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Exploring the genetic profiles
linked to senescence in thyroid
tumors: insights on predicting
disease progression and
immune responses
Baoliang Zhang1 and Yanping Pang2*

1Department of Emergency, Tongji Hospital of Tongji University, Shanghai, China, 2Department of
Ultrasound, Tongji Hospital of Tongji University, Shanghai, China
Introduction: Thyroid cancer (THCA) is the most common endocrine tumor.

Research on Cell Senescence Associated Genes (CSAGs), which impact many

cancers, remains limited in the THCA field.

Methods: In this study, we downloaded THCA sample data from several public

databases and selected a set of CSAGs for subsequent analysis. Differential

expression genes (DEGs) obtained through differential analysis were

intersected with prognostic genes identified by Cox regression analysis to

explore the correlation among these crossed genes. We constructed a

prognostic model using the Least Absolute Shrinkage and Selection Operator

(LASSO) algorithm and verified its efficacy. Kaplan-Meier survival curves were

plotted, and Receiver Operating Characteristic (ROC) curves rigorously

confirmed the accuracy of model predictions.

Results: To evaluate the predictive power of prognostic models across different

phenotypic traits, we performed survival analysis, Gene Set Enrichment Analysis

(GSEA), and immune-related differential analysis. Differences in tumor mutation

burden (TMB) and treatment response between high-risk and low-risk patient

groups were also analyzed. Finally, the predictive effect of our model on

immunotherapy response was validated, showing promising results for

THCA patients.

Discussion:Our study enhances the understanding of THCA cell senescence and

provides new therapeutic insights. The proposed model not only accurately

predicts patient survival but also reveals factors related to immunotherapy

response, offering new perspectives for personalized medicine.
KEYWORDS

thyroid cancer, cellular senescence, least absolute shrinkage and selection operator,
tumor immune microenvironment, prognosis
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1 Introduction

Accounting for 3-4% of all cancers, thyroid cancer (abbreviated

as THCA or TC) holds the position of being the endocrine tumor that

occurs most frequently (1). Over the past few decades, there has been

a consistent rise in its incidence, with some studies suggesting this

may be related to the rising incidence of differentiated thyroid cancer

(DTC) (2, 3). Compared to 40 years ago, the detection rate of THCA

has increased by more than 400%, with the rise in diagnoses of small,

indolent papillary thyroid carcinomas (PTCs) likely contributing to

the overall increase in THCA incidence (4). Globally, the incidence of

THCA is influenced by geographic location, with higher rates

observed in high-income countries and certain island nations (5).

The origin of THCA can be traced back to either the follicular

epithelial cells or the parafollicular cells, alternatively referred to as C

cells, within the thyroid gland. Based on the tumor’s origin and its

level of differentiation, it encompasses various subtypes: PTC, which

is the most prevalent, follicular thyroid carcinoma (FTC), thyroid

oncocytic carcinoma (OCA, previously termed Hürthle cell thyroid

carcinoma), differentiated high-grade thyroid cancer (DHGTC),

poorly differentiated thyroid carcinoma (PDTC), anaplastic thyroid

cancer (ATC), and medullary thyroid carcinoma (MTC). Clinically,

PTC, FTC (6), OCA, and DHGTC are collectively referred to as DTC,

which accounts for more than 90% of all THCA cases, making it the

most common subtype of thyroid cancer (7). MTC accounts for only

1-2% of THCA cases (5). DHGTC, PDTC, and ATC are all of

follicular epithelial cell origin, while MTC originates from

parafollicular cells (7). Due to the asymptomatic nature of THCA,

it is difficult to detect early in clinical practice. Approximately half of

cases are not suspected or detected until other diagnostic procedures

or thyroid-related surgeries are performed (8). Despite the generally

favorable prognosis for the majority of THCA patients, with certain

studies reporting a 5-year relative survival rate surpassing 90% for

those with localized disease, 10-15% of THCA patients will

experience disease recurrence. Approximately 5% of patients will

have distant metastasis to organs such as in the instance of the lungs

and bones, and occasionally, cancer-specific mortality may occur (9).

Furthermore, not all THCA patients have a good prognosis. The

survival rate for patients with distant metastasis varies by pathological

subtype (10). The survival rate after 10 years stands at roughly 45%

for patients with metastatic DTC, whereas for those with MTC, it

drops to approximately 20%. ATC has an exceptionally grim

prognosis, characterized by a median survival duration of merely 3

to 6 months (11).Currently, the primary options for treating THCA

include thyroid surgery, therapy with radioactive iodine, and TSH

suppression. Surgery remains the preferred initial treatment when

criteria for resection are met. Postoperative radioactive iodine therapy

or observation as standard care is effective for most DTC patients,

however, for a specific group of patients, its effectiveness is

constrained. For progressive or symptomatic DTC and MTC

patients, although existing targeted therapies can extend

progression-free survival (PFS), they do not provide a cure (12).

Conventional treatments such as radioactive iodine ablation and

chemotherapy are ineffective for highly invasive and fatal ATC (9).

Additionally, studies have suggested that PD-L1-targeted

immunotherapy may prolong disease-free survival (DFS) and could
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potentially become an effective treatment option for advanced THCA

(13). In summary, early diagnosis and effective treatment of THCA

remain significant challenges, necessitating continued exploration of

new therapeutic targets.

Cellular senescence-associated genes (CSAG) refer to a cell state

triggered by various physiological processes. Among the various

factors contributing to this state are DNA damage, malfunctioning

telomeres, the activation of oncogenes, mitochondrial dysfunction,

as well as oxidative stress, and others (14). Senescent cells exhibit

numerous characteristics, such as alterations in chromatin and

secretory proteins, increased expression of senescence markers,

immune evasion (15), loss of proliferative capacity, and secretion

of inflammatory cytokines, chemokines, and growth factors (16).

