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Yingying Jin1, Feiyun Wu1, Jue Wang2*, Shouju Wang1*,
Xiaoming Zha2* and Yuxia Tang1*

1Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China,
2Department of Breast Disease, The First Affiliated Hospital with Nanjing Medical University,
Nanjing, China
Background: Neoadjuvant chemotherapy (NAC) is a standard treatment strategy

for breast cancer, with a commonly used regimen consisting of 4-cycle

anthracycline and cyclophosphamide (AC) treatment followed sequentially by

4-cycle taxane (T) treatment. Variations in treatment efficacy are observed at

different stages of AC-T regimen. Stratifying patients based on the efficacy

variations could provide insights to prolong the cycle of AC or T treatment,

potentially enhancing the overall efficacy of NAC. Therefore, this study aimed to

evaluate the feasibility of developingmagnetic resonance imaging (MRI) radiomic

models for predicting the relative efficacy of AC versus T treatments.

Methods: This retrospective study included 190 breast cancer patients, who

were randomly allocated into a training set (n=133) and a test set (n=57). All

patients received NAC treatment consisting of four cycles of AC followed by four

cycles of T. Breast MRI examinations were conducted before NAC (pre-NAC),

before the fifth cycle (mid-NAC), and before surgery (post-NAC). Relative

efficacy was defined by comparing tumor volume change rates between the

AC and T treatment stages. Radiomic features were extracted from dynamic

contrast-enhanced (DCE) and apparent diffusion coefficient (ADC) images based

on the intratumoral and peritumoral regions at the pre-NAC and mid-NAC

stages. Radiomic models were first developed, and hybrid models were then

established by integrating radiomic and clinicopathological data to predict

relative efficacy.

Results: For radiomic models, the Delta model demonstrated effective

discrimination of relative efficacy, achieving areas under the curve (AUCs) of

0.887 [95% confidence interval (CI): 0.816-0.930] in the training set and 0.757

(95% CI: 0.683-0.817) in the test set. For hybrid models, the Delta+clinicopath

model showed improved performance, with AUCs of 0.887 (95% CI: 0.873-

0.892) in the training set and 0.772 (95% CI: 0.744-0.786) in the test set. The Delta

+clinicopath model also exhibited favorable calibration in both sets and provided

a substantial clinical net benefit.
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Conclusions: The hybrid model is a reliable and reproducible tool for predicting

the relative efficacy between AC and T treatments in breast cancer NAC. The

model could help to stratify patients for personalized adjustment of

NAC regimens.
KEYWORDS

breast cancer, neoadjuvant chemotherapy, magnetic resonance imaging (MRI),
radiomics, longitudinal analysis
1 Introduction

Neoadjuvant chemotherapy (NAC) has become a standard

treatment for breast cancer, primarily aiming at reducing the

tumor stage and enhancing the feasibility of breast-conserving

surgery (1, 2). One of the most classic NAC treatment regimens

is 4-cycle anthracycline and cyclophosphamide (AC) treatment

followed by 4-cycle taxane (T) treatment (3–5). During the NAC

treatment process, MRI can evaluate the changes in tumor volume

at different stages, providing a basis for assessing the treatment

efficacy and adjusting the treatment plan in a timely manner (6–9).

During the clinical treatment process, significant individual

variability in patients’ responses to the same NAC regimen is

observed. The variability in response occurs not only among

different patients but also within the same patient at different

treatment stages. In our previous study, we found that the change

rates of tumor volume on MRI during the AC and T treatment

stages can respectively reflect the treatment efficacy of AC and T

(10). Some tumors shrink more rapidly during the AC treatment

stage, while others shrink more rapidly during the T treatment

stage. This indicates that stratifying patients based on the relative

efficacy of AC and T and individually prolonging the cycle of AC or

T treatment may improve the overall treatment efficacy of NAC.

However, complete tumor volume change rate data is only available

after the completion of NAC treatment, at which point it is no

longer possible to adjust the regimen. Therefore, during the mid-

term of NAC treatment, predicting the relative efficacy of AC and T

can provide a basis for timely adjustment of the NAC

treatment plan.

MRI-based radiomic models have been successfully used to

predict the treatment outcome of breast cancer NAC. Radiomics

extracts abundant quantitative information from breast MRI

imaging, revealing the association between tumor imaging

features and clinical outcome, which is crucial for optimizing

treatment regimens (11–13). However, currently, no radiomic

model has been developed to predict the relative treatment

efficacy of AC and T in NAC.

