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AIM: To explore an MRI-based radiomics model for predicting the efficacy of 
neoadjuvant therapy (NAT) for breast cancer with HER2 overexpression. 

Materials and Methods: A total of 133 patients with HER2 positive breast cancer 
who underwent neoadjuvant therapy were retrospectively enrolled and divided 
into pathological complete response (PCR) and non-PCR groups. The patients 
from two centers were split into a training group (n=68) and a test group (n=65). 
MRI sequences (fs-T2WI, DWI, DCE-MRI) were used to outline regions of interest 
(ROI). Optimal features were selected using f-classif function and LASSO 
regression, and a multi-parameter MRI radiomics  score (Rad-score)  was

constructed via logistic regression. Clinical independent predictors were 
identified to build a clinical model, and a nomogram was developed by 
combining Rad-score with these predictors. Model performance was evaluated 
using AUC, DeLong test, calibration curves, and decision curve analysis (DCA). 

Results: In this study, multivariate analysis identified key predictive clinical factors 
for pCR, including Ki-67 increment index and tumor morphology. Additionally, a 
total of 3375 radiomics features were extracted, and 7 key features were selected 
for model construction. Compared with the image group model and clinical 
model, the nomogram model based on imaging group had the best predictive 
performance (training group AUC: 0.894, sensitivity 83.72%, specificity 84.00%, 
test group AUC: 0.878, sensitivity 88.64%, specificity 71.43%). The calibration and 
decision curve analyses confirmed its strong consistency and clinical utility 
compared to individual models. 
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Conclusion: The nomogram model based on multi-parameter MRI has a steady 
performance in predicting the efficacy of NAT in breast cancer patients with 
HER2 overexpression, which provides important guidance for clinical treatment 
and decision-making. 
KEYWORDS 

breast  cancer,  HER2  overexpression,  radiomics,  nomograms,  magnetic  
resonance imaging 
Introduction 

Breast cancer has become the leading malignancy threatening the 
health of women in China, with approximately 420,000 new cases and 
120,000 deaths annually (1). Among its subtypes, human epidermal 
growth factor receptor 2 (HER2)-overexpressing breast cancer is 
particularly aggressive. Initially identified in rat neural tumors, 
HER2 was later found by Slamon et al. to be amplified or 
overexpressed in 20%–30% of breast cancers (2). This subtype is 
characterized by high invasiveness, heterogeneity, and an elevated risk 
of recurrence and metastasis, often leading to poor prognosis (3, 4). 

Neoadjuvant therapy (NAT) is the preferred treatment for 
HER2 overexpressing breast cancer, resulting in significantly 
higher rates of pathologic complete remission (pCR), along with 
extended disease-free survival (DFS) and overall survival (OS), 
leading to improved prognosis (5–7). While pathological 
evaluation is the gold standard for assessing NAT response, it 
depends on post-surgical specimens and is non-repeatable. 
Imaging, by contrast, offers a non-invasive and comprehensive 
way to evaluate treatment outcomes early. Magnetic resonance 
imaging (MRI) is widely utilized to assess breast cancer response 
to NAT and residual tumor due to its multi-parametric capabilities 
and absence of ionizing radiation (8, 9). However, previous studies 
have largely focused on general breast cancer imaging, often 
neglecting the specific characteristics of HER2 overexpressing 
breast cancer, a highly heterogeneous subtype with distinct 
treatment responses and imaging manifestations after NAT. 
Accurate prediction and evaluation in this group are vital for 
developing precise treatment plans. 

Radiomics, a novel research method, transforms medical images 
into high-throughput quantitative data, revealing deeper features that 
are not visible to the naked eye and enabling comprehensive analysis 
of lesions. This approach increasingly supports personalized cancer 
treatment by providing detailed insights into quantitative image 
morphology and spatial distribution (10). The integration of 
radiomics with pre-treatment MRI has demonstrated potential for 
accurately predicting neoadjuvant therapy efficacy for breast cancer, 
paving the way for more precise evaluations and individualized 
treatment strategies (11, 12). However, research on predicting 
NAT outcomes for HER2-overexpressing breast cancer using 
multi-parametric MRI is scarce. 
02 
In this study, multi-parametric MRI features, combined with 
clinical characteristics, were used to develop a prediction model to 
eva lua te  NAT  outcome  pred ic t ion  per formance  for  
HER2-overexpressing breast cancer. 
Materials and methods 