The intricate secretory proteins produced during the process are

collectively referred to as the senescence-associated secretory

phenotype (SASP). The International CSAG Association has

proposed a consensus defining the phenotype of senescent cells

based on four key features: cell cycle withdrawal, macromolecular

damage, SASP, and metabolic dysregulation (17). Cell cycle

inhibitors (CKIs) (14), p27KIP1 (18), p21CIP1 (CDKN1A), and

Cyclin-dependent kinase inhibitor 2A (p16INK4A, CDKN2A) can

participate in the CSAG process by regulating the cell cycle. For

instance, upregulation of CDKN1A and CDKN2A can lead to

hypophosphorylation of the retinoblastoma protein, thereby

inhibiting E2F transcriptional activation and causing cell cycle

arrest (19). Macromolecular damage, such as DNA, protein, and

lipid damage, can also contribute to the CSAG process through

activation of the tumor suppressor pathways involving p53/

p21CIP1 and p16INK4A/RB (20). SASP is a complex secretory

process that includes hundreds of different proteins and non-

protein molecules. The full composition of SASP remains

incompletely defined, but common molecules include interleukins

such as IL-1a, IL-1b, IL-6, chemokines such as CXCR2 and CCL2,

and growth factors like IGFBP7 (21). Studies indicate that AMP-

activated protein kinase (AMPK), a kinase activated by the ratios of

AMP: ATP and ADP: ATP during the CSAG process, has a function

in modulating the cellular cycle (17). The physiological processes

associated with CSAG play crucial roles in normal human

development and are closely related to biological processes such

as cancer therapy and tissue repair (16, 22). In cancer, the SASP

secreted during CSAG can alter the tumor microenvironment

(TME), induce immune surveillance of precancerous cells, and

suppress cancer progression (14, 23). However, the persistent

DNA damage and inflammatory factors generated by the

senescence process may also promote tumor development and

angiogenesis (24). In THCA, studies have indicated that the B-

RafV600E mutation may participate in the senescence process of

PTC cells by upregulating dual-specificity phosphatases (DUSPs)

(25). Nevertheless, the role of CSAG in THCA remains

insufficiently explored, different subtypes of thyroid cancer may

respond differently to CSAG, highlighting the need for further

investigation into its specific applications and interpretations in

thyroid cancer research, as well as the correlation between CSAG

and gender.

In this study, we not only downloaded THCA sample data from

multiple public databases, but also selected a set of cellular senescence-
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associated genes (CSAGs) for subsequent analysis. Differentially

expressed genes (DEGs) obtained through differential expression

analysis were intersected with prognostic genes identified via Cox

regression analysis, and the correlation among the intersecting genes

was further investigated. Based on this, we employed the Least Absolute

Shrinkage and Selection Operator (LASSO) algorithm both for

finalizing the selection of model genes and for constructing the

prognosis model. The precision of the predictions made by the

model was rigorously confirmed using both Kaplan-Meier (KM)

survival curves and Receiver Operating Characteristic (ROC)

analysis. To evaluate the predictive capability of the prognostic

model across different phenotypic characteristics, we subsequently

conducted a thorough analysis comparing the risk groups. Besides

performing survival analysis and Gene Set Enrichment Analysis

(GSEA), we also carried out immune-related differential analyses that

centered on the expression patterns of immune regulators, tumor-

associated immune cells, and immune checkpoints. We examined

variations in tumor mutational burden (TMB) and treatment

responses between patient groups categorized as high- and low-risk.

Additionally, we performed stratified KM survival analysis based on

risk scores, giving special attention to immune checkpoints and TMB.
2 Material and methods

2.1 Data acquisition and preprocessing

Initially, we utilized the R package named “TCGAbiolinks” to

obtain RNA sequencing data, comprehensive clinical details, and

mutation information pertaining to THCA patients, sourced from

the Cancer Genome Atlas (TCGA) database, which can be accessed

at https://portal.gdc.cancer.gov. For the aim of facilitating better

gene differential expression analysis between samples, the

transcriptomic data was transformed into Transcripts Per Million

(TPM) format. By employing the “GEOquery” package, we

acquired transcriptomic data along with the corresponding

clinical information for THCA patients (GSE84437) from the

Gene Expression Omnibus (GEO) database, accessible at http://

www.ncbi.nlm.nih.gov/geo. The cohort that underwent

immunotherapy, known as IMvigor210, was downloaded through

the R package “IMvigor210CoreBiologies”. The list of age-related

genes used in this paper were all obtained from previous literature

summary (Supplementary Table 1). In addition, we included CSAG

in the list and extracted intracellular gene expression levels from

TCGA samples. The open-source databases involved in this study

have no restrictions on data acquisition and use, and no additional

ethical approval is required. All analytical procedures in this study

strictly adhere to ethical guidelines.
2.2 Constructing and validating the
predictive model for prognosis

Differential expression analysis of CSAG between normal and

tumor tissues was conducted using the “limma” package, with the

results of the DEGs being graphically represented through a volcano
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plot. Our criterion for DEGs selection was set as |logFC|> 0.585, and

the adjusted p value was <0.05. Subsequently, we applied univariate

Cox regression analysis to ascertain CSAGs that hold prognostic

importance, and the resulting prognostic genes were displayed in a

forest plot. A Venn diagram was utilized to illustrate the

overlapping DEGs and prognostic genes, while an analysis was

performed to investigate the relationships among these prognostic

genes that were differentially expressed. Outcomes of this

correlation analysis were displayed in a circular correlation plot.

Afterwards, the TCGA cohort formed the training dataset, and the

GSE84437 cohort was assigned for validation. LASSO is a regression

analysis method, which can simplify the model and improve the

prediction accuracy by introducing a penalty term to achieve both

variable selection and model parameter estimation. In

bioinformatics, the advantage of LASSO is that it can effectively

process high-dimensional data to screen out features or genes that

have a significant impact on response variables, so as to assist in

disease diagnosis, drug target discovery and other studies. The

parameter standard for LASSO is “cvfit$lambda.min”. Utilizing

the LASSO algorithm, a prognostic prediction model was built

within the training set. The source of gene list input in LASSO

model was differentially expressed prognostic genes. The model’s

predictive outcomes were quantified as risk scores, which were

derived by summing up the products of the levels of expression for

each gene multiplied by its respective coefficient, as the formula

presented below:

