessels through the secretion of VEGF, induced by lactate,

which supplies sufficient oxygen and nutrients for proliferation

(15). Persistent chronic stress triggers a decrease in lactate levels and

leads to depression. The “Warburg” effect occurs not only in tumor

cells but also in non-tumor cells (16). Lactic acid acts as a signaling

molecule involved in the regulation of brain function; both a

deficiency and accumulation of lactic acid can lead to

neurological dysfunctions, such as depression (17). Under

physiological conditions, aerobic glycolysis in the brain

contributes to dendritic growth, myelination processes, as well as

the activities of neurons and microglia, while also reducing

oxidative stress (18, 19). Intriguingly, stress-induced epinephrine

enhances breast cancer stem-like characteristics through LDHA

(lactate dehydrogenase A) - dependent metabolic reprogramming

(11). Lactate performs antidepressant functions by maintaining

normal neuron function, and modulating levels and activity of
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histone deacetylases in the hippocampal region (20). Meanwhile,

LDHA regulates neuronal excitability to inhibit depressive-like

behavior through lactate homeostasis (21). However, the research

on lactate levels in depression and cancer models has been a gap in

the literature. To address this, we developed an animal model of

breast cancer-related depression (BCRD) by in situ injection of BC

cells into CUMS mice and a model of lung cancer-related

depression (LCRD) by injecting LC cells into the tail veins of

CUMS mice. Behavioral assessments and synapse plasticity

detection were used for depression evaluation, while tumor

volume and H&E staining were performed to examine

tumorigenesis. Metabolites and key functional enzymes were

detected to unreal the role of glycolysis in depression-promoted

tumor glycolysis.

The findings of this research highlight the potential role of

chronic stress in exacerbating tumorigenesis and metastasis through

the stimulation of glycolysis.
2 Materials and methods

2.1 Cell culture

Luciferase gene-tagged Lewis murine lung cancer cell (LLC-

Luc) and luciferase gene-tagged 4T1 murine breast cancer cell (4T1-

Luc) were purchased from the Chinese Academy of Sciences Cell

Bank (Shanghai, China). LLC-Luc cells were cultured in Dulbecco’s

modified Eagle’s medium (DMEM, Gibco-BRL, Grand Island, NY,

USA); the 4T1-Luc cells were cultured in RPMI-1640 medium

(Gibco-BRL, Grand Island, NY, USA); all mediums were

supplemented with 10% fetal bovine serum and cultured at 37°C

in a humidified incubator containing 5% CO2.
2.2 Animals

Six–week–old female BALB/c mice and male C57BL/6 mice

were purchased from the Guangdong Medical Laboratory Animal

Center (Guangdong, China), and housed in special-pathogen-free

ventilation facilities. 12 h/12 h light/dark cycle was carried out, with

ambient temperatures of 20 - 26° C and relative humidity of 40 –

70%, 5 mice per cage, and eating and drinking freely. The Ethics

Committee of Guangzhou University of Chinese Medicine has

authorized a laboratory animal protocol.
2.3 Chronic unpredictable mild
stress experiment

Chronic unpredictable mild stress (CUMS) might mimic the

onset of depression produced by various pressures in human daily

life (5, 22). Mice were exposed to CUMS for 8 weeks, which

included day-night reversal (24 h), cold-water swimming (10°C ±
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1°C, 3 min), crowd-feeding (24 h), water and food deprivation

(24 h), an empty water bottle (24 h), a 45°cage tilt (24 h), a tail

clamp (1 cm from the tail end, 60 s), a self-made plastic seal tube (3

h), and a wet pad (24 h). 2 or 3 stimulation modalities were chosen

randomly each day to ensure no repetition within 2 days.
2.4 Establishment of tumor
orthotopic transplantation

5 × 105 4T1-Luc cells were injected into the right second

mammary fat pad of BALB/c mice for orthotopic transplantation

of BC. CUMS mice were inoculated with 4T1-Luc cells to develop

BCRD. The tumor size of BC was measured with a vernier caliper

every two days. It was calculated as follows: tumor volume (mm3) =

[length × width2]/2.

