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computed tomography-based
intratumoral and peritumoral
radiomics features
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Qingyuan Zhang1 and Chuanping Gao1*

1Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, China, 2Huashan
Hospital, Fudan University, Shanghai, China
Purpose: To develop and validate computed tomography (CT)-based

intratumoral and peritumoral radiomics signatures for preoperative prediction

of lymph node metastasis (LNM) in patients with ovarian cancer (OC).

Methods: Patients with pathological diagnosis of OC were retrospectively

included. Intratumoral and peritumoral radiomics features were extracted from

contrast-enhanced CT images. Intratumoral and peritumoral radiomics features

were extracted from contrast-enhanced CT images. Intratumoral, peritumoral,

and combined radiomics signatures were constructed, and their radiomics

scores were calculated. Univariate and multivariate logistic regression analyses

were performed to identify predictors of clinical outcomes. A radiomics

nomogram was developed by incorporating the combined radiomics signature

with clinical risk factors. The prediction efficiency of the various models was

evaluated using the accuracy value, the area under the receiver-operating

characteristic curve (AUC) and decision curve analysis (DCA).

Results: Two hundred and seventy-three patients with OC were enrolled and

randomly divided into a training cohort (n=190) and a test cohort (n=83) in a 7:3

ratio. The intratumoral, peritumoral, and combined radiomics signatures were

constructed using 18, 11, and 17 radiomics features, respectively. The combined

radiomics signature showed the best prediction ability, with accuracy of 0.783

and an AUC of 0.860 (95% confidence interval 0.779–0.941). The DCA results

showed that the combined radiomics signature had better clinical application

than the clinical model and the radiomics nomogram.
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Conclusions: A CT-based combined radiomics signature incorporating

intratumoral and peritumoral radiomics features can predict LNM in patients

with OC before surgery.
KEYWORDS

ovarian cancer, lymph node metastasis, radiomics, tomography - methods, x-
ray computed
Introduction

Ovarian cancer (OC) has the highest mortality of all the

gynecological malignancies, with a 5-year survival rate below 45%

(1). Approximately 22,400 new cases are reported each year in the

US, less than 40% of which are amenable to curative treatment (2).

Surgical resection is considered the most important treatment for

OC but the role of systemic lymphadenectomy remains

controversial. Lymph node (LN) status may affect survival in

these patients and is included in the International Federation of

Gynecology and Obstetrics (FIGO) staging system (3). OC with

lymph node metastasis (LNM) is typically classified as stage III or

higher (4). Accurate identification of LNM enables clinicians to plan

appropriate treatment. However, there is still no reliable methods

for predicting LNM preoperatively in patients with OC.

Imaging examinations are widely used for detection and staging of

OC. Computed tomography (CT) is recommended by the European

Society of Urogenital Radiology as the first-line imaging modality for

preoperative staging of OC and follow-up and has the advantages of a

fast scanning time and good reproducibility (5). However, its accuracy

for preoperative imaging assessment of LNM has been unsatisfactory,

with a sensitivity of only 48%–80% (6). Radiomics, a process by which

medical images are converted intomineable high-dimensional data in a

high-throughput manner, has recently been introduced in the medical

imaging field for the purposes of preoperative diagnosis (7, 8). The

resulting data can provide information about the predicted severity of a

given disease, the associated risks, and the likely response to therapy

and can be used to support clinical decision-making. Radiomics is

capable of characterizing the heterogeneity of an entire tumor and its

microenvironment and has the advantages of being non-invasive and

not constrained by time or space (9, 10). Introduction of radiomics has

been found to improve the prediction of preoperative LNM, disease

stage, post-treatment response, and survival in patients with colorectal,
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thyroid, cervical, and cholangiocarcinoma tumors (11–14). To the best

of our knowledge, most of the radiomics studies in OC have focused on

differential diagnosis and preoperative staging of the disease (15, 16),

but few have focused on preoperative prediction of LNM and have

been based on intratumoral radiomics features (17). However,

peritumoral radiomics features have also demonstrated predictive

value in several types of cancers (18, 19). Therefore, in this study, we

sought to evaluate the efficiency of intratumoral and peritumoral

radiomics in preoperative prediction of LNM in patients with OC.
Materials and methods

Patients

The study was approved by the Institutional Review Board of

the Affiliated Hospital of Qingdao University. The requirement for

informed consent was waived in view of the anonymity of the data

analyzed and non-interventional nature of the research.