This retrospective study was approved by the ethics committee 
of Bengbu Medical University (No. 372 [2024]); and did not require 
written informed consent. Clinical trial number: not applicable. 
General information 

Records of patients with HER2 overexpressing breast cancer 
who received neoadjuvant therapy between December 2019 and 
January 2024 at the First Affiliated Hospital of Bengbu Medical 
University and Daping Hospital of Army Medical University were 
retrospectively reviewed. The study included patients who were 
newly diagnosed of HER2 overexpressing breast cancer confirmed 
by core needle biopsy, received neoadjuvant therapy combined with 
anti-HER2 therapy, and completed surgical treatment along with 
postoperative pathological evaluation at either the First Affiliated 
Hospital of Bengbu Medical University or Daping Hospital of Army 
Medical University. Patients were excluded if they had clinical stage 
IV disease, received fewer than 4 cycles of neoadjuvant therapy, had 
lesions that were too small or poorly defined to delineate the region 
of interest, or had male breast cancer. Explanation of the exclusion 
criteria for “ROI delineation cannot be performed” in Figure 1:(1) 
Image quality issues: Severe artifacts in the original images (e.g., 
susceptibility artifacts caused by metal implants, motion artifacts), 
low signal-to-noise ratio (e.g., due to improper scanning parameters 
or poor patient cooperation), or insufficient contrast (e.g., failed 
contrast-enhanced scans) made it impossible to distinguish the ROI 
from surrounding tissues. (2) Abnormal or missing anatomical 
structures: The target organ could not be delineated using 
conventional imaging methods due to congenital malformations, 
severe pathological changes (e.g., tumor infiltration leading to the 
disappearance of organ contours), or post-surgical alterations (e.g., 
partial/complete organ resection). (3) Technical limitations: 
frontiersin.org 
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The current scanning sequence or imaging plane did not cover the 
target region (e.g., missing critical slices), or the minimum 
identifiable size of the ROI could not meet the analysis 
requirements due to equipment performance constraints (e.g., 
insufficient spatial resolution). 

In total, 133 patients met the criteria, with 68 from the First 
Affiliated Hospital of Bengbu Medical University designated as the 
training group and 65 from Daping Hospital of Army Medical 
University as the test group, further categorized into the PCR group 
(86 cases) and non-PCR group (47 cases) based on the achievement 
of pathologic complete remission (PCR) after neoadjuvant therapy 
(Figure 1). PCR was defined as the absence of invasive carcinoma 
and carcinoma in situ in the primary breast, with no residual 
metastasis in regional lymph nodes (13). 
 

Examination method 

All patients in the study underwent imaging with 3.0T MRI 
scanners (Philips Achieva, Center 1) and 1.5T MRI scanners 
(Siemens Magnetom Aera, Center 2). They were positioned prone, 
with both breasts naturally suspended to align with the center of the 
breast coil. Patients were instructed to hold their breath and maintain 
stillness to minimize motion artifacts. Imaging sequences included 
T1-weighted imaging (T1WI), fat saturation T2-weighted imaging 
(fs-T2WI), diffusion-weighted imaging (DWI), pre-enhanced T1WI, 
and dynamic contrast-enhanced (DCE) MRI. 

A T1WI plain scan was conducted before contrast agent 
injection to create a baseline mask image. For the DCE sequence, 
Frontiers in Oncology 03 
Gd-DTPA contrast agent was used at a dose of 0.2 mmol/kg in 
Center 1 and 0.1 mmol/kg in Center 2, injected into the median 
cubital vein using a high-pressure syringe, followed by 20 mL of 
normal saline. Scanning continued for each phase, with a duration 
of 60 seconds per phase. Center 1 collected a total of 5 phases, while 
Center 2 collected 6 phases. MRI scanning parameters are detailed 
in Supplementary Materials Tables S1, S2. 
Clinical data collection and analysis 

Clinical data were collected, including age, menstrual status, 
neoadjuvant therapy, lymph node enlargement, Ki-67 increment 
index(Baseline value before treatment), clinical stage of tumor before 
treatment, and whether pCR was achieved after treatment (Table 1). 
The clinical staging is based on the American Joint Committee Cancer 
(AJCC) Breast Cancer Staging System (8th Edition) (14). The new 
adjuvant treatment plan refers to the National Comprehensive Cancer 
Network Guide 2020 edition (15).  The positive criteria of  HER2
were immunohistochemical HER2 (3+) or HER2 (2+) and 
fluorescence in situ hybridization (FISH) (16). All cases involved in 
the study were treated with standard NAT regimens and treatment 
cycles to minimize their impact on the results of the study. NAT 
regimens follow NCCN treatment guidelines for breast cancer (17). 
MR image analysis 

MR images were evaluated by two radiologists with over 5 years 
of experience in breast MRI diagnosis using a post-processing 
FIGURE 1 

Flow diagram of participants enrollment. 
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TABLE 1 Clinical and radiological baseline characteristics of HER2-overexpression breast cancer in the training and test cohorts. 