To achieve this goal, in this study, we included breast cancer

patients at our center who received NAC with AC followed by T

(AC-T). These patients underwent MRI examinations before,

during, and after NAC treatment. We used the ratio of the
02
change in tumor volume during the AC and T treatment stages to

measure the relative treatment efficacy of AC and T, and developed

a radiomic model based on MRI data before and during the NAC

treatment to classify patients, thereby stratifying patients who may

benefit from prolonged AC treatment during the NAC

treatment process.
2 Methods

2.1 Study participants

This study received approval from the institutional review

board of our hospital. Given its retrospective design, written

informed consent was waived. Figure 1 shows a flowchart of

patient recruitment. Female patients diagnosed with breast cancer

at the First Affiliated Hospital with Nanjing Medical University
FIGURE 1

The flowchart shows the pathway for patient recruitment. NAC,
neoadjuvant chemotherapy; AC, anthracycline and
cyclophosphamide; T, taxanes.
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between April 2016 and March 2023 were included retrospectively.

The eligibility criteria were as follows: operable invasive breast

cancer confirmed by core needle biopsy; Estrogen receptor (ER),

progesterone receptor (PR), human epidermal growth factor

receptor 2 (HER2), and the nuclear protein Ki67 were evaluated

by immunohistochemical (IHC) staining; Completing four cycles of

AC treatment followed by four cycles of T treatment; MRI data

obtained before NAC treatment (pre-NAC), before the fifth cycle

(mid-NAC), as well as before surgery (post-NAC).

The exclusion criteria were as follows: inadequate MRI quality

or lack of MRI data; inability to complete the full cycle of NAC due

to chemotherapy-related side effects; previous chemotherapy or

targeted therapy; distant metastatic lesions; unmeasurable tumor

without discernible boundary; tumor scattered or discontinuous

after NAC.

Clinical data were collected for each patient, including gender,

age, menstrual status, clinical T stage, and clinical N stage. Patients

were randomly stratified into a training set and a test set in a 7:3

ratio. The study design and workflow are depicted in Figure 2.
2.2 Treatment strategies and pathological
assessment

All patients started treatment with four cycles of anthracycline

(Pharmorubicin 90 mg/m²) and cyclophosphamide (Endoxan 600

mg/m²), each administered on day 1, every 2 or 3 weeks. All patients

subsequently underwent four cycles of T treatment (either

nanoparticle albumin-bound paclitaxel [Abraxane 260 mg/m²],

solvent-based paclitaxel [Taxol 175 mg/m²], docetaxel [Taxotere

75 mg/m²] or liposomal paclitaxel [Lipusu 175 mg/m²]),

administered on day 1, every 2 or 3 weeks. HER2 positive

patients received targeted therapy with trastuzumab (Herceptin 6

mg/kg with an 8 mg/kg loading dose) in addition to the T treatment.

ER, PR, HER2, and Ki67 status were determined using IHC.

Tumors were classified as ER/PR-positive if they showed ≥1%

nuclear-stained cells. HER2 status was assessed as negative

(HER2-) with IHC grades of 0 and 1+, and positive (HER2+)

with an IHC grade of 3+. For tumors with an IHC grade of 2+,

HER2 gene amplification was determined by fluorescence in situ

hybridization (FISH). Ki-67 expression was evaluated using a cutoff

index of 30%; expressions below 30% were considered low, while

those ≥30% were considered high.
2.3 MRI acquisition

MRI scans were conducted in the prone position using either a

1.5 Tesla scanner (MAGNETOM Aera XJ, Siemens) or a 3.0 Tesla

scanner (MAGNETOM Trio, Siemens) at three key points: pre-

NAC, mid-NAC and post-NAC. The protocol included at least

diffusion weighted imaging (DWI) and fat-suppressed dynamic

contrast-enhanced (DCE) sequence.

For MAGNETOM Trio, the imaging protocol included: axial

DWI (repetition time [TR]/echo time [TE], 5200 ms/65 ms; matrix,
Frontiers in Oncology 03
220 × 110; field of view, 323 mm × 161 mm; thickness, 5 mm) and

DCE sequence (TR/TE, 4.23 ms/1.57 ms; matrix, 448 × 448; field of

view, 340 mm × 340 mm; thickness, 1 mm). For MAGNETOM

Aera, the imaging protocol included: axial DWI (TR/TE, 7500ms/64

ms; matrix, 180 × 84; field of view, 350 mm × 163 mm; thickness, 5

mm) and DCE sequence (TR/TE, 3.90 ms/1.66 ms; matrix, 320 ×

320; field of view, 360 mm × 360 mm; thickness, 1.5 mm). Details

on specific imaging parameters are available in our previous

study (14).