We searched the institutional pathology database from October

2016 to March 2023 and identified 1,117 patients with a diagnosis of

OC based on surgically resected specimens who underwent

appropriate surgery with pelvic and/or para-aortic LN dissection.

The inclusion criteria were pathologically confirmed OC and a

contrast-enhanced CT examination within the 2 weeks before

surgery. Patients with other malignancies, those who had received

preoperative chemoradiotherapy, and those with images of

insufficient quality were excluded.

The following clinical and pathological data were collected: age,

tumor size, pathological type, FIGO stage, carbohydrate antigen 125

(CA125) and human epididymal protein 4 (HE4) levels, presence or

absence of ascites, and CT-reported LN status.
CT image acquisition and radiological
evaluation

Contrast-enhanced CT was performed in all patients. The helical

CT systems used were the Somatom Sensation 64 and Somatom

Definition (Siemens Healthcare, Erlangen, Germany) and the

Discovery 750 and Brightspeed 16 (GE Healthcare, Little Chalfont,

UK). The scan area was from the pubic symphysis to the diaphragm,
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and the lesions were observed in the soft-tissue window. The CT scan

parameters were as follows: tube current, 240–320 mAs; tube voltage,

120 kVp; beam pitch, 1.375; matrix, 512×512; and section thickness, 5

mm. An intravenous non-ionic contrast agent (Ultravist 370

[iopromide]; Bayer, Berlin, Germany) were used in all patients at a

rate of 3 ml/s and a dose of 1.5 ml/kg patient body weight. The

respective arterial, venous, and delayed phase times were 30 s, 60–70

s, and 120 s after injection of contrast.

Two radiologists experienced in gynecological imaging

reviewed all CT images and assessed the following characteristics:

tumor size (maximum diameter on transverse images); CT-reported

ascites and LN status; and LN status. A maximum short diameter of

>10 mm in the portal vein phase was defined as positive for LNM

(20). The two radiologists were blinded to the pathology data. Any

disagreements were resolved by consultation.
Image segmentation

A schematic of image segmentation is shown in Figure 1.

The two radiologists used open-source imaging software (ITK-

SNAP, version 3.8.0; www.itksnap.org) for three-dimensional

segmentation. The tumor regions were segmented along the

tumor contour on each enhanced axial CT image slice as the

intratumoral region of interest (ROI). The peritumoral ROI was

generated using the “ROI Operation”module in RIAS software (21),

which automatically extended 3 mm outwards from the tumor and

removed the tumor area.
Extraction of radiomics features

The radiomics features were extracted using a 3D-Slicer

(version 5.3.0, https://www.slicer.org). Given that the images

were acquired using various scanners, the CT images were

resampled, grayscale discretized, and normalized before feature

extraction. The radiomics features were extracted from both the

original intratumoral and peritumoral ROIs of all phase images. In

total, 6780 (3390 + 3390) radiomics features were extracted.
Intraobserver and interobserver
reproducibility

Intraclass correlation coefficients (ICCs) were calculated to assess

intraobserver and interobserver reproducibility before selection of

features. Initially, 30 CT images were randomly selected and

segmented by reader 1 and reader 2 to assess interobserver

reproducibility. Reader 1 repeated the segmentation 2 weeks later for

assessment of intraobserver reproducibility. Features with an ICC >0.75

were considered to have good reproducibility and included.

The remaining segmentations were performed independently by

reader 1.
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Development and evaluation of
intratumoral, peritumoral, and combined
radiomics signatures

Selection of radiomics features proceeded in two steps, with the

same process used to select both intratumoral and peritumoral

radiomics features. First, the minimum redundancy maximum

correlation algorithm was used to select the top 30 features. Second,

the least absolute shrinkage and selection operator algorithm was used

to determine the penalty parameter through 10-fold cross-validation,

after which the optimal features were selected. The radiomics score for

each patient was calculated as a linear combination of selected features,

which were weighted by their respective coefficients. The area under the

curve (AUC) of the receiver-operating characteristic (ROC) curve was

calculated to evaluate the performance of the three radiomics

signatures for prediction of LNM in the training cohort, which was

confirmed in the test cohort.
Development of a clinical model and
radiomics nomogram

The relationship between LN status and clinical parameters was

evaluated by univariate logistic regression analysis. Clinical risk

factors with a p-value <0.05 were then subjected to multivariate

logistic regression analysis to develop the clinical model. A

radiomics nomogram was developed by incorporating the best-

performing radiomics signature and clinical risk factors.
Assessment of performance of the
radiomics signature, clinical model, and
radiomics nomogram