Characteristics Training set (n=68) Test set (n=65) 

None-pCR 
(n=26) 

pCR 
(n=42) 

Statistical 
value 

P 
Value 

None-pCR 
(n=21) 

pCR 
(n=44) 

Statistical 
value 

P 
Value 

Age 50.44 ± 8.43 53.38 ± 9.74 0.942 0.214 50.38 ± 8.71 52.59 ± 9.60 0.024 0.375 

Menopausal state 0.930 0.335 0.253 0.615 

No 13 (50.0) 16 (38.1) 9 (42.9) 16 (36.4) 

Yes 13 (50.0) 26 (61.9) 12 (57.1) 28 (63.6) 

lymphadenopathy 0.169 0.681 0.018 0.894 

No 4 (15.4) 5 (11.9) 17 (81.0) 35 ( 79.5) 

Yes 22 (84.6) 37 (88.1) 4 (19.0) 9 (20.5) 

MRI maximum 
tumor diameter 

38.62 ± 15.86 38.60 ± 15.46 -0.069 0.945 31.0 (14.0, 89.0) 27.5 
(9.0, 77.0) 

-1.278 0.201 

Tumor margin 0.269 0.604 3.155 0.076 

Clear 7 (26.9) 9 (21.4) 0 (0.0) 6 (13.6) 

Unclear 19 (7301) 33 (78.6) 21 (100.0) 38 (86.4) 

Tumor morphology 6.477 0.011 1.646 0.034 

regular 3 (11.5) 17 (40.5) 2 (9.5) 10 (22.7) 

irregular 23 (88.5) 25 (59.5) 19 (90.5) 34 (77.3) 

Enhancement patterns 2.352 0.125 0.032 0.857 

Lump-
like enhancement 

20 (76.9) 38 (90.5) 10 (47.6) 22 (50.0) 

Non-lump­
like enhancement 

6 (23.1) 4 (9.5) 11 (52.4) 22 (50) 

TIC curve 0.931 0.628 2.039 0.361 

I 4 (15.4) 5 (11.9) 0 (0.0) 4 (9.1) 

II 9 (34.6) 11 (26.2) 7 (33.3) 13 (29.5) 

III 13 (50.0) 26 (61.9) 14 (66.7) 27 (61.4) 

ADC value 0.9 (0.6, 1.2) 1.0 (0.1, 1.5) 0.419 0.040 0.8 (0.4, 1.7) 1.0 (0.4, 1.5) -2.302 0.021 

Number of lesions 2.875 0.090 0.147 0.702 

Single 17 (65.4) 35 (83.3) 19 (90.5) 41 (93.2) 

Multiple 9 (34.6) 7 (16.7) 2 (9.5) 3 (6.8) 

Ki-67 express 8.594 0.003 8.313 0.004 

No 13 (50.0) 7 (16.7) 13 (61.9) 11 (25.0) 

Yes 13 (50.0) 35 (83.3) 8 (38.1) 33 (75) 

Clinical T stage 1.513 0.679 2.604 0.457 

T1 0 (0.0) 2 (4.8) 1 (4.8) 1 (2.3) 

T2 19 (73.1) 28 (66.7) 13 (61.9) 35 (79.5) 

T3 6 (23.1) 11 (26.2) 6 (28.6) 6 (13.6) 

T4 1 (3.8) 1 (2.4) 1 (4.8) 2 (4.5) 

BPE 4.484 0.214 8.690 0.034 

Seldom 1 (3.8) 9 (21.4) 19 (90.5) 35 (79.5) 

Mild 14 (53.8) 21 (50.0) 0 (0.0) 7 (15.9) 

