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Muscle-invasive bladder cancer (MIBC) is an aggressive form of bladder cancer, 
representing 20–25% of all bladder cancer cases. Characterized by invasion into the 
detrusor muscle, MIBC often leads to high rates of metastasis and poor outcomes, 
with five-year survival rates below 50% for localized disease and less than 15% for 
metastatic cases. MIBC primarily affects older adults, especially men, with smoking 
and chemical exposure being the leading risk factors. Clinically, MIBC presents 
significant heterogeneity, both histologically and molecularly, making diagnosis and 
management challenging. Histological variants of MIBC, such as squamous, 
micropapillary, plasmacytoid, and neuroendocrine subtypes, are associated with 
distinct prognoses and variable treatment responses. Recent advances in genomic 
profiling have identified molecular subtypes of MIBC—luminal, basal/squamous, 
neuronal, and stroma-rich—each with unique biological characteristics and 
treatment sensitivities. Despite these advancements, the widespread adoption of 
molecular profiling is hindered by the high costs and limited availability of these 
technologies, particularly in resource-limited settings. As a result, there is an 
increasing need for alternative, more accessible diagnostic methods to predict 
molecular subtypes. In this context, histological examination combined with 
immunohistochemical markers, such as GATA3, KRT5/6, and p63, has been shown 
to reliably correlate with molecular subtypes and guide therapeutic decisions. This 
review presents a comprehensive analysis of how histology, immunohistochemistry 
and molecular subtyping can be integrated into routine clinical practice to inform 
treatment strategies for MIBC, providing a pathway toward more personalized and 
effective management. 
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1 Introduction 

1.1 Overview of muscle-invasive bladder 
cancer 

Muscle-invasive bladder cancer (MIBC) is a particularly 
aggressive form of bladder cancer, characterized by its invasion into 
the detrusor muscle layer of the bladder wall. MIBC accounts for 
approximately 20-25% of bladder cancer cases at diagnosis and is 
distinct from non-muscle-invasive bladder cancer (NMIBC), which 
remains confined to the bladder’s superficial layers (1). While NMIBC 
has a more favorable prognosis, MIBC often presents a high risk of 
local invasion and metastasis. With an estimated 550,000 new cases 
and approximately 200,000 deaths annually, bladder cancer ranks as 
the 10th most common malignancy globally. MIBC represents a 
significant clinical challenge due to its aggressive nature and high 
recurrence and progression rates (2). 

The incidence of bladder cancer is notably higher in men than 
women, with a male-to-female ratio of approximately 3:1. The 
median age at diagnosis typically falls between 65–70 years, with 
incidence rates increasing with age (2, 3). The overall five-year 
survival rate for MIBC remains below 50% for patients with 
localized disease, dropping to less than 15% in cases of distant 
metastasis. Radical cystectomy, often combined with neoadjuvant 
chemotherapy (NAC), is the standard treatment for MIBC; 
however, disease recurrence and progression are common even 
with aggressive therapy (4). 

Smoking remains the predominant modifiable risk factor for 
bladder cancer, responsible for up to 50% of cases. Smoking exposes 
the bladder to carcinogens filtered from the bloodstream, substantially 
increasing cancer risk (5). Other major risk factors include 
occupational exposure to carcinogens, such as aromatic amines in 
industries like dye production and rubber manufacturing, chronic 
urinary tract infections, and previous pelvic radiation therapy (6). 

The morbidity associated with MIBC is compounded by 
complications from radical cystectomy and systemic chemotherapy, 
which can affect quality of life due to urinary diversion, sexual 
dysfunction, and chemotherapy’s adverse effects. In addition, the 
high rates of recurrence and metastasis contribute to the disease’s 
overall mortality, with many patients ultimately succumbing to the 
disease despite initially curative treatments (7). 

Non-modifiable risk factors include advanced age, male gender, 
and chronic inflammatory conditions such as chronic urinary tract 
infections or schistosomiasis in specific regions. Genetic predisposition 
also plays a significant role, as mutations in genes such as TP53 and 
RB1 are associated with more aggressive bladder cancer forms (8). 
 