1 × 106 LLC-Luc cells were injected into the tail vein of C57BL/6

mice for orthotopic transplantation of LC, and CUMSmice adopted

LLC-Luc cells to develop LCRD. The tumor size was evaluated every

week using IVIS (PerkinElmer, Boston, United States) with 150 mg/

kg of D-luciferin potassium salt (PerkinElmer, Boston, United

States) given intraperitoneally.
2.5 Behavior assessments

The sucrose preference test (SPT) is done for anhedonia

assessment. Mice were fed in solitary cages preferentially. Two

bottles containing 1% sucrose solution were placed at each side of

the cages for 24 h as an adaption phase. The next day, one bottle was

replaced with water and left for another 24 h, and two bottles of

solution were changed the position at 12 h to avoid the error caused

by location preference. Then, mice were formally tested after 24 h of

freely eating without water, one bottle of water and one bottle of 1%

sucrose solution were placed on each side of the cage and switched

at 12 h. 24 h later, weigh each bottle and calculate sucrose

preference (%) = sucrose consumption/(water consumption +

sucrose consumption) × 100% (23).

An open field test (OFT) was also performed. BALB/c mice

were set up in the center of the blackboard, while C57BL/6 mice

were on a whiteboard and 10 minutes for each mouse. The open-

field arena is 50 × 50 × 40 cm (length × width × height). The mice’s

activity was filmed using a digital camera, and the total distance,

center distance, and center time were calculated using software.

The tail suspension test (TST) was done as follows, mice were

suspended 30 cm above the ground with wide tape on the tail-

suspension device for 6 minutes and recorded with a digital camera

recorded the mice’s activity. The first 2 minutes are considered

familiarity time and only the last 4 minutes are counted.

Mice were placed in cylindrical containers filled with room-

temperature water at a depth of 30 cm for forced swim test (FST).

Each mouse swam for 6 minutes and was videotaped, and then

blow-dried the mice hair and put them back. The first 2 minutes are

considered familiarity time and only the last 4 minutes are counted.
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The Y-Maze test was considered evaluable for working memory

and exploratory behavior in mice. Mice were placed on either of three

identical arms (arm length: 35 cm, armwidth: 5 cm, wall height: 10 cm)

and were allowed to explore freely for 8 minutes. The percentage of

spontaneous alternation was calculated as alternation (%) = (number of

correct alternations)/(number of total arm entries-2) x 100% (24).

The elevated plus-maze test (EPM) was used to investigate

anxiety-related behavior in rodents. The maze consists of four arms:

a pair of open arms and a pair of closed arms (35 cm long, 5 cm

wide, and 10 cm high), which were connected by a central platform.

The maze rises 50 cm above the ground. Gently place the mouse in

the central area facing the open arm and track the mouse’s

movements within the elevated cross-maze instrument. Record

the number of entries and the time spent in each arm (25).
2.6 Western blot

Tissue protein was extracted with ice RIPA and was detected

with a BCA kit following the guidelines. The protein samples were

split using SDS-PAGE, moved to a PVDF membrane, and then

treated with primary antibodies such as HKII (hexokinase II), PFKP

(phosphofructokinase platelet type), PKM2 (pyruvate kinase

isozyme type M2), PDH (pyruvate dehydrogenase), and LDHA

(Lactate dehydrogenase A) overnight at 4°C. After incubation with

enzyme-linked secondary antibody, the target protein level was

detected with a super-ECL detection reagent.
2.7 Glycolytic metabolites measurement

The contents of the ATP colorimetric kit (Cat.#A095-1-1),

pyruvate test kit (Cat.#A081-1-1), and lactic acid assay kit

(Cat.#A019-2) were obtained from Nanjing Jiancheng, Nanjing,

China and followed the manufacturer’s instructions.
2.8 Hematoxylin and eosin staining,
Nissl staining

After being fixed with 4% paraformaldehyde for 24 h, the tissue

samples were paraffin-embedded and sliced into 4 mm. The tissue

sections were deparaffinized with xylene and graded alcohol.