(Continued) 
F
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workstation. The maximum diameter of the lesions was measured on 
the T1 image 90 seconds after injection of contrast medium, and the 
enhancement mode of the lesions, whether the axillary lymph nodes 
and skin were invaded, whether the edge of the lesions was clear, 
whether the shape was regular, the number of lesions, the apparent 
diffusion coefficient (ADC), the background parenchymal 
enhancement (BPE) and the type of time-signal intensity curve 
(TIC) were recorded. BPE is defined as enhancement of normal 
fibrogland in breast. According to BI-RADS, TIC can be divided into 
three types: inflow type-that is, slow and continuous enhancement; A 
small number will show a downward trend in the late stage; Platform 
type-dynamic signal intensity reaches its peak in early stage, and has 
no obvious change in delay period; Outflow type-dynamic early 
signal intensity reaches its peak and then decreases. Discrepancies 
in interpretation were resolved through consensus discussion. 

The second-phase images of fs-T2WI, DWI and DCE-MRI 
sequences from enrolled patients were imported into Darwin 
Intelligent Research Platform (http://premium.darwin.yizhun­
Frontiers in Oncology 05 
ai.com) in DICOM format, and an imaging doctor manually 
delineated the largest layer of tumor, and then delineated the 
region of interest (ROI) of the second phase images of DCE-MRI 
layer by layer to form 3D-ROI (Figure 2). The reason for choosing 
this stage to delineate layer by layer is that the enhancement of the 
lesion reaches the maximum currently, and the background 
parenchyma enhancement of normal glands is relatively light, and 
the contrast between the lesion and surrounding glands is 
enhanced, which is more conducive to the display of the lesion. 
In cases of disagreement, a third radiologist evaluated the 
delineations, and consensus was reached through discussion. 
Feature extraction and screening 

After image segmentation, features were extracted and 
processed, and finally 1125 original radiomics features were 
extracted from fs-T2WI, DWI and DCE-MRI sequences, totaling 
- -

TABLE 1 Continued 

Characteristics Training set (n=68) Test set (n=65) 

None-pCR 
(n=26) 

pCR 
(n=42) 

Statistical 
value 

P 
Value 

None-pCR 
(n=21) 

pCR 
(n=44) 

Statistical 
value 

P 
Value 

Moderate 9 (34.6) 9 (21.4) 2 (9.5) 0 (0.0) 

Severe 2 (7.7) 3 (7.1) 0 (0.0) 2 (4.5) 
fro
TIC, time-signal curve; BPE, background parenchymal enhancement. P < 0.05 is considered statistically significant. 
FIGURE 2 

(a) Dynamic scanning is performed after intravenous injection of contrast agent to evaluate the blood supply and vascular permeability of the lesion. The 
enhanced area (white high signal) indicates vascular richness or abnormal proliferation. (b) High signal (white) indicates the lesion area. (c) Detects the 
degree of restricted diffusion of water molecules, with high signal (white) indicating the lesion area. (d) Dynamic scanning is performed after intravenous 
injection of contrast agent to evaluate the blood supply and vascular permeability of the lesion. The enhanced area (white high signal) indicates vascular 
richness or abnormal proliferation. (e) High signal (white) indicates the lesion area. (f) detects the degree of restricted diffusion of water molecules, with 
high signal (white) indicating the lesion area, and red markers indicating the manually annotated lesion area of interest. 
ntiersin.org 
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3375. The features mainly include first-order features, texture 
features, and higher-order statistical features. The extracted 
feature values are preprocessed to [0, 1] by Maximum and 
Minimum Normalization, then intra-class correlation coefficient 
(ICC) is calculated, and the features with ICC > 0.75 are retained, 
that is, the features with good consistency. Using the least absolute 
shrinkage and selection operator (LASSO) regression, 10-fold cross-
validation was performed on the training set to select the most 
predictive radiomics features. 
Construction of radiomics model 

A multi-parameter MRI model (composed of DCE-2 features, 
fs-T2WI features and DWI features) was constructed using logistic 
regression (LR) based on the imaging features selected from the 
second phase images of fs-T2WI sequences, DWI sequences and 
DCE-MRI sequences. The diagnostic efficacy of the model was 
evaluated by the area under curve (AUC) of the subject working 
characteristics (ROC), and the results were converted into 
radiomics score (Rad-score). The whole process is firstly carried 
out in the training group data set, and then the external verification 
of data is completed in the test group data set. 
Building federation model 