Risk score =o
n

i=1
½Expgenei*bi�

The level of expression for each gene in the model is denoted as

Expgenei, with bi representing the gene coefficient. The selection of

model genes is determined by the optimal l value, and the variation

of coefficients across different genes with respect to log(l) is

illustrated in the coefficient distribution plot. The l value that

yields the lowest partial likelihood deviance is taken as the optimal

one. Subsequently, we perform the following analyses on both

training and validation datasets, applying the same procedure to

two independent cohorts. Within each cohort, using the median

risk score as a benchmark, patients are grouped into high-risk and

low-risk categories. The “survival” and “survminer” packages were

then used for KM analysis to visually show the difference in overall

survival (OS) of different risk groups over time. In order to assess

the model’s predictive capabilities, the survival probabilities for 1-

year, 3-year, and 5-year durations are depicted via ROC curves, and

the model’s prognostic accuracy is assessed using the area under the

curve (AUC) as a metric. AUC > 0.5 proves that the model has good

testing efficiency.
2.3 Prognostic and enrichment analysis for
different risk groups

We standardized the expression profiles of model genes and

compared them between the two groups across both datasets. A risk

curve was generated by ordering individual samples in ascending

order of their risk scores, and the variation in survival time as the risk
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score increased was analyzed. Furthermore, within the TCGA cohort,

after stratifying the patients into either Stage I-II or Stage III-IV, we

performed survival analysis on them. To assess prognostic differences

across various tumor stages, we utilized KM curves to compare high-

risk and low-risk groups, in order to explore the impact of tumor

stage on the model’s predictive outcomes.

Subsequently, using pathways obtained from the MEDICUS

module of the Kyoto Encyclopedia of Genes and Genomes (KEGG)

database, we applied GSEA to identify functional pathways with

differential distribution between the two groups and subsequently

represented the findings visually. Functional pathways that exhibited

an enrichment score above 0 were interpreted as having gene

expression upregulated in the high-risk cohort, whereas those

showing a score below 0 implied upregulation in the low-risk cohort.
2.4 Analysis of differential immune features

We conducted an immune regulatory expression profiling

analysis, including five categories of immune regulatory

molecules: chemokines, growth factors and regulators, soluble or

shed receptors/ligands, and interleukins. Heatmaps were utilized to

visualize the disparities in expression between the high-risk and

low-risk groups. The following six algorithms utilized for TME

deconvolution: CIBERSORT, CIBERSORT ABS, EPIC, MCP-

counter, quanTIseq, TIMER, and xCell, were implemented using

R packages. Utilizing these algorithms, we conducted a thorough

examination of the relationships between the model genes and the

degrees of immune cell infiltration, and then portrayed the findings

of these associations through various heatmaps.

Additionally, we carried out a comprehensive examination of

immune checkpoints to explore potential immune therapy targets

relevant to THCA. The gene expression levels of 31 selected

immune checkpoints were compared between the two patient

groups. Within each group, patients were categorized into two

subgroups, based on whether their expression values for the

immune checkpoint molecules exceeded or fell below the median

value, followed by KM survival analysis to assess the survival

probability differences across the four subgroups. This procedure

was performed independently for each immune checkpoint

molecule, resulting in 31 survival curve plots.
2.5 Mutation analysis and survival analysis
of TMB

By sourcing mutation data from the TCGA database, we

conducted computations and comparisons of the TMB between

two patient groups, and subsequently visualized the disparities

through the use of box plots. To gain a deeper insight into how

risk scores correlate with TMB, we carried out a Pearson correlation

analysis and developed scatter plots to provide a clear visual

representation of the findings. Additionally, we divided the TCGA

samples into two subsets using the median TMB value as the

threshold: high-TMB (H-TMB) and low-TMB (L-TMB). KM

survival curves were then plotted to clearly illustrate the survival
Frontiers in Oncology 04
differences between these two groups. In order to determine the joint

impact of TMB and risk scores on survival outcomes, patients were

divided into four distinct categories, each representing a unique

combination of their TMB and risk level: the high TMB-high risk

group, the high TMB-low risk group, the low TMB-high risk group,

and the low TMB-low risk group. Survival differences among these

four subgroups were also visualized using KM survival curves.
2.6 Predictive role of the model in
immunotherapy response

We obtained immune phenotype score (IPS) data for TCGA

samples from The Cancer Immunome Atlas (TCIA, https://tcia.at/).

By examining patient responses to anti-CTLA-4 and anti-PD-1

antibodies, the IPS was categorized into four distinct groups: those

negative for both anti-CTLA-4 and anti-PD-1 (ips_ctla4_neg_

pd1_neg), negative for anti-CTLA-4 but positive for anti-PD-1

(ips_ctla4_neg_pd1_pos), positive for anti-CTLA-4 but negative for

anti-PD-1 (ips_ctla4_pos_pd1_neg), and positive for both

(ips_ctla4_pos_pd1_pos). Following this classification, a comparative

analysis was undertaken to explore the varying responses of high-risk

and low-risk groups to different immune checkpoint inhibitor

treatment strategies. A violin plot was generated to visualize these

results. Next, we validated the robustness of the model prognostic

predictions using the IMvigor210 immunotherapy cohort using

the”IMvigor210CoreBiologies” packages. After applying the

prognostic model to the IMvigor210 cohort, utilizing the median risk

score as a cutoff, the samples were categorized into two distinct groups:

those belonging to the high-risk category and those in the low-risk

category. A survival analysis was then carried out for these groups, with

the results being graphically represented using KM survival curves. The

outcomes of chemotherapy were classified into four categories:

complete response (CR), partial response (PR), progressive disease

(PD), and stable disease (SD). These categories were then simplified

into two binary groups: CR/PR versus SD/PD. Within this setup, a

comparison was made of the risk scores belonging to the two patient

groups. Additionally, we selected 48 immune checkpoint molecules for

further investigation. The IMvigor210 cohort’s patients, within each

risk group, were additionally subclassified into high and low subgroups,

according to the expression levels exhibited by the chosen checkpoint

molecules. Thus, for each immune checkpoint molecule, patients were

grouped into four subgroups. To identify immune checkpoints that are

significantly correlated with survival outcomes, we conducted another

KM survival curve analysis to assess the prognostic differences among

these subgroups.
2.7 Statistical analysis

Depending on the distribution of the data, we evaluated the

relationships among variables by utilizing either Pearson or Spearman

correlation coefficients. When continuous variables met the normality

assumption, a t-test was applied to compare paired samples;