The DCE sequence was initially acquired prior to contrast agent

administration. Gadolinium-DTPA (Magnevist; Bayer Healthcare)

was then administered at a dosage of 0.1 mmol/kg with an infusion

rate of 3 mL/s, followed by a 20 mL saline flush. Subsequently, the

DCE sequence was repeated five times. Apparent diffusion

coefficient (ADC) maps were generated from DWI images using

two b values.
2.4 Image segmentation and feature
extraction

For each patient, image segmentation was performed separately

on MRI images acquired at pre-NAC, mid-NAC, and post-NAC

time points . Using 3D Slicer software (version 5.2.2,

www.slicer.org), intratumoral regions were manually delineated

slice-by-slice on the second post-contrast phase image of the DCE

sequence. The intratumoral regions were then isotropically

expanded by 5 mm in three dimensions to obtain the peritumoral

regions using the SimpleITK package (version 2.2.1) in Python

3.9.13. A radiologist with five years of experience in breast imaging

performed the segmentation for all cases. The radiologist was

blinded to the clinicopathological data and the relative efficacy

information. Radiomic features were extracted from both the

original and filtered images using PyRadiomics (version 3.0.1,

https://github.com/Radiomics/pyradiomics). Filtered images were

generated using the Laplacian of Gaussian operator and wavelet

filters. The Laplacian of Gaussian filter was applied with kernel sizes

of 1, 2, 3, 4, and 5 for the DCE sequences and 2, 3, 4, and 5 for the

ADC maps. The wavelet filter decomposed each dimension into

eight levels. Radiomic features included various categories,

including first-order (intensity-based histogram), shape-based,

gray-level co-occurrence matrix (GLCM), gray-level size zone

matrix (GLSZM), gray-level run length matrix (GLRLM), and

gray-level dependence matrix (GLDM). Prior to feature

extraction, the intensity distribution of images was normalized.

Voxel size was resampled to achieve isotropic voxels of 1.0 mm ×

1.0 mm × 1.0 mm for the DCE images and in-plane isotropic voxels

of 2.0 mm × 2.0 mm for the ADC maps with the sitkBSpline

interpolator. Additionally, voxel intensity values were discretized

with fixed bin widths set at 5 for the DCE sequence and 25 for the

ADC maps. A total of 1,218 features were extracted from each

region for the second post-contrast phase image of the DCE

sequence and 1,132 features for the ADC maps. Considering the

two types of regions (intratumoral regions and peritumoral

regions), each patient’s imaging data from pre-NAC and mid-
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NAC images contributed a total of 9,400 features from both the

DCE and ADC images. To capture longitudinal tumor changes,

delta radiomic features were calculated as the differences between

the radiomic feature values from the pre-NAC and mid-NAC

images. As a result, each patient yielded a total of 14,100

radiomic features.
Frontiers in Oncology 04
2.5 Characterization of relative efficacy

Tumor volume was derived from Mesh Volume feature within

the shape category of radiomic features. Mesh Volume feature

calculates the volume of a structure by estimating the volume

enclosed within a 3D mesh model. The efficacy of the four cycles
FIGURE 2

The schematic shows the study design and workflow for predicting the relative efficacy between AC and T treatments in neoadjuvant chemotherapy,
using a multi-sequence, multi-region MRI radiomic model. MRI, magnetic resonance imaging; NAC, neoadjuvant chemotherapy; AC, anthracycline
and cyclophosphamide; T, taxanes; DCE, dynamic contrast-enhanced; ADC, apparent diffusion coefficient; LASSO, least absolute shrinkage and
selection operator; ROC, receiver operating characteristic.
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of AC treatment was determined by calculating the relative net

reduction in tumor volume from pre-NAC to mid-NAC (dAC).
Similarly, the efficacy of the four cycles of T treatment was

calculated using the relative net reduction in tumor volume from

mid-NAC to post-NAC (dT). Relative efficacy is defined by the ratio
of dAC and dT. If the ratio of dAC and dT is greater than 1, the patient

is considered more sensitive to AC treatment stage (AC is superior

to T). Otherwise, the patients is considered more sensitive to T

treatment stage (T is superior to AC). Figure 3 and Table 1 show

examples of two cases exhibiting different types of relative efficacy.
2.6 Radiomic feature selection

To ensure inter-observer consistency, a second radiologist with

5 years of experience re-segmented a randomly selected subset of 50

cases. Both radiologists were blinded to the clinicopathological data

and the relative efficacy information. To assess inter-observer

reproducibility, the intraclass correlation coefficient (ICC) was

calculated for each radiomic feature. Only features demonstrating

satisfactory inter-observer reproducibility, defined as an ICC of 0.80

or higher, were retained in the model.