Through uni-/multi-variate logistic regression analysis, the 
independent risk factors predicting the efficacy of neoadjuvant 
Frontiers in Oncology 06
therapy for breast cancer with HER2 overexpression were screened, 
and the clinical model was established. Based on the combination of 
clinical independent risk factors and multi-parameter MRI radiomics 
model, the nomogram model was established to visualize the data. 
The workflow is shown in Figure 3. (Note:  In  the  figure, “Intensity 
features” and “First-order features” describe the same type of features, 
with different names adopted due to differing expression conventions 
in application scenarios). 
pathological evaluation 

According to Miller-Payne (MP) histological grading system, the 
surgical specimens of patients who completed neoadjuvant therapy 
were evaluated pathologically. G1-G4 were classified as non-
pathological complete remission (non-pCR) group, and G5 as 
pathological complete remission (pCR) group. The evaluation 
criteria (18)are as follows: 
 

G1: There was no decrease in tumor cells; 

G2: The number of tumor cells decreased slightly, the 
reduction ratio was less than or equal to 30%, and more 
tumor cells were still visible; 

G3: The reduction ratio of tumor cells is between 30% 
and 90%; 

G4: Tumor cells decreased significantly, with a reduction ratio 
of ≥ 90%, leaving only small clusters or scattered single 
tumor cells; 
FIGURE 3 

An overview of MRI-based radiomics analysis. 
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Fron
G5: No invasive cancer cells with or without residual 
ductal carcinoma in situ (DCIS) were found on all 
pathological sections. 
Statistical analysis 

Statistical analyses were performed in SPSS 27.0, MedCalc 19.1.3, 
and R software (Version 4.2.3). As this was a retrospective study 
aimed at exploring the potential predictive value of radiomic features 
rather than validating clinical endpoints, no priori sample size 
calculation was performed. The measurement data conforming to 
the normal distribution were expressed as mean ± standard deviation 
(x ± s) and were compared between groups using the T-test of two 
independent samples. Measurement data inconsistent with normal 
distribution are presented as median (upper quartile, lower quartile) 
and analyzed by Mann⁃Whitney U test between groups. Counting 
data are expressed in frequency and compared using chi-square test. 
The ROC curve was drawn by Medcalc 19.1.3 software, and the AUC, 
accuracy, sensitivity and specificity of the model were calculated. R 
software (Version 4.2.3) was used to construct alignment chart, 
calibration curve (CC) and decision curve analysis (DCA) to 
evaluate the goodness of fit and clinical value of different models. 

Results 

Clinical data analysis 

This study included 133 patients, divided into a training set of 68 
patients and a test set of 65 patients. The training set comprised 42 
tiers in Oncology 07 
patients with pathologic complete remission (PCR) and 26 without 
PCR, while the test set included 44 patients with PCR and 21 without 
PCR. No significant differences were found in the distribution of clinical 
and imaging features between the training and test sets (P > 0.05). 
Clinical features and model construction 

Using pathological evaluation as the gold standard, candidate 
variables were screened through univariate analysis in the training 
set; the selected variables were then incorporated into multivariate 
logistic regression analysis of the training set to determine the final 
independent predictors Ki-67 proliferation index and tumor 
morphological characteristics to construct the model; the 
established model was directly applied to the test set to calculate 
prediction probabilities and evaluate performance (Table 2). 
Radiomics features and establishment of 
multi-parameter MRI radiomics model 

A total of 3375 features were extracted from multi-parameter 
MRI radiomics. After dimensionality reduction by f-calssif function 
and LASSO regression, 7 radiomics features were screened out to 
establish omics model, which was sorted according to weights as 
shown in Figure 4. 

Among them, wavelet-LH_first-order_90th percentile_DWI_ 
parameter name 1 and wavelet-HL_first-order_90th percentile_ 
DWI_parameter name 1 are first-order features.WaveletHH_ 
gldm_DependenceEntropy_DWI_paramsName1,logarithm_ 
TABLE 2 Uni- and multi-variate logistic regression analysis of HER2- overexpression breast cancer in training set. 