otherwise, the Mann-Whitney U test was used for those that did

not conform to normality. Based on the situation, either the Chi-
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square test or Fisher’s exact test was utilized for making comparisons

among categorical variables. For the prognostic assessment of

categorical variables, survival curves were generated through the

KM method, and statistical significance was evaluated using the log-

rank test. Statistical significance was established at a p-value below

0.05, denoted as follows: * indicates p < 0.05, ** for p < 0.01, *** for p <

0.001, and **** for p < 0.0001. R software, specifically version 4.1.3,

was utilized to carry out all statistical analyses. Unless mentioned

otherwise, the “ggplot2” package was used to produce the graphs.
3 Results

3.1 Constructing and validating the
predictive model for prognosis

Through differential gene expression analysis, we identified

significantly upregulated (red) and downregulated (green) DEGs in

tumor samples, as visualized in the volcano plot (Figure 1A). To

ascertain 21 CSAGs that impact the prognosis of THCA, a univariate

Cox regression analysis was executed (p < 0.05, HR ≠ 1, Figure 1B).

By intersecting the 61 DEGs with the 21 prognostic genes, we

identified 9 genes that were present in both gene sets (Figure 1C).

These genes were: HDAC4, NDRG1, NEK1, NINJ1, PLA2R1, SNAI1,

ASPH, CDKN2A, and E2F1. An analysis of the correlation network

for these 9 genes showed that HDAC4, NDRG1, NEK1, NINJ1,

PLA2R1, SNAI1, and ASPH exhibited predominantly positive

correlations amongst themselves. Additionally, CDKN2A and E2F1

displayed a positive correlation with each other. However, the

expression levels of these genes were inversely related to the

majority of the other genes in the network (Figure 1D). Taking

these observations into account, we refined the gene set further and

developed a prognostic model employing the LASSO algorithm. The

coefficient path distribution for the 9 genes showed that as log(l)
increased, the coefficients of the genes gradually approached zero in a

stepwise manner (Figure 1E). The optimal number of genes,

determined when the cross-validation curve reached its minimum,

corresponding to the lowest partial likelihood deviance, was found to

be 6 genes (Figure 1F). The model equation is as follows:

Risk score =  ASPH*0:236612398528079 

+  CDKN2A*0:55903013908233  +  E2F1*(

− 0:429431075541726)  +  DRG1*0:455159278181108 

+  NINJ1*( − 0:555409521362013) 

+  SNAI1*1:1381189402696

In comparison to the high-risk group, the TCGA cohort’s low-

risk patient group demonstrated a notably superior OS outcome (p

< 0.001, Figure 2A). The prognostic difference between the two

groups in the GEO cohort was further validated by us (Figure 2B).

Furthermore, by analyzing the ROC curves associated with 1-year,

3-year, and 5-year survival rates, it was demonstrated that the

model demonstrated robust diagnostic capabilities in both

independent patient groups (Figures 2C, D).
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3.2 Enrichment and prognostic analysis
conducted for various risk groups

An analysis of THCA samples focusing on the expression levels

of six model genes (ASPH, CDKN2A, E2F1, NDRG1, NINJ1, SNAI1)

revealed that those who exhibited high expression of ASPH,

CDKN2A, NDRG1, and SNAI1 were predominantly grouped into

the high-risk category. In contrast, those who showed elevated

expression of both E2F1 and NINJ1 were mainly classified into the

low-risk group. Additionally, a higher percentage of patients in the

low-risk group were found to be 5-year survivors (Figures 3A, B).

Further analysis of KM survival curves for TCGA-THCA patients

with tumor stages I-II revealed no statistically significant difference in

survival probabilities between the two risk groups (p = 0.060,

Figure 3C). For patients in stages III-IV, the risk groups showed a

more distinct difference in prognosis, with the high-risk group having

a significantly lower survival probability than the low-risk group (p =

0.003, Figure 3D). In addition, through GSEA analysis, it was found

that genes in the high-risk group showed considerable enrichment in

the pathways related to the mitochondrial electron transport chain,

among which the following five pathways related to the electron

transport process in the mitochondrial respiratory chain in the

KEGG MEDICUS database had the highest enrichment: ENV_

FACTOR_ARSENIC_TO_ELECTRON_TRANSFER_IN_

COMPLEX_IV, REFERENCE_ELECTRON_TRANSFER_IN_

COMPLEX_I, REFERENCE_ELECTRON_TRANSFER_IN

_COMPLEX_IV , VARIANT_MUTATION_CAUSED_

ABERRANT_SNCA_TO_ELECTRON_TRANSFER_IN

_COMPLEX_I, VARIANT_MUTATION_INACTIVATED_PINK1

_TO_ELECTRON_TRANSFER_IN_COMPLEX_I. Conversely, the

low-risk group genes exhibited significant enrichment in pathways

related to cell proliferation, survival, and metabolic regulation,

especially within the five most enriched pathways listed in the

KEGG MEDICUS database: REFERENCE_GF_RTK_PI3K_

SIGNALING_PATHWAY, REFERENCE_GF_RTK_RAS_ERK_

SIGNALING_PATHWAY, REFERENCE_GF_RTK_RAS_PI3K_

SIGNALING_PATHWAY, REFERENCE_GPCR_PLCB_

ITPR_SIGNALING_PATHWAY, REFERENCE_IL6_FAMILY_

TO_JAK_STAT_SIGNALING_PATHWAY (Figure 4A).
3.3 Differential immune
characteristics analysis

Upon examining the heatmap depicting the differential expression

levels of immune modulators across various risk groups, it was evident

that the high-risk group demonstrated heightened activity of five

immune regulatory molecules (p < 0.05, Figure 4B). Our results,

utilizing the CIBERSORT algorithm, revealed a positive correlation

between the abundance of several immune cell types and the risk score,

particularly memory B cells, M1 macrophages, monocytes, activated

myeloid dendritic cells, and resting myeloid dendritic cells. Conversely,

a significant negative association was observed for CD8+ T cells.