According to the standard protocol of H&E staining, eosin dye

for 3 minutes and hematoxylin dye for 10 minutes. Standard Nissl’s

staining method was performed (26).
2.9 Immunohistochemistry

Tissue slices were deparaffinized, and antigen recovery was

performed in citrate buffer (pH=6). Then slices were incubated

with the specific antibody HKII (AB227198) in the wet box at 4°C

overnight. The DAB detection kit was used as a color developer
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after the secondary antibody was combined, and finally, the

percentage of positive cells was estimated with Image J analysis

software (27). All images were taken using an optical microscope.
2.10 Statistical analysis

All data are presented as mean ± standard error of the mean

(SEM). All charts show relevant data for at least 3 independent tests.

SPSS 26.0 software was used to analyze the statistical analyses.

Student’s t-test was used for between-group comparisons followed

by a Tukey post-hoc test when an ANOVA revealed significance. A

two (± tumor) by two (± CUMS) ANOVA with time as a repeated

measure was used for the comparison of four experimental groups.

Significance is defined as P<0.05 for all analyses.
3 Results

3.1 CUMS induces depression-like behavior
in BALB/c mice and C57BL/6 mice

The experimental flow chart is shown in Figure 1A. In CUMS

group mice, sucrose preference decreased (Figures 1B, H), total

locomotion diminished in OFT (Figures 1C, I), prolonged

immobility time (Figures 1E, F, K, L), and lower body weights

(Figures 1G, M) compared to the control group. These results

indicate that the depression model was successfully established in

BALB/c mice and C57BL/6 mice.
3.2 The combination of tumors and CUMS
exacerbated depression-like behavior
in mice

To investigate whether the mice in the tumor group exhibited

anxiety-like and depressive-like behaviors and whether depression-

like behaviors were more severe in the BCRD and LCRD (24), we

performed behavioral assessments on tumor-bearing mice

separately. Using two-way ANOVA analysis, the results show that

in BALB/c mice, tumor-bearing decreased sucrose preference

(Figure 2A), decreased central activity distance (Figure 2D),

prolonged immobility time of TST (Figure 2E), and impaired

spatial cognition (Figure 2F) compared to the control group.

Compared to the CUMS group, BCRD mice displayed more

decreased sucrose preference in SPT (Figure 2A), and more

prolonged immobility time (Figure 2E). No significance in total

locomotion in OFT (Figures 2B, C), no significance in central

activity distance (Figure 2D) and spatial cognitive dysfunction

(Figure 2F), and no significance in the number and stay time of

mice entering the open arm between CUMS group and BCRD

group (Figures 2G, H). Meanwhile, we also assessed the change of

SPT and TST of each mouse before and after bearing the tumor. The

data showed both control and CUMS mice occurred obvious
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anhedonia and prolonged immobility time after tumor-bearing,

and CUMS induced more individuals and greater variation

depression in tumor-bearing mice (Figures 2I, J).

In C57BL/6 mice, compared to the control group, tumor-

bearing mice exhibited a reduced preference for sucrose

(Figure 2L), decreased total distance (Figures 2M, N), and fewer

entries into the open arms, along with reduced dwell time in the

open arms (Figures 2P, Q) Compared to the CUMS group, LCRD

mice displayed more decreased sucrose preference in SPT

(Figure 2L), more diminished total locomotion in OFT

(Figures 2M, N), decreased number of mice entering the open

arm (Figure 2P), no significance in central activity distance

(Figure 2O). Regardless of whether CUMS was applied or not, the

behavior of the lung cancer mice changed, showing a depression-

like tendency after tumor loading (Figure 2R), which is consistent

with what was observed in breast cancer models. Also, the results

showed that CUMS stimulation could reduce body weight in mice,

consistent with Figure 1. Regardless of whether the mice received

CUMS stimulation, tumor-bearing had little effect on the body

weight of mice. Only the CUMS group and BCRD group exhibited a

significant difference in body weight (Figures 2K, S).
3.3 Chronic stress-induced impairment of
hippocampal neurons in tumor-
bearing mice

It is reported that hippocampal neurons play a crucial role in

depression (5, 28), and Chronic stress causes pathophysiological

changes in the hippocampus, which can induce depression (11, 29).