Parameters 

Univariate analysis Multivariate analysis 

OR value (95%CI) p value OR value (95%CI) p value 

Age(years) 1.035 (0.980-1.093) 0.214 

Menopausal state, premenopausal vs postmenopausal 1.102 (0.856-1.195) 0.893 

Lymphadenopathy, absent vs present 2.647 (0.135-51.806) 0.521 

MRI maximum tumor diameter(mm) 0.906 (0.771-1.065) 0.232 

Tumor margin, clear vs unclear 2.624 (0.130-52.881) 0.529 

Tumor morphology, regular vs irregular 0.039 (0.001-1.588) 0.046 0.045 (0.017-0.957) 0.045 

Enhancement patterns, lump-like enhancement vs non-lump­
like enhancement 

0.428 (0.026-6.911) 0.550 

TIC curve, I vs II/III 0.366 (0.007-19.988) 0.623 

ADC value 0.033 (0.000-2.673) 0.028 16.884 (0.934-305.094) 0.056 

Number of lesions, single vs multiple 0.334 (0.021-5.238) 0.435 

Ki-67 express, <20% vs ≥20% 19.904 (1.596-248.176) 0.020 5.858 (1.497-22.919) 0.011 

Clinical T stage, T1 vs T2/T3/T4 0.76 (0.002-10.189) 0.351 

BPE, seldom vs mild/moderate/severe 0.033 (0.001-2.673) 0.128 

Rad-score 17.277 (6.564-45.476) 0.015 13.534 (30.705-59.571) 0.002 
TIC, time-signal curve; BPE, background parenchymal enhancement; Rad-score: radiomics score; OR, odds ratio; CI, confidence interval. P < 0.05 is considered statistically significant. 
The bold values represent statistically significant values, with a P value less than 0.05. 
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glcm_Imc1_DWI_paramsName1,wavelet-HH_glrlm_GrayLevel 
NonUniformityNormalized_DWI_paramsName1 and log-sigma-3-0­

mm-3D_glcm_ClusterProminence_DWI_paramsName1 are texture 
features.Original_glszm_HighGrayLevelZoneEmphasis_T2_ 
paramsName1 are high-order features. 
Establishment of a nomogram model 

Combining the identified clinical independent risk factors with 
the multi-parameter MRI radiomics model, a nomogram model was 
developed and visualized (Figure 5a). ROC curves were generated to 
assess the performance of each model in predicting pathological 
complete remission (pCR) in both the training and test sets. In the 
training set, the AUCs for the clinical model, multi-parameter MRI 
radiomics model, and nomogram model were 0.625, 0.881, and 
0.894, respectively. In the test set, the AUCs were 0.727, 0.830, and 
0.878, respectively (Table 3, Figures 5b, c). The nomogram model 
demonstrated the highest predictive performance. The calibration 
curves indicate that the ideal, predicted, and corrected curves of the 
nomogram model are closely aligned, reflecting good consistency 
(Figures 5d, e). Additionally, the decision curve analysis shows that 
the nomogram model outperforms both the multi-parameter MRI 
radiomics model and the clinical model in terms of patient risk 
assessment and clinical benefit (Figures 5f, g). The DeLong test 
confirmed that the nomogram exhibits strong consistency across 
both the training and test cohorts (Table 4). 

Discussion 

HER2 overexpression breast cancer is characterized by specific 
therapeutic targets and drugs, making it a focal point of research. 
Frontiers in Oncology 08
Neoadjuvant therapy (NAT) incorporating anti-HER2 targeted 
therapies has emerged as a cornerstone treatment (19). However, 
few studies have focused on the relationship between the efficacy of 
neoadjuvant therapy and the clinical-imaging features or imaging 
features of HER2 overexpression breast cancer. In this study, we 
developed a multi-parametric MRI radiomics model to predict the 
efficacy of NAT in patients with HER2 overexpression breast cancer. 
The nomogram, integrating the radiomics score (Rad-score) with 
clinical and imaging features, demonstrated superior performance, 
with an area under the receiver operating characteristic curve (AUC) 
of 0.894 (95% CI: 0.796–0.956) in the training cohort and 0.878 (95% 
CI: 0.773–0.946) in the test cohort. These results indicate that it has 
the potential to be a non-invasive tool for predicting NAT efficacy in 
HER2 overexpression breast cancer. 