Additionally, a significant negative relationship was noted between

both CD8+ T cells and regulatory T cells (Tregs) and over half of the
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model’s genes. Among the six model genes, ASPH, CDKN2A, and

NINJ1 exhibited strong correlations with tumor-associated immune

cells. In particular, the expression level of CDKN2A exhibited a positive

link with the level of immune cell presence, whereas NINJ1 showed a

negative correlation with immune cells at the expression level (p < 0.05,

Figure 4C). Employing various algorithms yielded consistent results,

suggesting that, apart from the general positive link between risk score

and immune cell abundance, a substantial number of model genes

exhibited notable correlations with the levels of immune cell

infiltration. Notably, CDKN2A exhibited a stronger positive
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correlation with immune cells compared to the other genes, while

NINJ1 showed a more pronounced negative relationship with immune

cells (p < 0.05, Figures 4D–I).

Furthermore, a comparison of the expression profiles of 31

immune checkpoint genes was conducted between the two risk

groups. Boxplot analysis revealed that all immune checkpoint genes

were significantly upregulated in the high-risk group (p < 0.05,

Figure 5A), suggesting that high expression of immune checkpoints

might be associated with unfavorable tumor prognosis. To further

explore the impact of different immune checkpoint gene
FIGURE 1

Gene Selection and Model Construction. (A) Differential gene analysis was performed to identify genes that differ between the normal and tumor
groups. (B) Cox regression analysis was conducted on genes associated with cellular senescence. (C) The intersection of differential genes and
prognostic genes was extracted. (D) The correlation between nine differentially expressed prognostic genes was analyzed and visualized using a
correlation circle plot. (E) A prognostic prediction model was constructed using the LASSO algorithm. (F) The optimal number of variables was
determined based on the l value.
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expressions on patient prognosis, we performed KM analysis.

Survival curves for different subgroups indicated that, regardless

of whether immune checkpoint genes were highly expressed,

samples with higher risk scores consistently showed significantly

lower survival probabilities compared to those with lower risk

scores. The prognostic model demonstrates a strong capacity for

prediction, underlining its robustness. Certain immune checkpoint

genes, when upregulated in the high-risk group, showed a degree of

association with improved patient prognosis. Specifically, higher

expression levels of BTLA, CD28, CD48, CD70, CD86, CD160,

CD200, CD200R1, CD276, CTLA4, HAVCR2, ICOS, ICOSLG,

IDO1, LAIR1, LGALS9, NRP1, TIGIT, TNFRSF8, TNFRSF9,

TNFSF14, TNFSF18, and VTCN1 were associated with better

prognosis. Patients exhibiting high expression of ADORA2A,

BTNL2, CD27, CD80, IDO2, TNFRSF4, TNFSF4, and TNFSF9

had a worse prognosis in comparison to those with low expression

levels, conversely (p < 0.01, Figures 5B–J, 6A–V).
3.4 Mutation analysis and survival analysis
of TMB

A comparison of TMB between the high-risk and low-risk groups

revealed no statistically significant variation between the two (p =
Frontiers in Oncology 07
0.089, Figure 7A). Nevertheless, additional correlation analysis

unveiled an inverse relationship between TMB and risk score,

where an increase in risk score was accompanied by a decrease in

TMB (R = -0.11, p = 0.016, Figure 7B). After stratifying patients by

their TMB and analyzing the survival curves of the H-TMB and L-

TMB groups, we found the H-TMB group had a notably lower

survival rate than the L-TMB group, which indicates that there may

be a potential association between higher TMB and a poorer

prognosis (p < 0.001, Figure 7C). In order to delve deeper into how

both TMB and risk score collectively influence the prognosis of

THCA, we performed a KM survival analysis incorporating the risk

score. On one hand, high-risk scores corresponded to lower survival

probabilities. Conversely, while the prognosis of low-risk patients

remained relatively unaffected by TMB, high-risk patients who also

had high TMB demonstrated significantly diminished survival rates

in comparison to their counterparts with low TMB within the group

with elevated risk (p < 0.001, Figure 7D).
3.5 The model’s capacity to predict tumor
treatment outcomes

Moreover, after conducting an analysis of the IPS across distinct risk

groups, specifically ips_ctla4_neg_pd1_neg, ips_ctla4_neg_pd1_pos,
FIGURE 2

Model Validation Using Training and Validation Sets. (A) Survival analysis was performed on the training set. (B) Survival analysis was conducted on
the validation set. (C) The model’s performance in the training set was evaluated using a ROC curve. (D) The model’s performance in the validation
set was assessed using a ROC curve.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1545656
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang and Pang 10.3389/fonc.2025.1545656
ips_ctla4_pos_pd1_neg, and ips_ctla4_pos_pd1_pos, it became evident

that the IPS within the low-risk group surpassed those in the other

categories, suggesting a superior responsiveness of the low-risk group to

both CTLA-4 and PD-1 inhibitors, especially in scenarios involving

monotherapy with PD-1 inhibitors (p < 0.01, Figure 7E).

Finally, the IMvigor210 immunotherapy cohort was used to

validate the model. The survival curves generated by the Kaplan-

Meier method for the two risk groups within the IMvigor210 dataset

revealed that high-risk samples exhibited a worse prognosis

compared to low-risk samples, thereby reinforcing the model’s

capacity for generalization (p < 0.01, Figure 7F). Moreover, the

predictive capability of the risk model concerning chemotherapy

response was assessed, revealing that patients in the CR/PR category

had notably lower risk scores compared to those in the SD/PD

category (p = 0.0021, Figure 7G). Based on these findings, we propose

that the risk model may serve as a reliable predictive tool for

treatment response in patients with THCA. Additionally, we

broadened our analysis, which was aimed at gauging the effect of

the immune checkpoint co-modeling on the prognosis within the
Frontiers in Oncology 08
IMvigor210 dataset. In general, irrespective of the expression levels of

immune checkpoint genes, patients categorized in the low-risk group

exhibited notably superior survival outcomes compared to those in

the high-risk group. Specifically, the upregulation of genes including

CD40, CD200, CD244, CD276, NRP1, TNFRSF14, TNFSF14,

TNFSF15, and VTCN1 was associated with a significant

enhancement in the survival probability of patients belonging to

the low-risk group. In contrast, when genes like BTLA, CD27, CD28,

CD40, CD40LG, CD80, CD244, CD274, CTLA4, HHLA2, ICOS,

IDO1, IDO2, KIR3DL1, LAG3, TNFRSF8, TNFRSF18, and TNFSF15

were highly expressed, high-risk patients exhibited significantly

improved prognosis (p < 0.01, Figures 8, 9).
4 Discussion

Human THCA stands as the most frequent endocrine tumor and

ranks seventh among cancers most commonly diagnosed in women

(26). Over the past few decades, there has been a consistent rise in its
FIGURE 3