The ability of the radiomics signature, clinical model, and

radiomics nomogram to predict LNM was evaluated by the AUC

and accuracy values. Calibration curves were plotted to assess the

consistency between the predictions of the nomogram and the

observed outcomes. Decision curve analysis (DCA) was used to

evaluate the clinical value of the various models.
Statistical analysis

All statistical analyses were performed using R statistical

software (version 4.2.2, http://www.r-project.org). A two-sided p-

value of <0.05 was considered statistically significant. Continuous

variables were compared between groups using the Student’s t-test

and Mann–Whitney U test, and class-based variables were

compared using the chi-squared test. The DeLong test was used

to assess differences in the AUC among the models. The univariate

and multivariate logistic analyses were performed using SPSS

version 26.0 software (IBM Corp., Armonk, NY, USA).
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Results

Clinical characteristics

A total of 273 patients were enrolled and randomly divided into

a training cohort (n=190) and a test cohort (n=83) in a 7:3 ratio. A

flowchart showing the patient recruitment process is provided

in Figure 2.

Table 1 shows the clinical and pathological characteristics of the

273 patients with OC. The median patient age was 53 years (range

19–80). Metastasis was confirmed intraoperatively in 95

patients (34.8%).
Selection of features and construction of
intratumoral, peritumoral, and combined
radiomics signatures

In total, 1,628 intratumoral and 1,858 peritumoral radiomics

features showed high stability (ICC >0.75). Finally, 18, 11, and 17

radiomics features, respectively, were selected using the mRMR and

LASSO algorithms to construct intratumoral, peritumoral, and

combined radiomics signatures (RS-region, RS-peri, RS-

combined). The formula used to calculate the radiomics score is

shown in the Supplementary Methods.

Table 2 shows the accuracy, AUC, and confidence interval (CI)

for each of the models. Of the three radiomics signatures, the RS-
Frontiers in Oncology 04
combined showed the best predictive performance and was used to

construct a radiomics nomogram with an AUC of 0.860 and

accuracy of 0.783 in the test cohort. Figure 3 shows the process

used to select features for development of the RS-combined.
FIGURE 2

Flow diagram showing the patient selection process. LNM, lymph
node metastasis.
FIGURE 1

Flowchart showing the process used for segmentation of contrast-enhanced computed tomography images with an example of primary tumor
segmentation for a patient with ovarian cancer.
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Development of the clinical model

The results of the univariate and multivariate logistic regression

analyses of clinical characteristics are shown in Table 3. In

univariate analysis, tumor size, pathological type, CA125, HE4,
Frontiers in Oncology 05
FIGO stage, and CT-reported LN status were significant risk factors

for LNM (p<0.05). However, in multivariate analysis, only FIGO

stage (odds ratio [OR] 4.041; 95% CI 2.387–8.117; p<0.001) and

CT-reported LN status (OR 0.294; 95% CI 0.119–0.726; p=0.008)

were independent risk factors and were included in the clinical
TABLE 1 Patient’s Clinical and pathological information between metastasis and non-metastasis group in the training and test cohort.

Variables Training cohort (n=190) Test cohort (n=83)

LNM (n=66) non-LNM (n=124) P LNM (n=29) Non-LNM (n=54) P

Age (years), mean ± SD 54.48±10.15 53.83±11.48 0.654 51.13±8.17 52.81±9.99 0.441

Tumor size, median (IQR) 92.00 (60.00,125.50) 103.50 (74.00,137.25) 0.043 83.00 (67.50,115.00) 92.50 (74.25,128.50) 0.202

Pathological type

High-grade serous adenocarcinoma 54 60 0.001 25 28 0.047

Low-grade serous adenocarcinoma 3 2 2 4

Clear cell carcinoma 3 22 2 13

Endometrioid cancer 4 13 0 4

Mucinous carcinoma 3 13 0 2

Other 2 11 0 2

FIGO stage

I 1 61 <0.001 4 27 <0.001

II 3 26 0 12

III 53 31 17 12

IV 9 6 8 3

CA-125, median (IQR) 560.40
(162.74,1377.25)

120.95 (44.70,510.60) <0.001 378.00
(131.75,1301.00)

170.95 (38.02,504.90) 0.022

HE4, median (IQR) 268.20 (147.40,461.45) 116.20 (64.11,236.50) <0.001 222.10 (153.10,405.00) 105.50 (58.25,181.28) <0.001

CT-reported LN status

LNM 28 11 <0.001 15 8 0.001

non-LNM 38 113 14 46

CT-reported ascites

Present 47 77 0.263 24 29 0.016

Absent 19 47 5 25
frontie
SD, Standard Deviation; IQR, Interquartile Range; LNM, Lymph Node Metastasis; FIGO, International Federation of Gynecology and Obstetrics.
TABLE 2 Performance of clinical model, radiomics signatures and radiomics nomogram.