1.2 Aggressive nature and clinical 
presentation 

MIBC is highly aggressive, marked by its propensity to invade 
nearby tissues such as the prostate, uterus, and pelvic walls, and 
metastasize to distant organs like the liver, lungs, and  bones. This
invasive behavior is facilitated by the tumor’s ability to infiltrate 
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the detrusor muscle, allowing cancer cells to access lymphatic and 
vascular systems, which accelerates dissemination and complicates 
treatment (1, 9). 

Early detection is crucial due to the rapid progression of MIBC. 
Unlike non-muscle-invasive bladder cancer (NMIBC), which can 
often be managed with localized treatments like transurethral 
resection (TURBT) or intravesical therapy, MIBC requires more 
aggressive interventions, such as radical cystectomy, frequently 
combined with NAC and immunotherapy (10). While outcome 
was associated with the consensus class for NAC-free patients, for 
NAC-treated patients, we observed no significant association of 
outcome with the consensus class (11). However, early detection of 
MIBC is often delayed because its symptoms can be non-specific 
and are easily mistaken for benign urinary conditions (12). 

Clinically, MIBC often presents with symptoms indistinguishable 
from other common urological conditions, such as urinary tract 
infections (UTIs) or benign prostatic hyperplasia (BPH), especially 
in men. The most frequent symptom is hematuria, which can be either 
gross (visible to the naked eye) or microscopic (detectable only 
through laboratory tests). Hematuria in bladder cancer is typically 
painless, which often leads patients to delay seeking medical attention. 
Studies indicate that approximately 85% of bladder cancer patients 
experience hematuria at some stage of their disease (13). 

In addition to hematuria, other urinary symptoms are common 
but are often mistaken for benign conditions. Patients may experience 
dysuria, characterized by painful or burning sensations during 
urination, as well as an increased frequency of urination or a 
constant sense of urgency, which may not be proportional to the 
amount of urine passed. Some patients also report nocturia, waking up 
multiple times at night to urinate. These symptoms can be subtle and 
progress gradually, leading both patients and physicians to attribute 
them to less serious conditions, further delaying diagnosis (13–15). 

Once diagnosed, MIBC tends to progress rapidly, with a 
significant likelihood of recurrence or metastasis if left untreated or 
if treatment is delayed. Approximately 50% of patients with MIBC will 
eventually develop metastatic disease, even after aggressive local 
therapy, due to the early occurrence of micrometastasis during the 
disease’s progression (1, 16, 17). 

The rapid progression of MIBC underscores the importance of 
early and accurate diagnosis to improve patient outcomes. 
Diagnosis is typically confirmed through cystoscopy, which allows 
for direct visualization of the bladder, and is followed by a biopsy to 
confirm histopathological characteristics. Imaging studies, such as 
Computed Tomography (CT) or Magnetic Resonance Imaging 
(MRI), are used to stage the disease and assess the extent of local 
invasion or distant metastasis (1, 18). 

In recent years, molecular subtyping has gained importance in 
guiding personalized treatment strategies for MIBC. Molecular 
subtyping allows clinicians to classify tumors based on specific gene  
expression profiles, providing insight into the biological behavior of 
the cancer and its likely response to different treatment modalities. 
Integrating molecular subtyping with traditional histopathological 
analysis enhances diagnostic accuracy and enables patient 
stratification according to their risk of recurrence and metastasis. 
This approach ensures that patients with high-risk subtypes receive 
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the most aggressive treatments early in their disease course, which is 
critical for improving survival outcomes (19–21). 
2 Materials and methods 