Analysis of Different Risk Groups. (A) Risk scores were calculated and the training set was divided into high- and low-risk groups. Heatmaps were
used to visualize the differential model genes between the two risk groups. The cumulative risk factor plot illustrates the changes in patient survival
time and status with respect to the risk score. (B) Risk scores were calculated and the validation set was divided into high- and low-risk groups.
Heatmaps were used to visualize the differential model genes between the two groups. The cumulative risk factor plot illustrates the changes in
patient survival time and status with respect to the risk score. (C) Survival analysis was performed on the high- and low-risk groups of stage I and II
patients. (D) Survival analysis was performed on the high- and low-risk groups of stage III and IV patients.
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incidence, resulting in a current prevalence that constitutes 3-4% of all

cancer cases (1). Although the prognosis for most THCA patients is

favorable, early detection and diagnosis remain challenging (8). Once

tumor cells metastasize to distant sites, survival rates vary significantly

depending on the pathological subtype (10), with the median survival

for ATC often limited to only 3-6 months (11). Worse still, the

standard therapies, such as surgery and postoperative radioiodine

ablation, are ineffective for ATC patients (9). Moreover, targeted

therapies and immunotherapies have limited success in achieving

curative outcomes for certain DTC and MTC patients (12).

Therefore, the objective of this study extends beyond merely
Frontiers in Oncology 09
exploring the influence of cellular senescence on THCA and its

fundamental mechanisms, but also to develop a prognostic

prediction model, with the goal of identifying novel and effective

therapeutic targets to improve the prognosis and therapeutic

outcomes for THCA patients.

Initially, a detailed examination of CSAG variations between

normal and tumor tissues was carried out, resulting in the discovery

of 61 DEGs. Subsequently, we conducted a Cox regression analysis

of the CSAG, which yielded 21 prognostic-associated aging-related

genes. By intersecting these 21 prognostic genes with the 61 DEGs,

we identified 9 DEGs that were associated with prognosis. The
FIGURE 4

Enrichment analysis and immune characteristic differential analysis of high- and low-risk groups. (A) GSEA enrichment analysis of the high- and low-
risk groups. (B) Differential expression analysis of immune regulatory genes between the two groups. (C) CIBERSORT analysis of the correlation
between immune cell scores and model genes/risk score. (D–I) Analysis of immune cell scores and their correlation with model genes/risk score in
the samples using CIBERSORT-ABS, EPIC, MCPCOUNTER, QUANTISEQ, TIMER, and XCELL algorithms.
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genes that overlap may offer significant understanding of CSAG’s

role in predicting the outcome of THCA and might be candidates

for new prognosis prediction targets and therapeutic approaches.

However, Nonetheless, there is a scarcity of research investigating

the connection between these genes and THCA, and the

interactions between these genes remain unclear. Therefore, we

analyzed the correlations among the 9 genes and found that

HDAC4, NDRG1, NEK1, PLA2R1, and ASPH showed strong
Frontiers in Oncology 10
positive correlations with other genes, with ASPH, HDAC4, and

NEK1 demonstrating particularly strong associations. It is known

that HDAC4 promotes carcinogenesis by limiting the transcription

of tumor suppressor genes (27), while NEK1 is involved in DNA

damage repair (28). Although CDKN2A and E2F1 are positively

correlated, they show negative correlations with the expression

levels of most other genes. Next, we used LASSO to perform gene

selection for model construction in the training set, ultimately
FIGURE 5

Comparison of immune checkpoint expression levels and their impact on prognosis between high- and low-risk groups. (A) Comparison of
expression levels of 31 immune checkpoint genes between the high- and low-risk groups. (B–J) Survival analysis of high- and low-risk groups
stratified by immune checkpoint gene expression levels. *p < 0.05; **p < 0.01; ***p < 0.001.
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identifying six model genes: ASPH, CDKN2A, E2F1, NDRG1,

NINJ1, and SNAI1. The transmembrane protein Aspartate b-
hydroxylase (ASPH), weighing approximately 86 kDa and

belonging to the highly conserved a-ketoglutarate-dependent
dioxygenase family, is classified as a type II protein. ASPH has

been found to be overexpressed in various malignant tumors (29),

and The hydroxylase activity it possesses holds a crucial function in
Frontiers in Oncology 11
fostering malignant tumor characteristics, encompassing tumor

growth, proliferation, invasion, and metastasis. Research has

shown that ASPH not only influences the prognosis of

hepatocellular carcinoma under the regulation of inositol

polyphosphate-5-phosphatase F (INPP5F) (30), but also promotes

tumor progression and poor prognosis by activating Notch and

PI3K-dependent signaling pathways, inducing a delay in tumor cell
FIGURE 6

Survival analysis. (A–V) Stratification of the high- and low-risk groups based on immune checkpoint gene expression levels.
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senescence and impairing mitochondrial integrity (31). One of the

most frequently deleted homozygous genes in human cancers is

CDKN2A, situated on chromosome 9 (32). The tumor suppressors

p16 and p14arf are both products of CDKN2A (33, 34). Since p16

inhibits the G1 to S phase transition and p14arf activates the tumor

suppressor p53 (34, 35), the loss of CDKN2A function leads to cell

cycle dysregulation and promotes tumor development. E2F

transcription factor 1 (E2F1) is the archetype member of the E2F

family, which includes transcriptional activators that bind to the

adenoviral E2 promoter (36). In regulating the expression of a

multitude of oncogenes and tumor suppressor genes, E2F1 serves as

an activator. The E2F family precisely regulates the cell cycle,

apoptosis, and DNA replication processes (37). E2F1 not only

promotes cell migration and metastasis but also plays a critical
Frontiers in Oncology 12
role in stem cell-mediated carcinogenesis and estrogen-mediated