Model Training cohort Test Cohort

AUC (95%CI) ACC SEN SPE C-index (95%CI) ACC SEN SPE

Clinical model 0.850 (0.899-0.901) 0.742 0.455 0.895 0.600 (0.472-0.728) 0.602 0.345 0.741

Radiomics nomogram 0.925 (0.891-0.960) 0.805 0.697 0.863 0.870 (0.782-0.957) 0.675 0.862 0.574

RS combine 0.850 (0.792-0.908) 0.795 0.424 0.992 0.860 (0.779-0.941) 0.783 0.621 0.870

RS region 0.778 (0.711-0.846) 0.711 0.439 0.855 0.579 (0.451-0.706) 0.590 0.414 0.685

RS peri 0.749 (0.678-0.821) 0.705 0.394 0.871 0.579 (0.451-0.706) 0.590 0.310 0.741
RS, radiomics signature; AUC, area under the curve; CI, confidence interval; ACC, accuracy; SEN, sensitivity; SPE, specificity.
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FIGURE 3

Selection of features for development of the combined radiomics signature. (a) Coefficients drawn vs. ln (l). (b) Selection process for tuning
parameter (l). (c) The 17 radiomics features selected.
TABLE 3 Results of univariate and multivariate logistic regression analysis in ovarian cancer patients.

Variables Univariate Logical Analysis Multivariate Logical Analysis

OR (95%CI) P OR (95%CI) P

Age 1.005 (0.978-1.033) 0.696

Tumor size 0.992 (0.984-0.999) 0.031 0.998 (0.987-1.010) 0.198

Pathological type 0.587 (0.457-0.753) <0.001 0.823 (0.612-1.107) 0.783

FIGO stage 5.855 (3.353-10.226) <0.001 4.401 (2.387-8.117) <0.001

CA-125 1.000 (1.000-1.001) 0.024 1.000 (1.000-1.000) 0.389

HE4 1.001 (1.000-1.002) 0.013 1.000 (0.999-1.001) 0.854

CT-reported LN status 0.132 (0.060-0.291) <0.001 0.294 (0.119-0.726) 0.008

CT-reported ascites 0.662 (0.348-1.262) 0.210
F
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OR, odds ratio; CI, confidence interval.
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model. The AUC for the clinical model was 0.850 (95% CI 0.799–

0.901) in the training cohort and 0.600 (95% CI 0.472–0.728) in the

test cohort (Table 2).
Construction of a radiomics nomogram
and performance of the various models

A radiomics nomogram was developed by incorporating the

RS-combined and independent clinical factors (Figure 4a). The

AUC was 0.925 (95% CI 0.891–0.960) in the training cohort and

0.870 (95% CI 0.782–0.957) in the test cohort (Table 2). The

calibration curve (Figures 4b, c) showed that the radiomics

nomogram-based predictions were in good agreement with the

true LNM status.

As shown in Table 2, the AUC of the RS-combined was

significantly higher in the test cohort than in the clinical model

(p<0.001) but was not significant different from that in the

radiomics nomogram (p=0.862). However, the training accuracy

of the RS-combined was significantly higher than that of the

radiomics nomogram and the clinical model (0.783 vs.0.675

vs. 0.602).

The DCA curves for the RS-combined, clinical model, and

radiomics nomogram in the test cohort are shown in Figure 4d. The

RS-combined showed markedly better performance than the

radiomics nomogram in most threshold range and consistently

outperformed the clinical model.
Discussion

In this study, we developed various radiomics signatures, a

clinical model, and a radiomics nomogram based on radiomics and

clinical features for preoperative prediction of LNM in patients with

OC. Our results show that a radiomics signature that integrated

intratumoral and peritumoral radiomics features had the best

predictive efficiency with the highest AUC values and accuracy.

Systemic lymphadenectomy is essential for accurate staging,

prognosis, and assessment of the effects of oncological treatment.