For each radiomic model, the following feature selection process

was carried out in four steps (1): Features with a variance greater

than 1.0 were selected by variance threshold (2); The Mann-

Whitney U test was applied to select features associated with

NAC treatment relative efficacy (3); Feature importance was

ranked using a random forest model, and the top 100 most

important features were selected (4); Least absolute shrinkage and
Frontiers in Oncology 05
selection operator (LASSO) regression with 10-fold cross-validation

was used to select features with non-zero coefficients.
2.7 Radiomic model construction and
validation

First, A total of 9 basic radiomic models were constructed.

These models were built using the intratumoral, peritumoral, and

intratumoral + peritumoral image features of DCE images; the

intratumoral, peritumoral, and intratumoral + peritumoral image

features of ADC images; as well as the intratumoral, peritumoral,

and intratumoral + peritumoral image features of both DCE and

ADC images.

The radiomic models were developed using an extreme gradient

boosting (XGBoost) algorithm, based on the selected radiomic

features. A grid search method and five-fold cross-validation were

conducted to determine the optimal hyperparameters for the

model. Four folds (80% of the patients) were utilized for training

the model, while the remaining fold (20% of the patients) was used

to select the optimal hyperparameters. The hyperparameters

‘learning_rate’, ‘n_estimators’, and ‘max_depth’ were used in the

grid search for model development. To ensure the robustness of the

model, the entire construction process was replicated 1000 times

using the bootstrap method. The effectiveness of the models was

evaluated by analyzing their Receiver Operating Characteristic

(ROC) curves in both training and test sets. An optimal model,

named the Original model, was selected from the 9 models based on

the AUC value.
FIGURE 3

Second post-contrast phase images of the DCE sequence and corresponding intratumoral regions from the two cases exhibiting different types of
relative efficacy. For Case 1, whose lesion was imaged at pre-NAC (A), mid-NAC (B), and post-NAC (C) stages, the relative efficacy was considered
to be AC superior to T. For Case 2, whose lesion was imaged at pre-NAC (D), mid-NAC (E), and post-NAC (F) stages, the relative efficacy was
considered to be T superior to AC. DCE, dynamic contrast-enhanced; NAC, neoadjuvant chemotherapy; AC, anthracycline and cyclophosphamide;
T, taxanes.
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For the construction of the Delta model, the differences in the

features of Original model between the pre-NAC and mid-NAC

stages were calculated. Specifically, for each feature, the value at the

mid-NAC stage was subtracted from the value at the pre-NAC

stage. These calculated differences served as the new feature set for

the Delta model.

For the Fusion model, we employed a union of features from

both the Original model and the Delta model. Specifically, the

Fusion model incorporates both the feature values from the pre-

NAC and mid-NAC stages themselves and the differences in feature

values between these stages.

The XGBoost algorithm, which was the same as that used in the

construction of the Original model, was employed to train the Delta

model and the Fusion model.
2.8 Hybrid model construction and
validation

To construct hybrid models, the outputs of the Original, Delta,

and Fusion radiomic models were used as radiomic signatures.

Important clinicopathological variables are separately selected for

each radiomic signature in the training set. Specifically, individual

logistic regression models were established for each radiomic

signature, incorporating all clinicopathological variables. These

models were used to evaluate the association of the combined

variables with the relative efficacy in NAC. Backward stepwise

selection based on the Akaike information criterion was then

performed to identify important clinicopathological variables for

each radiomic signature.