As seen in Figure 3, the results of Nissl and H&E staining showed

that hippocampal neurons were full and clear with a tight and neat

cellular arrangement in the control group mice, the Nissl bodies

were clear, and no obvious neuron degeneration. The hippocampus

neurons were damaged, irregularly arranged, and sparsely

distributed, with a widened interstitium in CA1, CA2, and CA3

regions in both CUMS group and two tumor groups (BC and LC).

There was a significant decrease in the number of Nissl bodies and a

tendency for them to spread to the outer layer. In addition, CUMS

aggravated irregular arrangement and sparse distribution in CA2

and CA3 hippocampal regions in tumor-bearing mice, and Nissl

bodies were absent and there were obvious neuronal “escapes” and

ablation. These results suggest that CUMS aggravates hippocampal

neuronal damage in tumor-bearing mice. There exists a complex

relationship between cancer and neural remodeling and

dysfunction. Western blotting results showed that PSD-95, GAP-

43, and Syn were significantly lower in the BC and LC groups

compared with the control group. Syn was significantly lower in the

LCRD group compared with the CUMS group, no significant in the

BCRD group compared with the CUMS group. PSD-95 and GAP-

43 were not significant between the CUMS group and the BCRD

and LCRD group (Figures 3C, F).
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3.4 Chronic stress accelerated tumor
tumorigenesis and metastasis

Here, we used live mice imaging to track tumor growth and

metastasis in both models of mice. Fluorescence intensity obtained
Frontiers in Oncology 05
by in vivo imaging, and tumor visual morphology in vitro showed

that the tumors in tumor-bearing mice suffered from CUMS were

more severe than those without CUMS (Figures 4A, B, E, J, K, N).

At the same time, the volume of the mammary glands the weight of

the BCRD mice, and the weight of the lungs of the LCRD mice
FIGURE 1

Establishment of the CUMS model in BALB/c mice and C57BL/6 mice: (A) Flowchart of the experiment. (B, H) CUMS decreased the percentage of
sucrose preference in the SPT. (C, I) CUMS decreased the total distance in the OFT. (D, J) The representative movement trajectories of each group
mouse in the OFT. (E, F, K, L) CUMS increased immobility time in TST and FST. (G, M) The body weight curve of all group mice during the whole
experiment. Data are represented as the mean value ± SEM, n = 16, * * p<0.01.
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increased significantly (Figures 4C, D, L). Tissue sections were

prepared for pathologic analysis. H&E staining showed that more

numerous and larger tumor foci with more dense tumor cells were

observed both in BCRD and LCRD mice, and the core of the tumor

showed a necrosis-like structure due to lack of nutrients. More
Frontiers in Oncology 06
scattered tumor-infiltrating cells were also observed in other

residual normal tissue cells (Figures 4H, M).

The 4T1-Luc cells are reported to be a highly metastatic breast

cancer cell line with a tendency to metastasize to the lung in vivo (30).

This phenomenon has indeed been observed by in vivo imaging
FIGURE 2

Chronic stress aggravated depression-like behavior in tumor-bearing mice: (A, L) The percentage of sucrose preference in the SPT. (B, M) Results of
the total distance in the OFT. (C, N) The representative movement trajectories of each group in the OFT. (D, O) Results of the central distance in the
OFT. (E) Results of immobility time in the TST. (F) Results for the number of alternations in the Y-maze. (G, H, P, Q) Open arm entry number and
residence time in the EPM. (I, J, R) Self-behavioral comparison. (K, S) The body weight curve. Data are represented as the mean value ± SEM (BALB/
c: n= 8, C57BL/6: n= 6), * p<0.05, ** p<0.01. ns, no significant.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1543872
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Qin et al. 10.3389/fonc.2025.1543872
(Figure 4G). Furthermore, a greater number and size of metastases

were discovered in BC mice exposed to CUMS (Figure 4F). The liver

is a common priority metastasis site of lung cancer (31, 32). And the

bioluminescence imaging results were confirmed (Figure 4O). As

similar, more liver metastases were also observed in LCRD

(Figure 4P). H&E staining results also showed that the cancer cell

morphology in BCRD and LCRD mice metastases was more serious

and deteriorated (Figures 4I, Q). The above results indicated that

chronic stress was a high-risk factor for tumor metastasis.
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3.5 Chronic stress has less influence on
glycolysis within the brain tissues of
tumor-bearing mice

Studies have shown that brain plasticity is one of the pathogenic

mechanisms of depression, and glycolytic metabolism is closely

related to synaptic plasticity (33–35).