Previous studies have found that the average incidence of LNM is

44%–53% in patients with FIGO stage III–IV OC (22), in whom

lymphadenectomy can improve 5-year overall survival. However,

lymphadenectomy failed to improve 5-year overall survival in

patients with FIGO stage I–II, and the incidence of LNM in these

patients was reported to be only 14.2% (23), suggesting that

overtreatment occurs in at least 80% of cases. In this study, 95

(34.8%) of 273 patients were confirmed to have LNM, which is

consistent with the value of 36.8% reported by Xiang et al. (24).

Therefore, accurately identifying the risk of LNM preoperatively has

clinical significance in the treatment of OC.

Controversy persists regarding the risk factors for LNM in

patients with OC. Zhou et al. identified three independent risk

factors for LNM in patients with OC, namely, histological type,
Frontiers in Oncology 07
grade, and CA125 level at diagnosis. They constructed a predictive

model using these factors and reported an AUC of 0.740 (4), which

suggests that clinical parameters for preoperative assessment of LN

status are still not accurate enough. In recent years, radiomics has

been confirmed to be useful for preoperative prediction of LN status

in certain tumors. Liu et al. developed a CT-based radiomics

nomogram for prediction of LNM in gallbladder cancer and

found that the radiomics score was an independent predictor of

LNM (OR 7.415; 95% CI 3.384–16.246; p<0.001) and that addition

of radiomics analysis significantly improved the accuracy of

prediction (25). CT is the standard imaging modality for

preoperative evaluation and postoperative surveillance of patients

with OC, and LNM is mainly evaluated by measuring LN size (26).

Ai et al. constructed a model for prediction of LNM in patients with

OC that combined nine non-contrast-enhanced CT-based

radiomics features and two clinical factors (age and CA125). The

model had good prediction value with an AUC of 0.86 (95% CI

0.72–0.99), sensitivity of 0.81, and specificity of 0.8 (27).

Peritumoral heterogeneity and the microenvironment are closely

related to tumor aggressiveness. The peritumoral area reflects

infiltration of peritumoral immune cells (28, 29), and changes in

the stroma surrounding the tumor determine the ability of the tumor

to grow and spread, evade the body’s immune protection system, and

resist therapeutic intervention (30). In recent years, many studies

have incorporated peritumoral radiomics features into intratumoral

radiomics or clinical models. These models have often been used for

survival analysis and differential diagnosis in patients with cancer and

for preoperative prediction (18, 19, 31). Wang et al. found that both

peritumoral and intratumoral radiomics features had good predictive

performance for LNM in patients with lung adenocarcinoma (AUC

0.825 vs. 0.829). Moreover, when they integrated intratumoral and

peritumoral radiomics features with clinical parameters, the

predictive ability was improved further (AUC 0.863, 95% CI 0.800–

0.938) (19). Yang et al. assessed the relationship between preoperative

imaging data and LNM in 193 patients with gastric cancer and found

that a model that integrated intratumoral and peritumoral radiomics

features had better predictive ability than a model based on

intratumoral radiomics features (AUC 0.779 vs. 0.717) (32). To the

best of our knowledge, no studies have integrated intratumoral and

peritumoral radiomics features for prediction of LNM in patients

with OC.

We have constructed intratumoral, peritumoral, and combined

radiomics signatures based on contrast-enhanced CT and

demonstrated that the combined radiomics signature shows better

predictive performance than the intratumoral radiomics signature

and peritumoral radiomics signature (AUC 0.860 vs.0.579 vs.

0.579). Peritumoral radiomics might contain unique and valuable

information that has additional predictive value for LNM in

patients with OC.

This study has several limitations. First, it had a single-center

retrospective design with the inherent risk of selection bias.

Multicenter studies with larger sample sizes are needed to

improve the robustness of the model. Second, segmentation of
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tumors was performed manually, which can be time-consuming,

laborious, and error-prone. Further research is necessary to

improve precision of segmentation and to automate the

segmentation process. Third, the radiomics features were
Frontiers in Oncology 08
extracted from the primary tumor instead of LNs, which may

affect the accuracy of the model. Image acquisition, feature

extraction, and data processing should be standardized before

implementation of radiomics analysis in clinical practice.
FIGURE 4

(a) Radiomics nomogram. (b) Calibration curve of the radiomics nomogram for the training cohort. (c) Calibration curve of the radiomics nomogram
for the test cohort. (d) Decision curve analysis of the various models.
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Conclusion

A combined radiomics signature that incorporates intratumoral

and peritumoral radiomics features could serve as an effective tool for

preoperative prediction of LNM in patients with OC, thereby guiding

clinical decision-making and facilitating individualized management of

these patients.
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