In this study, Ki-67 proliferation index and tumor morphology 
were significantly correlated with the curative effect of NAT 
according to clinical and imaging features, which indicated that 
they have certain potential value in predicting the curative effect of 
NAT. Ki-67, first identified by Gerdes et al. at Kiel University in 
Germany while studying nuclear antigens in a Hodgkin’s 
lymphoma cell line, is a monoclonal antibody marker expressed 
during mitosis in the cell cycle. It is commonly used to assess tumor 
cell proliferation and treatment sensitivity (20).The grading criteria 
for Ki-67 in breast cancer are primarily based on the St. Gallen 
International Breast Cancer Conference consensus (2013-present) 
and the WHO classification guidelines for breast cancer. A Ki-67 
index of 20% is widely adopted as the cutoff value for proliferative 
activity, used to distinguish between “low proliferation” and “high 
proliferation” tumor subtypes. Bae SJ et al. showed that the patients 
with high expression of Ki-67 in HER2 overexpression breast cancer 
are more likely to achieve pCR and the prognosis of the patients 
with high expression is also better (21). Another study showed DFS 
FIGURE 4 

Radiomics features and establishment of multi-parameter MRI radiomics model. 
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FIGURE 5 

The predictive performance of various models. Nomogram of developed radiomics nomogram (a). Receiver operating characteristics (ROC) curves 
(b, c), calibration curve (d, e), decision curve (f, g) in both training. 
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and OS of patients with high expression level of Ki-67 after NAT 
were lower than those with low expression level (22). These findings 
underscore the close relationship between Ki-67 expression and 
NAT efficacy in HER2-overexpressing breast cancer. 

This study also identified a correlation between tumor 
morphology and the efficacy of NAT, with irregular tumor shapes 
being associated with a higher likelihood of achieving a pCR. The 
criteria for “regular morphology” and “irregular morphology” 
primarily stem from the core features of morphological 
assessment, wherein tumor morphology is defined based on 
radiological evaluation by referencing whether the boundary 
between the tumor and surrounding normal tissue is clear; 
whether the tumor interior is homogeneous; and whether the 
tumor exhibits expansive growth (pushing adjacent tissues) or 
infiltrative growth (invading neighboring structures). The 
dichotomous classification rule is determined by synthesizing the 
aforementioned three features: if at least two features are “clear 
boundary + homogeneous interior + expansive growth,” it is 
defined as “regular morphology”; if at least two features are 
“blurred boundary + heterogeneous interior + infiltrative growth,” 
it is defined as “irregular morphology”; if the feature distribution is 
ambiguous (e.g., only one feature aligns with “regular” or 
Frontiers in Oncology 10 
“irregular”), two radiologists (each with ≥5 years of experience in 
tumor imaging diagnosis) independently review the case. In 
instances where the two physicians disagree on the interpretation, 
a consensus is reached through discussion. 

This association may be attributed to the nature of HER2 
overexpressing breast cancers, which are characterized by 
irregularly shaped masses. The amplification of proto-oncogenes 
in these tumors leads to accelerated cell proliferation, making them 
more susceptible to the effects of chemotherapy and targeted 
therapies. This increased sensitivity results in enhanced cell 
necrosis and apoptosis, thereby facilitating the achievement of 
pCR following NAT, which is consistent with previous study (23). 

There is a pressing need for a non-invasive, reliable method to 
accurately predict NAT efficacy prior to surgery. Such a method 
would enable the identification of patients likely to achieve a 
pathological complete response (pCR), minimize unnecessary 
treatments, reduce related complications, and improve patient 
outcomes. However, consensus on the optimal approach for 
assessing intratumor heterogeneity in clinical practice remains 
lacking. Furthermore, HER2 expression status determined from 
core biopsy specimens taken from multiple tumor sites provides 
only limited insight into the overall heterogeneity of the tumor (24). 
In contrast, MRI radiomics analysis can evaluate the whole tumor 
non-invasively and reflect the heterogeneity within the tumor 
through the spatial distribution of voxel intensity. Some studies 
have shown that the histological features of MRI images are related 
to the difference of pathological reactions after NAT (25). For 
instance, one study integrated multi-parametric MRI to predict 
pCR in breast cancer patients after NAT, while another developed a 
radiomics model combining T2WI and DCE sequences, 
demonstrating strong predictive performance, while another 
developed a radiomics model combining T2WI and DCE 
sequences, demonstrating strong predictive performance (11, 26). 
In this study, the LASSO method identified seven key image 
features with significant correlation (Figure 4), with GLSZM 
HighGrayLevelZoneEmphasis ranking highest. GLSZM measures 
the distribution of gray levels and reflects tumor texture 
heterogeneity—higher values indicate greater variability in tumor 
texture (26). The second-ranked feature quantifies the distribution 
of gray values within the tumor, with higher values suggesting more 
active biological behavior and a higher risk of deterioration. 
Additionally, the gray level dependence matrix (GLDM), a 
TABLE 3 Performance of three models in training and test cohorts. 