Hybrid models were constructed using logistic regression,

which combined each radiomic signature with corresponding

important clinicopathological variables. To select the optimal

hyperparameters for the model, a grid search method combined

with five-fold cross-validation was implemented. The

hyperparameters ‘solver’, ‘penalty’, and ‘C’ were used in the grid

search for model development. Additionally, for comparative

purposes, a clinicopathological model that exclusively contained

all clinicopathological variables was also established.
2.9 Statistical analysis

Chi-square tests were used to compare clinicopathological

characteristics between patients in different groups or sets using
Frontiers in Oncology 06
categorical variables. Model performance was evaluated by the area

under the receiver operating characteristic curve (AUC). Sensitivity,

specificity, accuracy, positive predictive value (PPV), and negative

predictive value (NPV) were calculated for both the training and

test sets. The 95% confidence intervals (CI) for each metric were

computed using the bootstrap method with 1000 intervals. The

optimal cutoff value for the radiomic score in the training set was

determined by maximizing the Youden index, and these fixed cutoff

values were subsequently applied to the test set. All statistical tests

were two-sided, with statistical significance indicated by a P value

<0.05. All statistical analyses were performed using R 4.2.3 or

Python 3.9.13.
3 Results

3.1 Baseline characteristics of patients

A total of 303 patients were excluded from the study due to

insufficient MRI data (n=292) or inadequate image quality (n=11).

Consequently, 190 patients were included in the study. Table 2

summarizes the baseline characteristics of all patients. The

proportion of patients for whom AC was superior to T was 48.1%

(64 out of 133) in the training set and 47.4% (27 out of 57) in the test

set. No significant differences in clinicopathological characteristics

were observed between patients for whomAC was superior to T and

those for whom T was superior to AC in either set (all p-values

> 0.05).
3.2 Development and performance of
radiomic models

First, nine radiomic models were constructed by integrating

features from specific MRI sequences and regions. Details of the

selected features for the nine radiomic models are provided in

Supplementary Table S1. Table 3 provides the performance metrics

of each radiomic model within the training and test sets. In the

training set, the DCE+ADC-tumor+peri model yielded the best

prediction with an AUC of 0.864 (95% CI: 0.792-0.911). In the test

set, models utilizing the combined DCE+ADC sequences

demonstrated relatively higher and more stable performance

compared to models using either the DCE or ADC sequence

alone. Specifically, the AUCs were 0.663 (95% CI: 0.549-0.767)

for the DCE+ADC-tumor model, 0.598 (95% CI: 0.502-0.690) for
TABLE 1 Tumor volume change data of the two cases exhibiting different types of relative efficacy.

Case
Tumor volume (mm3)

dAC dT dAC/dT Relative efficacy
Pre-NAC Mid-NAC Post-NAC

Case 1 9071.81 2194.61 937.44 0.76 0.57 1.33 AC superior to T

Case 2 2933.88 2481.79 1666.43 0.15 0.33 0.45 T superior to AC
NAC, neoadjuvant chemotherapy; AC, anthracycline and cyclophosphamide; T, taxanes; dAC, the relative net reduction in tumor volume from pre-NAC to mid-NAC; dT, the relative net
reduction in tumor volume from mid-NAC to post-NAC.
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the DCE+ADC-peri model, and 0.585 (95% CI: 0.480-0.677) for the

DCE+ADC-tumor+peri model. Given the significance of

peritumoral features, which reflect the tumor microenvironment

and offer valuable insights into tumor behavior, the multi-sequence,

multi-region DCE+ADC-tumor+peri model was consequently

chosen as the Original model.

Subsequently, three radiomic models were developed, each

based on different aspects of radiomic features: the Original

model, the Delta model, and the Fusion model. Details of the

selected features for the Original, Delta, and Fusion models are

provided in Supplementary Table S2. Table 4 summarizes the AUC,

accuracy, sensitivity, specificity, PPV, and NPV for each radiomic

model within the training and test sets. The Delta model

outperformed the Original model with an AUC of 0.887 (95% CI:
Frontiers in Oncology 07
0.816-0.930) in the training set and 0.757 (95% CI: 0.683-0.817) in

the test set. The Fusion model did not show improved performance

over the Delta model, with an AUC of 0.887 (95% CI: 0.822-0.931)

in the training set and 0.749 (95% CI: 0.644-0.837) in the test set.
3.3 Development and performance of
hybrid models

Hybrid models were constructed by combining radiomic features

with clinical indicators to predict the relative efficacy in NAC. Table 4

provides a summary of the AUC, accuracy, sensitivity, specificity, PPV,

and NPV for each hybrid model in both the training and test sets. After

separately incorporating radiomic signatures and corresponding
TABLE 2 Characteristics of the patients in the training and the test sets.