In BALB/c mice and C57BL/6 mice, there were no significant

differences in ATP, pyruvate, and lactic acid within the groups
FIGURE 3

CUMS aggravated hippocampal neuron damage in tumor-bearing mice: (A, D) Nissl staining of the hippocampus in BALB/c mice and C57BL/6 mice.
(B, E) H&E staining of the hippocampus in BALB/c mice and C57BL/6 mice. (C, F) Western blotting was used to detect the expression of brain
plasticity enzymes. Data are represented as the mean value ± SEM (C and F, n= 4), * p<0.05, ** p<0.01. ns, no significant.
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(Figures 5A–C, F–H). Glycolytic metabolic enzymes in the brain

(HKI, PFKP, PKM2, PDH, and LDHA) were detected with the

Western blot. Compared to the control group, the levels of HKI and

LDHA were decreased in the BC group and LC group (Figures 5D,

E, I, J). However, there were no significant changes observed in

PDH, PFKP, and PKM2 expression in the CUMS group and BCRD

group and LCRD group (Figures 5D, E, I, J).
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3.6 Chronic stress augmented aerobic
glycolysis within tumor tissues

Warburg effect is critical for the metabolic reprogramming of

tumor cells (36, 37). The uptake of glucose was enhanced, leading

to an increase in lactate production and extracellular acidification

rates (26). Therefore, we investigated the regulatory role of CUMS
FIGURE 4

Tumor growth and metastasis were aggravated by chronic stress: (A, E, F, G, J, N, O, P) The representative pictures of vivo imaging assay and
tumors in each group. (B, C, D, K, L) The fluorescence intensity values, Tumor weight, and growth curves. (H, I, M, Q) The representative pictures of
tumor tissues and metastasis were stained with H&E staining. Data are represented as the mean value ± SEM (BALB/c: n= 8, C57BL/6: n= 6),
* p<0.05, ** p<0.01.
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in glycolysis. As shown in Figure 6, the tumor tissues of tumor-

bearing mice (both BCRD and LCRD) pretreated by CUMS

exhibited elevated levels of glycolysis products and key catalytic

enzymes (Figures 6A–C, E–I, K, L). However, IHC detection

results revealed the distribution pattern of HKII in BC and LC
Frontiers in Oncology 09
tissues is different (Figures 6D, J). The distribution of HKII in BC

tissues is relatively uniform, and HKII is mainly confined to

superficial tumor tissues, while HKII in LC tissues is diffusely

dispersed in tumor cells and surrounding tissues of normal

lung tissues.
FIGURE 5

Chronic stress has less influence on glycolysis within the brain tissues of tumor-bearing mice: (A-C, F-H) Glycolytic metabolites (ATP, pyruvate, lactic
acid) concentration. (D, E, I, J) The expression of glycolysis enzymes was detected with Western blot in mice brains. Data are represented as the
mean value ± SEM, * p<0.05. ns, no significant.
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4 Discussion

It has been reported that approximately 280 million people

worldwide suffer from depression, and 800,000 of them die from

depression each year (38–40). Nearly 80% of depression patients are

not diagnosed in time (40). Animal and clinical studies have shown

a link between emotional dysfunction and tumorigenesis (41).

Approximately 20%-30% of patients with advanced cancer

develop clinically significant depression, and 15% suffer from

severe anxiety disorders (42). In this study, it was demonstrated

that chronic stress can cause depression-like behavior and
Frontiers in Oncology 10
facilitated tumor genesis and metastasis of BC and LC,

meanwhile, all the tumor-bearing mice exhibited depression-like

behavior to different extents. In addition, Chronic stress is not only

associated with depression but also with burnout and cognitive

impairment (43). Among 102 cancer survivors aged 25-79 years,

approximately one-third had cognitive failures in daily life (44–46).