2.1 Search strategy 

A thorough electronic literature search up to November 2024 
was made, and the following databases were used to identify 
relevant articles: PubMed/MEDLINE, Cochrane Library 
(Cochrane Database of Systematic Reviews, Cochrane Central 
Register of Controlled Trials—CENTRAL), Web of Science 
(Science and Social Science Citation Index), and Scopus. The 
combination of non-MeSH/MeSH terms was as follows: (i) 
PubMed/MEDLINE: ((Muscle-Invasive Bladder Cancer [Title/ 
abstract]) OR (Muscle-Invasive Bladder Urothelial Carcinoma 
[Title/abstract]) AND (Immunohistochemistry [Title/abstract])) 
OR (Molecular Subtypes [Title/abstract])). Filters applied: 
English; (ii) Cochrane Library: Muscle-Invasive Bladder Cancer in 
Title Abstract Keyword AND Molecular Subtypes in Title Abstract 
Keyword- (word variations have been searched). Language: English; 
(iii) Web of Science: Muscle-Invasive Bladder Cancer (Topic) AND 
Immunohistochemistry (Topic) OR Molecular Subtypes (Topic) 
and English (Languages); and (iv) Scopus: (TITLE-ABS-KEY 
(Muscle-Invasive Bladder Cancer) AND TITLE-ABS-KEY 
(Immunohistochemistry) OR TITLE-ABS-KEY (Molecular 
Subtypes) AND (LIMIT-TO (LANGUAGE, “English”)). 
Additionally, the reference lists of relevant studies were manually 
reviewed to identify any articles that may have been missed during 
the electronic search. 
2.2 Inclusion and exclusion criteria 

Articles not addressing Muscle-Invasive Bladder Cancer or those 
discussing it from a perspective other than the immunohistochemical 
and molecular subtypes were excluded. Comments, opinions, 
perspectives, guidelines, editorials, case reports, and papers in 
languages other than English were also excluded. In addition, papers 
available only as abstracts or those with text appearing too brief or 
non-informative were not included into the present narrative review. 
The inclusion criteria focused on articles in English with full texts 
available. We concentrated on articles that offered thorough 
summaries or in-depth discussions of histological and molecular 
subtypes of Muscle-Invasive Bladder Cancer and their applications 
in prognosis, and clinical management. 
 
3 Results 

Fourteen histological variants of MIBC were identified, each with 
distinct morphological features, prognostic significance, and therapeutic 
implications. Conventional urothelial carcinoma (NOS) remains the 
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most common subtype, while aggressive variants such as plasmacytoid, 
sarcomatoid, and micropapillary carcinomas are associated with worse 
outcomes and limited responsiveness to standard therapies. Variants 
like squamous and glandular differentiation exhibit divergent behavior, 
necessitating tailored therapeutic strategies. Rare forms including clear 
cell, lipid-rich, and trophoblastic variants were also described, each 
contributing to the complexity and clinical challenge of MIBC 
management. The review outlines four consensus molecular subtypes 
—Luminal, Basal/Squamous, Neuronal, and Stroma-Rich—each 
defined by distinct genetic and transcriptional profiles. Luminal 
subtypes are characterized by GATA3, KRT20, and UPK2 expression 
and demonstrate responsiveness to FGFR inhibitors. Basal/Squamous 
subtypes exhibit aggressive behavior but respond favorably to platinum-

based neoadjuvant chemotherapy, with key markers including KRT5/6, 
KRT14, and p63. Neuronal subtypes express neuroendocrine markers 
such as SOX2 and synaptophysin and require small-cell lung cancer– 
like chemotherapy regimens. Stroma-rich tumors, marked by 
mesenchymal and immune markers (e.g., vimentin, PD-L1), are often 
chemoresistant but may benefit from immunotherapeutic strategies. 
Immunohistochemistry (IHC) has emerged as a practical and cost-
effective surrogate for molecular profiling in settings where genomic 
technologies are limited. Panels based on GATA3, KRT5/6, p63, and 
neuroendocrine markers enable approximation of molecular subtypes 
and stratification of patients for appropriate treatment pathways. The 
integration of histology with IHC enhances subtype classification and 
supports more personalized clinical decision-making, particularly in 
resource-constrained environments. 