Characteristics

Training Set (n=133) Test Set (n=57)

AC superior to
T (n=64)

T superior to
AC (n=69)

P Value AC superior to
T (n=27)

T superior to
AC (n=30)

P Value

Age 0.970 1.000

<50 29 (45) 30 (43) 17 (63) 18 (60)

≥ 50 35 (55) 39 (57) 10 (37) 12 (40)

Menstrual status 0.817 0.966

Premenopausal 33 (52) 38 (55) 16 (59) 19 (63)

Postmenopausal 31 (48) 31 (45) 11 (41) 11 (37)

clinical N stage 1.000 0.925

cN0 9 (14) 10 (14) 2 (7) 1 (3)

cN1-3 55 (86) 59 (86) 25 (93) 29 (97)

clinical T stage 0.203 1.000

cT1–2 46 (72) 57 (83) 21 (78) 23 (77)

cT3–4 or cTx 18 (28) 12 (17) 6 (22) 7 (23)

ER status 0.668 0.902

Positive 51 (80) 58 (84) 24 (89) 28 (93)

Negative 13 (20) 11 (16) 3 (11) 2 (7)

PR status 1.000 0.715

Positive 38 (59) 42 (61) 21 (78) 21 (70)

Negative 26 (41) 27 (39) 6 (22) 9 (30)

HER2 status 0.379 1.000

Positive 5 (8) 2 (3) 0 (0) 1 (3)

Negative 59 (92) 67 (97) 27 (100) 29 (97)

Ki67 0.508 0.112

Low proliferation (<30%) 17 (27) 23 (33) 7 (26) 15 (50)

High proliferation (≥30%) 47 (73) 46 (67) 20 (74) 15 (50)
fr
Unless stated otherwise, the data represent the number of patients, with percentages in parentheses. AC, anthracycline and cyclophosphamide; T, taxanes; ER, estrogen receptor; PR, progesterone
receptor; HER2, human epidermal growth factor receptor 2.
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important clinicopathological features into three hybrid models, the

performance of Delta+clinicopath model continued to outperform the

Original+clinicopath and Fusion+clinicopath models, achieving an

AUC of 0.887 (95% CI: 0.873-0.892) in the training set and 0.772

(95% CI: 0.744-0.786) in the test set.

During the development of hybrid models, alongside the

Original radiomic signature, menstrual status, clinical T stage,

and HER2 status were identified as independent predictors of the

relative efficacy in NAC. For the Delta radiomic signature, clinical T

stage was identified as an independent predictor of the relative

efficacy in NAC (Table 5). Similarly, the clinical T stage also

independently predicted the relative efficacy in NAC for the

Fusion radiomic signature.

Figure 4 displays the ROC curves for the most effective radiomic

model (the Delta model), the most effective hybrid model (the Delta

+clinicopath model) and the clinicopathological model alone. In the

training set, both the Delta model and the Delta+clinicopath model

achieved an AUC of 0.887. However, the Delta+clinicopath model

exhibited a more concentrated performance, with a 95% CI ranging

from 0.873 to 0.892, compared to the Delta model’s wider range of

0.816 to 0.930. In the test set, the Delta+clinicopath model produced

a higher AUC of 0.772 in contrast to the Delta model’s 0.757. The

combined performance on the training and test sets underscores the

advantages of the Delta+clinicopath model in stratifying patients by

predicting their relative efficacy in NAC.
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For the optimal hybrid model, calibration curve analysis

showed reasonable consistency between the predicted

probabilities and actual outcomes regarding the relative efficacy in

NAC in both the training and test sets (Figure 5). The Hosmer-

Lemeshow test yielded non-significant results in both sets, with a p-

value of 0.592 in the training set and 0.295 in the test set, indicating

no significant deviation from a perfect model fit. DCA revealed that

the optimal hybrid model delivered a substantial clinical net benefit

at all threshold probabilities in the training set (as shown in

Figure 6A) and between 0 and 0.74 in the test set (as shown

in Figure 6B).
4 Discussion

Longitudinal monitoring of tumor response during NAC using

imaging methods and adjusting subsequent regimens based on the

treatment response is essential for personalized treatment of breast

cancer and maximizing the potential of NAC (15, 16). Accurate

prediction of the relative efficacy of regimens is crucial for

optimizing NAC treatment plans. In the AC-T regimen, if the

initial four cycles of AC demonstrate superior efficacy, extending

the AC treatment may provide greater benefits to the patient.

Conversely, if the initial four cycles of AC prove less effective,

timely switching to T aligns with the patient’s best interest.
TABLE 3 Performance of radiomic models constructed by integrating features from specific MRI sequences and regions, within the training and
test sets.