Group Model AUC 95%CI Sensitivity Specificity 

Training set Clinical model 0.625 0.499-0.740 0.860 0.360 

Radiomics MRI model 0.881 0.780-0.947 0.907 0.760 

Radiomics nomogram 0.894 0.795-0.956 0.837 0.840 

Test set Clinical model 0.727 0.602-0.830 0.750 0.619 

Radiomics MRI model 0.830 0.717-0.912 0.841 0.714 

Radiomics nomogram 0.878 0.773-0.946 0.886 0.714 
AUC, area under the curve; CI, confidence interval. 
TABLE 4 Comparison of ROC curves in the training and test cohorts. 

Group Compares Z statistic p-Value 

Training set Clinical model versus 
Radiomics MRI model 

3.039 0.002 

Clinical model versus 
Radiomics nomogram 

4.966 <0.001 

Radiomics MRI model 
versus 
Radiomics nomogram 

0.258 0.797 

Test set Clinical model versus 
Radiomics MRI model 

1.269 0.204 

Clinical model versus 
Radiomics nomogram 

2.904 0.004 

Radiomics MRI model 
versus 
Radiomics nomogram 

1.245 0.213 
p is derived from Delong test between each of the ROCs, and P < 0.05 is considered 
statistically significant. 
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second-order texture feature derived from wavelet transform, 
quantifies gray area distribution and also contributes significantly 
(27). These features, which capture tumor heterogeneity from 
various dimensions, may be associated with responses to NAT. 
Since the feature screening process may eliminate all features of a 
certain sequence in LASSO selection, the highest-ranked feature 
from its univariate analysis will be forcibly retained to ensure 
multimodal representation. The primary strength of T1WI lies in 
its clear visualization of anatomical structures (e.g., tumor 
boundaries and adjacent organ invasion), making it ideal for 
morphological evaluation. However, this study focuses on 
functional radiomics features (e.g., texture) to capture tumor 
heterogeneity, which is less effectively represented by T1WI signal 
intensity, as it primarily reflects tissue proton density and 
longitudinal relaxation time. 

Additionally, fs-T2WI emphasizes texture feature extraction 
(GLCM, GLSZM), reflecting the complexity and heterogeneity of 
internal tumor structures; DWI primarily extracts diffusion tensor 
features and higher-order statistics, reflecting cellular density and 
microstructure; DCE-MRI mainly extracts spatiotemporal joint 
features, reflecting angiogenic activity. Given that T1WI lacks 
distinct advantages in these tasks, it was not selected as the 
primary modality for feature extraction. 

In our study, a radiomics model incorporating fs-T2WI, DWI, 
and DCE-MRI sequences were developed. Fs-T2WI sequences 
facilitate the detection of abnormal signals associated with cystic 
necrosis, DWI provides sensitive and accurate measurement of 
water molecule diffusion in pathological tissues, and DCE-MRI 
assesses tumor blood flow. The model demonstrated strong 
predictive performance with an AUC of 0.881 in the training set 
and 0.830 in the test set. Multivariate regression analysis, 
integrating clinical independent risk factors with the multi­

parameter MRI  radiomics model,  led  to  the creation of a

nomogram. This nomogram achieved AUCs of 0.894 in the 
training group and 0.878 in the test group, outperforming the 
clinical model, which had AUCs of 0.625 and 0.727, respectively. 
These results underscore the strength of radiomics in revealing 
multidimensional information not discernible to the naked eye. 

There are some limitations in this study. First, this was a 
retrospective study and there may have been some bias in patient 
selection. Second, the patient sample size was small, and although the 
multicenter study was validated by external validation data, more large-
scale multicenter prospective studies are needed in the future to verify 
the predictive performance of the nomogram. Third, the pathological 
types of HER2 overexpressed breast cancer included in the study were 
mainly invasive ductal carcinoma, and future studies should include 
various types of breast cancer to improve the accuracy of the model. 

In conclusion, the nomogram model that integrates rad-score 
with clinical and radiological features demonstrates superior 
predictive performance. As further prospective studies validate 
these findings, multi-parametric MRI-based radiomics features 
are anticipated to offer valuable clinical insights for preoperative 
assessment and evaluation of NAT efficacy in HER2 overexpressing 
Frontiers in Oncology 11 
breast cancer patients. This approach will support clinicians in 
tailoring individualized, precision treatment plans. 
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