All relevant findings were extracted and arranged in a 
narrative manner. 
4 Histological subtypes of muscle-
invasive bladder cancer 

MIBC represents a highly heterogeneous disease, with 
substantial variability at both histological and molecular levels. 
This heterogeneity manifests through distinct histological 
subtypes and molecular profiles, each with unique biological 
behaviors and clinical implications. Understanding these 
differences is critical for optimizing treatment strategies, as the 
various subtypes profoundly affect prognosis, therapeutic decision-
making, and overall clinical outcomes (10, 22, 23). 

Histologically, MIBC is predominantly classified as urothelial 
carcinoma, also known as transitional cell carcinoma. However, 
there are less common but aggressive histological variants, 
including squamous differentiation, micropapillary carcinoma, 
plasmacytoid carcinoma, and neuroendocrine carcinoma, each 
displaying unique histopathological features and distinct clinical 
behaviors that often correlate with poorer outcomes (24) (Table 1). 
Understanding MIBC heterogeneity is crucial  for developing

targeted treatment strategies and personalized care plans, since 
these variants can impact treatment selection and prognosis, 
presenting therapeutic challenges due to their aggressive nature 
and resistance to standard chemotherapy regimens (11, 25, 26). 
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4.1 Urothelial carcinoma (Not Otherwise 
Specified) 

Urothelial carcinoma, Not Otherwise Specified (NOS) accounts 
for approximately 80-90% of MIBC cases and originates from the 
transitional epithelium lining the bladder. The term NOS is used for 
cases that do not exhibit specific histological variants or other 
molecular characteristics. This subtype can present in various 
architectural patterns, including papillary, solid, or nested forms. 
The hallmark of muscle invasive urothelial carcinoma is muscularis 
propria infiltration, indicative of advanced disease (Figure 1A) (26). 
Histological features such as high-grade nuclear pleomorphism, 
hyperchromasia, and extensive necrosis contribute to its poor 
prognosis. For high-grade, muscle-invasive tumors, radical 
cystectomy combined with NAC is often the preferred 
treatment (27). 
Frontiers in Oncology 04
4.2 Squamous differentiation 

Squamous differentiation is observed in about 20% of urothelial 
carcinoma cases, typically arising in response to chronic irritation, 
such as from bladder stones, recurrent infections, or schistosomiasis 
(28). Histologically, it is recognized by keratinization and 
intercellular bridges. Squamous differentiation is associated with a 
more aggressive clinical course and poor responsiveness to 
cisplatin-based chemotherapy, necessitating alternative treatments 
like radiation or immunotherapy (29). 
4.3 Micropapillary urothelial carcinoma 

Micropapillary urothelialcarcinoma (MPUC) is a rare yet highly 
aggressive variant of MIBC, often diagnosed at advanced stages due 
TABLE 1 Histologic subtypes of muscle-invasive bladder cancer. 

Histologic 
Subtype 

Characteristics Prognosis Key 
immunoistoche 
mical markers 

Clinical Implications 

Urothelial 
Carcinoma (NOS) 

High pleomorphism, papillary or solid growth Poor if 
muscle-
invasive 

None specific Good response to neoadjuvant chemotherapy; 
Radical cystectomy, NAC 

(Neoadjuvant Chemotherapy) 

Squamous 
Differentiation 

Squamous cells, often in response to 
chronic irritation 

Poor p63, CK5/6 Limited response to cisplatin; Radiation therapy, 
immunotherapy in clinical trials 

Micropapillary Floating cell nests resembling lymphovascular 
invasion, high early metastatic potential 

Poor HER2 Limited response; Anti-HER2 therapies like 
trastuzumab (under study) 

Plasmacytoid Plasma cell-like cells with higher tendency for 
peritoneal dissemination 

Poor CD138, loss of E
cadherin (CDH1) 