Datasets Sequence Region AUC (95% CI) ACC SEN SPE PPV NPV

Training Set DCE tumor 0.823 (0.735-0.879) 0.771 0.748 0.792 0.773 0.779

peri 0.798 (0.730-0.854) 0.738 0.732 0.745 0.728 0.759

tumor+peri 0.837 (0.760-0.885) 0.780 0.765 0.795 0.783 0.790

ADC tumor 0.813 (0.742-0.866) 0.757 0.777 0.737 0.738 0.789

peri 0.804 (0.727-0.856) 0.748 0.708 0.785 0.760 0.752

tumor+peri 0.830 (0.750-0.879) 0.772 0.759 0.785 0.772 0.784

DCE+ADC tumor 0.827 (0.753-0.876) 0.775 0.744 0.804 0.783 0.777

peri 0.836 (0.763-0.887) 0.783 0.748 0.816 0.797 0.782

tumor+peri 0.864 (0.792-0.911) 0.809 0.779 0.837 0.821 0.808

Test Set DCE tumor 0.481 (0.336-0.605) 0.489 0.410 0.560 0.449 0.514

peri 0.583 (0.464-0.692) 0.548 0.450 0.636 0.524 0.565

tumor+peri 0.544 (0.436-0.641) 0.524 0.419 0.618 0.499 0.542

ADC tumor 0.684 (0.550-0.785) 0.643 0.665 0.622 0.620 0.679

peri 0.524 (0.429-0.634) 0.536 0.407 0.651 0.526 0.547

tumor+peri 0.652 (0.543-0.749) 0.615 0.572 0.653 0.605 0.634

DCE+ADC tumor 0.663 (0.549-0.767) 0.625 0.508 0.730 0.638 0.625

peri 0.598 (0.502-0.690) 0.557 0.454 0.649 0.545 0.570

tumor+peri 0.585 (0.480-0.677) 0.564 0.445 0.671 0.550 0.575
DCE, dynamic contrast-enhanced; ADC, apparent diffusion coefficient; tumor, intratumoral regions; peri, peritumoral regions. AUC, area under the curve; CI, confidence interval; ACC,
accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value.
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However, few studies have explored how to predict the relative

efficacy during the mid-term of NAC. In this study, we developed a

multi-sequence, multi-region MRI radiomic model to predict the

relative efficacy of four cycles of AC treatment followed by four

cycles of T treatment, demonstrating robust performance.

Additionally, integrating clinicopathological factors with

radiomics significantly enhanced predictive accuracy, suggesting

that our model could inform treatment adjustments during the

mid-term of NAC.

The best model for predicting the relative efficacy of AC and T

during NACwas the Delta + clinicopathmodel. A similar prospective
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trial by Guo et al. (17) demonstrated the predictive power of

combining delta radiomic features with clinical indicators in

predicting pathologic complete response after NAC. They

developed a model combining delta radiomic features with clinical

indicators, which achieved AUCs of 0.934 and 0.864 in the training

and test sets, respectively, outperforming the model based solely on

delta radiomic features. This result aligns with our study, highlighting

the valuable contribution of breast cancer-related clinical or

pathological factors in improving the accuracy of delta radiomics.

To capture the complex tumor microenvironment changes

induced by NAC, we utilized a multi-sequence strategy with DCE

and ADC. DCE is widely used in breast MRI radiomics studies for

visualizing tumor vascularity, while ADC reflects tissue

microstructure, cellular density, and membrane integrity (18). Prior

studies have shown that combining DCE with ADC or DWI in

radiomic models predicts NAC treatment response more accurately

(19–22), and our results are consistent with these findings,

underscoring the value of such combinations for evaluating NAC

efficacy. Additionally, because peritumoral features such as

lymphovascular invasion and angiogenesis are key prognostic

factors (23, 24), and the efficacy of peritumoral radiomics has been

preliminarily demonstrated in NAC response evaluation (25), we

included both intratumoral and peritumoral regions in our multi-

region strategy. For this multi-region strategy, our results are in line

with previous studies that combine imaging features from multiple
TABLE 5 Backward stepwise-selected variables in constructing the Delta+
clinicopath model.

Variable
b

Coefficient
Odds Ratio
(95% CI)

P Value

Intercept -2.34 0.10 (0.03-0.33) <0.001

Clinical T stage

cT1–2 -0.81 0.45 (0.15-1.37) 0.159

cT3–4 or cTx Reference

Delta radiomic signature 6.20
490.57

(76.29-3154.58)
<0.001
Clinicopath, clinicopathological; CI, confidence interval.
TABLE 4 Performance of radiomic models, hybrid models and clinicopath model within the training and test sets.