cell proliferation (38). Its non-transcriptional activities further

promote DNA repair or induce autophagy and apoptosis (39). N-

myc downstream regulated gene 1 (NDRG1), a gene that functions

to suppress tumorigenesis, located on chromosome 8q24.3, encodes

a 3.0 kb mRNA and inhibits cell proliferation, migration, invasion,

and autophagy, while promoting apoptosis and differentiation, thus

suppressing tumor invasive phenotypes (40). Overexpression of

NDRG1 downregulates cyclin D1, a Wnt-responsive gene, and

inhibits cell cycle progression (41). Although NDRG1 primarily

exhibits anti-cancer and anti-metastasis functions, it has also been

shown to promote cancer in certain cancers such as gastric cancer

and hepatocellular carcinoma (42). Therefore, some researchers

suggest that NDRG1 may exert pleiotropic effects depending on the
FIGURE 7

Mutation analysis and survival analysis based on TMB, and prediction of tumor treatment responses by the model. (A) Tumor mutation burden
analysis of the high- and low-risk groups. (B) Analysis of the correlation between tumor mutation burden and risk score. (C) Survival analysis of high-
TMB and low-TMB groups. (D) Survival analysis of high- and low-risk groups within high- and low-TMB subsets. (E) Analysis of immune treatment
responses in high- and low-risk groups. (F) Survival analysis of high- and low-risk groups in the IMvigor210 immunotherapy cohort. (G) Analysis of
risk model score differences between disease status groups in the IMvigor210 immunotherapy cohort.
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cancer type (43). Initially discovered as a gene that undergoes

significant upregulation in Schwann cells and dorsal root ganglia

following nerve injury, Ninjurin1 (NINJ1) serves as a homophilic

cell adhesion molecule (CAM) (44). The regulation of

neovascularization in vitro and the formation of the hyaloid

vascular system in vivo are mechanisms through which NINJ1

contributes to angiogenesis, and NINJ1 forms a feedback loop with
Frontiers in Oncology 13
p53, whereby NINJ1, as a p53 target, suppresses p53 mRNA

translation. Moreover, NINJ1 exerts opposite effects on cell

growth, migration, and tumor development through wild-type

and mutant p53 (45). Additionally, NINJ1 inhibits the IL-6

signaling pathway both in vitro and in vivo, suppressing lung

cancer migration, invasion, and metastasis (46). Snail family zinc

finger 1 (SNAI1) is the first and most extensively studied E-cadherin
FIGURE 8

Survival analysis. (A–X) In the IMvigor210 cohort, the high-risk and low-risk groups were stratified according to the level of immune checkpoint gene
expression and the difference in prognosis was compared.
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transcriptional repressor, and E-cadherin, encoded by the epithelial

gene CDH1, is a marker of epithelial-mesenchymal transition

(EMT), a developmental process that cancer cells use to promote

invasion, metastasis, and therapy resistance (47). In normal tissues,

the regulation of SNAI1 expression is precise, whereas its

deregulation is linked to the advancement of several types of

cancer (48, 49). In addition to repressing the E-cadherin gene, the

core function of SNAI1 includes the transcriptional repression of

tight junction genes and fructose-1,6-bisphosphatase genes, which
Frontiers in Oncology 14
regulate glycolysis rate (50). In ovarian cancer cells, SNAI1

primarily regulates intercellular and cell-matrix adhesion (51).

We built a model for predicting prognosis by utilizing six model

genes, and subsequently assessed the scores for patients in not only

the training but also the validation datasets. Following that, the

patients from both cohorts were divided into two categories – high-

risk and low-risk – according to their respective risk scores. An

analysis comparing the survival rates of the two groups within both

cohorts unveiled that patients in the low-risk category of the TCGA
FIGURE 9

Survival analysis. (A–W) In the IMvigor210 cohort, the high-risk and low-risk groups were stratified according to the level of immune checkpoint
gene expression and the difference in prognosis was compared.
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cohort exhibited a notably superior prognosis compared to those in

the high-risk category. Additionally, we assessed the model’s

predictive power by employing ROC curves and found that it

demonstrated high accuracy in both the two datasets. Given the

roles of these six genes in malignant tumors, we propose that they

are likely to serve as prognostic biomarkers for THCA and may

influence the initiation and progression of THCA. An additional

analysis was conducted across two datasets to explore the variations

in the expression of model genes across the cohorts stratified as

high-risk and low-risk. It is apparent that ASPH, CDKN2A,

NDRG1, and SNAI1 demonstrated increased expression in the

high-risk group, irrespective of whether they were in the training

set or the validation set. In the low-risk group, E2F1 and NINJ1

were more expressed. An analysis was conducted to compare the

survival differences between the two groups, revealing that,

although the high-risk group had a lower survival rate, the

maximum survival duration of patients did not significantly differ

from that of the low-risk group. We then conducted survival

analysis for the TCGA cohort, stratifying patients into high-risk

and low-risk groups based on Stage I-II and Stage III-IV, in order to

investigate how tumor stage influences the predictive ability of the

model. Comparable survival rates were observed between the high-

and low-risk groups in Stage I-II, with no statistically significant

differences emerging. However, in Stage III-IV, a notable disparity

in survival rates was observed between the two groups. We interpret

this as suggesting that our model holds greater predictive value in

patient populations with more advanced stages. Additionally, an

analysis using GSEA, focusing on the KEGG MEDICUS pathway,

was conducted, revealing the enrichment of five pathways,

primarily associated with cellular proliferation, differentiation,

and signaling, for those at high risk. Genes in the high-risk group

were highly enriched in pathways associated with the mitochondrial

electron transport chain, reflecting changes in cellular energy

metabolism in the high-risk group and increased apoptosis that

may result from mitochondrial dysfunction. Conversely, for

those at low risk, the primary association of the enriched

pathways was with mitochondrial electron transport and

oxidative phosphorylation processes. The results of our study

introduce novel understandings into the realm of THCA

treatment, implying that a customized exploration of therapeutic

options for patients stratified into high- and low-risk groups may

facilitate the development of more precise targeted therapies.