Our results suggest that chronic stress induces the production of

depressive-like behaviors, reduces spatial cognition in mice, and

induces mice to exhibit more severe depressive-like behaviors and

cognitive dysfunction. These results are consistent with those

reported in the literature (47).
FIGURE 6

Aerobic glycolysis enhanced both in BCRD and LCRD. (A-C, G-I) Glycolytic metabolites in tumor tissue: (D, J) HKII distribution in tumor tissue was
detected with IHC. (E, F, K, L) Western blotting was used to detect the expression of glycolysis enzymes in the tumor. Data are represented as the
mean value ± SEM, * p<0.05, ** p<0.01.
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Dysregulation of neuroplasticity and neuronal cell damage are

thought to be key mediators in the pathogenesis of depression (35,

48, 49). Our results also confirmed that CUMS induced neuronal

damage and synaptic plasticity reduction in mice, which is

consistent with the literature (50, 51). Furthermore, cancer is

intricately linked with neurological remodeling and dysfunction

neurological-cancer interactions have the potential to modulate

tumor growth, invasion, and metastasis dissemination (52).

Tumor growth has been associated with substantial alterations in

the hippocampus and a reduction in neuronal cell count, ultimately

contributing to depressive symptoms (53). Notably, chronic stress is

correlated with the activation of the neuroendocrine system,

specifically the hypothalamic-pituitary-adrenal axis, and the

sympathetic nervous system. Additionally, it leads to the release

of stress hormones such as catecholamines and glucocorticoids (54).

The microenvironment is changed by the disruption of stress,

neurotransmitters, and immune cells and promotes tumorigenesis

and progression through a variety of mechanisms (41). It was

reported that the stimulation of b2-adrenergic receptors in PDAC

cancer cells by noradrenaline induced by chronic stress leads to the

production of autocrine and paracrine effects, thereby promoting

tumor growth (55). Our findings also validate the notion that

tumors can induce neuronal cell damage and diminish synaptic

plasticity in mice. Chronic stress exacerbates neuronal impairment

and reduces the survival rate of mice with tumors.

The Warburg effect is considered to be a critical element in the

reprogramming of energy metabolism in malignant tumors (36).

Chronic stress also plays an important role (10), and it promotes

tumor growth and metastasis through multiple mechanisms (41).

HKII is the first irreversible enzyme of glycolysis that inhibits the

activity of the PDH complex by phosphorylating S1 of PDHA293
Frontiers in Oncology 11
and promotes the Warburg effect (56). In addition to serving as an

energetic metabolism substrate, lactate can be transported to

neurons thereby sustaining neuronal function and exerting

antidepressant effects (57, 58). Additionally, the augmented

Warburg effect in the hippocampus contributes to enhanced

synaptic plasticity (59). Most importantly, our results also show

that chronic stress-induced higher expression of glycolytic

metabolites in tumor tissue.

In conclusion, our findings consistently indicate chronic stress-

induced anxiety-like and depression-like behaviors in mice, while

also promoting the overproduction of lactic acid through increased

aerobic glycolytic enzymes in tumor tissue. Extracellular

acidification maintains the invasive growth of cancer cells and

further exacerbates the progression and metastasis of BC and LC

(Figure 7). The findings of this study contribute to a deeper

understanding of the impact of metabolic remodeling on the

pathogenesis of cancer-related depression. However, it was

challenging to establish a strong connection between CUMS and

glycolysis because of the small sample size, which limited the

experiment’s findings to examining changes in glycolysis in tumor

progression under chronic stress rather than delving into the

underlying mechanisms in detail. As a result, future related

studies should concentrate on assessing glycolysis’s significant

contribution to the phenomenon of cancer-associated depression.

In the meantime, because the cancer cell lines used in this study

came from different species, different strains of mice were given

different injections of cancer cells. It was discovered that this caused

variations in the immune responses and stress levels in the male and

female mice, which in turn led to variations in the model’s

experiment outcomes. Consequently, we plan to inject the cancer

cells into the same strains of mice in future related studies.
FIGURE 7

The chronic stress-induced depression-like behavior in mice exacerbated tumorigenesis and metastasis by augmenting glycolysis in tumor cells.
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