Datasets Model AUC (95% CI) ACC SEN SPE PPV NPV

Training Set Radiomic model

Original 0.863 (0.786-0.910) 0.809 0.779 0.836 0.820 0.807

Delta 0.887 (0.816-0.930) 0.827 0.818 0.835 0.826 0.836

Fusion 0.887 (0.822-0.931) 0.831 0.822 0.838 0.829 0.839

Hybrid model

Original + clinicopath 0.880 (0.864-0.886) 0.814 0.826 0.802 0.796 0.833

Delta + clinicopath 0.887 (0.873-0.892) 0.819 0.852 0.788 0.789 0.853

Fusion + clinicopath 0.894 (0.884-0.898) 0.823 0.848 0.801 0.800 0.853

Clinicopath model 0.548 (0.500-0.601) 0.555 0.269 0.821 0.426 0.557

Test Set Radiomic model

Original 0.589 (0.495-0.682) 0.566 0.447 0.673 0.553 0.577

Delta 0.757 (0.683-0.817) 0.695 0.588 0.791 0.724 0.685

Fusion 0.749 (0.644-0.837) 0.677 0.526 0.813 0.726 0.660

Hybrid model

Original + clinicopath 0.599 (0.578-0.615) 0.571 0.312 0.804 0.588 0.566

Delta + clinicopath 0.772 (0.744-0.786) 0.691 0.835 0.561 0.632 0.793

Fusion + clinicopath 0.749 (0.728-0.764) 0.656 0.478 0.817 0.710 0.636

Clinicopath model 0.534 (0.455-0.634) 0.530 0.205 0.823 0.332 0.541
Clinicopath, clinicopathological. AUC, area under the curve; CI, confidence interval; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative
predictive value.
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FIGURE 5

Calibration curves of the Delta+clinicopath model in the training set (A) and the test set (B). Clinicopath, clinicopathological. HL, the p-value of the
Hosmer-Lemeshow test.
FIGURE 4

ROC curves of the clinicopath model, Delta model, and Delta+clinicopath model in the training set (A) and the test set (B). ROC, receiver operating
characteristic; AUC, area under the curve. Clinicopath, clinicopathological.
FIGURE 6

Decision curves of the clinicopath model and the Delta+clinicopath model in the training set (A) and the test set (B). Clinicopath, clinicopathological.
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regions (26–29), showing improved predictive performance

compared to using features from a single region. The role of multi-

sequence and multi-region strategies can be observed by examining

the features incorporated into the models. In the radiomic models

(Supplementary Table S1), the DCE+ADC-tumor model included 8

DCE features and 6 ADC features, the DCE+ADC-peri model

included 5 DCE features and 7 ADC features, and the DCE+ADC-

tumor+peri model included 8 DCE features and 7 ADC features. This

even distribution of DCE and ADC features across the models

indicates the enhancement of predictive performance through

multi-sequence combination. From a multi-region perspective, the

DCE+ADC-tumor+peri model included 8 intratumoral and 7

peritumoral features, suggesting that the combination of multi-

sequence and multi-region features captured richer tumor-related

information, making it particularly effective for predicting relative

efficacy in NAC.

However, this study has several limitations. First, while our model

predicts relative efficacy between NAC regimens based on tumor

volume changes, it is unclear whether adjusting treatment based on

this prediction will improve pathological complete response or overall

outcomes. This requires further validation through prospective trials.

Second, although this study utilized the second post-contrast phase

images of the DCE sequence for segmentation to improve

reproducibility, it should be acknowledged that volumetric

assessment of non-concentric regression tumors poses unique

challenges, with MRI potentially overestimating or underestimating

tumor volume in such cases. Third, the study’s retrospective design,

small sample size, and single-center data limit the generalizability of

the findings. Larger, multicenter studies are needed for broader

validation. Fourth, the focus on the AC-T regimen may introduce

biases, including the underrepresentation of HER2 positive cases,

which will be addressed in future studies.
5 Conclusions

In this study, we developed a hybrid radiomic model that

integrates clinical and biopsy pathology data with pre-NAC and

mid-NAC breast MRI to predict the relative efficacy of AC and T

treatments. This model demonstrated strong predictive

performance and could serve as a valuable tool for guiding

treatment decisions during NAC. By enabling early prediction of

treatment response, the model holds potential for patient

stratification and personalized adjustment of NAC regimens.
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