Following that, an analysis of the immune regulatory expression

profiles was conducted for both groups, with the results showing

that the high-risk group had significantly increased expression

levels of five immune regulatory molecules compared to the low-

risk group. This suggests that the response to immune checkpoint

inhibitors or immunotherapies in THCA may differ based on the

risk scores. This also indicates that the patient’s immune status is

strongly associated with clinical outcomes. Afterwards, various

algorithms were employed under the purpose of examining the

relationship existing between the abundance of immune cell

infiltration and six model genes. The analysis revealed a positive

association between the risk score and CDKN2A, both related to

increased immune cell abundance, whereas NINJ1 displayed an

inverse relationship with the expression levels of immune cells. The
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indication is that CDKN2A and NINJ1 potentially impact tumor

prognosis by regulating the infiltration of immune cells. We

subsequently conducted an analysis to assess the variability in the

expression of immune checkpoints across patient groups stratified

by high and low risk. The results of our study indicated that there

was an upregulation of 31 immune checkpoints among those in the

high-risk category, hinting at a potentially more favorable efficacy of

immune checkpoint inhibitors in this group. By utilizing the

median expression levels of these 31 immune checkpoints, we

further divided both high- and low-risk groups into two

subgroups and conducted survival analysis for each checkpoint.

Despite immune checkpoint expression having little effect on the

survival of patients in the low-risk group, the high-risk group

exhibited a notable correlation between immune checkpoint

expression and their survival rates. Eight immune checkpoints—

ADORA2A, BTNL2, CD27, CD80, IDO2, TNFRSF4, TNFSF4, and

TNFSF9—were associated with poorer prognosis when highly

expressed, while the high expression of most immune checkpoints

was generally linked to better outcomes. This finding provides novel

insights into the development of novel immunotherapy agents

targeting immune checkpoints, and indicates that the level of

immune checkpoint expression may serve as a marker for

evaluating disease progression and prognosis, thereby laying the

groundwork for tailored treatment approaches.

After computing and contrasting the TMB of the two patient

groups, we observed no notable disparity, which could be attributed

to the influence of potential confounding factors. The Pearson

correlation analysis was conducted by us to deeply evaluate the

correlation between the risk score and TMB, with the aim of

bolstering the credibility of our findings. The results of our analysis

revealed an inverse relationship between the risk score and TMB,

implying that patients with higher risk scores had correspondingly

lower TMB levels. With patients categorized into H-TMB and L-

TMB groups using the median TMB value as a cutoff, we proceeded

to analyze their survival rates. Our analysis revealed that patients

belonging to the H-TMB group had significantly diminished survival

rates in comparison to those in the L-TMB group. Subsequently, we

combined TMB and risk scores to classify the patients into four

subgroups for survival analysis. Our results showed that, although

TMB had no substantial effect on survival among patients in the low-

risk group, patients in the high-risk group with high TMB had

significantly inferior survival rates compared to those with low TMB.

This finding supports our previous conclusion that TMB is not an

independent prognostic factor. TMB levels appear to influence the

prognosis primarily in high-risk patients. Although high-risk groups

generally correspond to lower TMB, patients within these groups who

have higher TMB tend to experience poorer outcomes. Some studies

suggest that a higher TMB reflects greater exposure to tumor

antigens, and thus TMB could potentially serve as a marker for the

response to therapy utilizing immune checkpoint inhibitors (52). A

deeper exploration into the function of TMB in THCA is necessary,

as it could potentially present a new method for therapeutic

intervention and prognosis assessment in THCA.

Finally, we conducted an immunotherapy analysis on the

patients, separately assessing high-risk and low-risk patients’

reactions to anti-CTLA-4 and anti-PD-L1 antibodies. This led to
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the identification of four distinct IPS. Our results suggest that,

regardless of whether patients received anti-CTLA-4 or anti-PD-L1

antibodies, those in the low-risk group responded significantly

better to immune checkpoint inhibitor treatment strategies.

Notably, patients receiving monotherapy with PD-1 inhibitors

exhibited the most pronounced difference. Our model suggests

that it can direct the choice of more precisely targeted

immunotherapy strategies according to a patient’s risk score,

which may lead to an enhanced response to immune suppressors

for high-risk patients and, consequently, a better prognosis. To

further assess the predictive efficacy of the model, we used the

IMvigor210 cohort for validation. After determining the risk scores

for the patients, the IMvigor210 cohort was categorized into those at

high risk and those at low risk, upon which survival analysis was

subsequently performed. The predictive performance of the model

was validated by the results as being robust. We then classified

patients into two groups based on therapeutic response: complete or

partial response (CR/PR) and stable or progressive disease (SD/PD),

and compared their risk scores. The CR/PR group exhibited

significantly decreased risk scores when compared to the SD/PD

group. Subsequently, the patients’ risk scores were combined with

the expression levels of 48 immune checkpoint molecules, leading

to the classification of patients into four subgroups, each

characterized by the expression pattern of a particular immune

checkpoint molecule. The analysis of survival outcomes showed

that, when compared to patients in the high-risk group, those in the

low-risk group exhibited a remarkably better prognosis. Within the

low-risk group, there was an upregulation of specific immune

checkpoint genes, such as CD40, CD200, CD244, CD276, NRP1,

TNFRSF14, TNFSF14, TNFSF15, and VTCN1, was linked to a

notable elevation in the likelihood of survival, suggesting that these

genes may serve as promising therapeutic targets for low-risk

patients. Other studies have also linked these genes to thyroid

cancer (53, 54). When it comes to the group with higher risk scores,

over one-third of the immune checkpoint genes studied were

identified as having a positive correlation with a better prognosis.

Genes like CD40, CD244, and TNFSF15 were found to be beneficial

for the prognosis of both groups. These findings open up new

possibilities for targeted therapies in THCA.

While our study established a prognostic model for THCA and

uncovered the role of CSAGs, limitations exist. First, using public

database data may introduce sample bias. Additionally, findings are

primarily data-driven, lacking experimental validation. Lastly,

analysis of immune checkpoints and TMB was limited to risk

stratification, requiring further investigation into their mechanisms.
5 Conclusion

In this study, we used bioinformatics to explore cellular

senescence’s impact on THCA prognosis. By integrating public

database data and focusing on CSAGs, we developed a robust

prognostic model validated by KM and ROC curves. By stratifying

patients into high- and low-risk groups, the model uncovered notable

disparities in prognosis, immune activity, and treatment response.

Risk-stratified analysis provided insights into immune checkpoints
Frontiers in Oncology 16
and TMB. Our findings deepen understanding of cellular senescence

in THCA and suggest new therapeutic targets.
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