Low chemotherapy response; Immunotherapy and 
targeted therapies under research 

Nested Benign appearance but deeply invasive Variable 
to Poor 

None specific Limited based on stage; Cystectomy for 
invasive forms 

Lymphoepitheliom 
a-Like 

Pleomorphic cells within dense lymphoid 
infiltrate, resembling 

nasopharyngeal carcinoma 

Good CD8+, PD-L1 Good response to platinum-based chemo; 
Platinum-based chemotherapy 

Clear Cell 
(Glycogen-Rich) 

Glycogen-rich cytoplasm of clear cells Poor PAS-Diastase positive Low chemotherapy response; Early 
surgical intervention 

Lipid-Rich Lipid vacuoles in tumor cells, 
highly pleomorphic 

Poor None specific Low chemotherapy response; Aggressive 
treatment needed 

Giant Cell Multinucleated giant cells, marked 
cellular atypia 

Poor None specific Advanced stage, poor prognosis 

Neuroendocrine I Small, round ndocrine Poor Synaptophysin, hron.og in Responsive to etoposide-cisplatin chemo; therapy 
with PD-L1 inhibitors 

Sarcomatoid M enchymal non, presillice of 
osteosarcomatous or 

chondrosarcomatous elements 

Poor Vimentin Cystectomy, poor prognosis 

Microcystic Small cystic spaces, resembling cystitis cystica, 
highly invasive 

Good None specific Cystectomy for deep invasion 

Glandular 
Differentiation 

Gland-like differentiation, mucin production Poor None specific Limited; Intensive systemic therapy 

Trophoblastic 
Differentiation 

Resembles placental syncytiotrophoblast cells, 
with hCG production 

Poor hCG Poor; Aggressive treatment required 

Poorly 
Differentiated 

Extreme pleomorphism, loss of 
typical architecture 

Poor None specific Poor, early metastatic tendency; Multimodal 
treatment approaches 
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to its early tendency to metastasize. Microscopically, it is 
characterized by small, cohesive tumor cell nests that mimic 
lymphovascular invasion (Figure 1B). This distinct appearance 
correlates with an aggressive clinical course and poor prognosis, 
thus radical cystectomy is frequently recommended. Adverse 
outcomes despite aggressive platinum-based chemotherapy and 
limited response to Bacillus-Calmette-Guerin instillation therapy 
have been reported in MPUC, but little is known about alternative 
treatment strategies and most authors recommend early aggressive 
surgical treatment (27, 30–32). HER2 overexpression is common in 
micropapillary carcinoma and represents a potential therapeutic 
target, although the use of HER2-targeted therapies like 
trastuzumab is still under clinical investigation (33). 
4.4 Plasmacytoid urothelial carcinoma 

Plasmacytoid carcinoma is an aggressive variant of MIBC, 
accounting for approximately 1-3% of cases. It is often diagnosed 
at an advanced stage and is characterized by widespread infiltration 
and peritoneal dissemination. Histologically, plasmacytoid 
carcinoma is marked by discohesive tumor cells resembling 
plasma cells, featuring eccentric nuclei and eosinophilic cytoplasm 
(Figure 1C). These tumors frequently display a solid, sheet-like 
growth pattern, making surgical resection challenging. 

CDH1 mutations, which result in the loss of E-cadherin, are 
commonly observed in this variant, contributing to its discohesive 
nature and aggressive behavior. CD138 (syndecan-1) positivity 
further supports the plasmacytoid differentiation by highlighting 
the plasma cell-like features of these tumors. Advanced cases often 
show a desmoplastic stromal response, correlating with a worse 
prognosis (34). Due to its aggressive behavior and poor response to 
Frontiers in Oncology 05 
chemotherapy, ongoing research is exploring targeted therapies and 
immunotherapy as potential treatment options (35). 
4.5 Nested urothelial carcinoma 

Nested urothelial carcinoma is a rare variant recognized for its 
deceptively bland appearance, which can complicate differentiation 
from benign proliferations like von Brunn nests. It presents in 
small and large nested forms, with the small nested variant being 
more common (Figure 1D). The subtype is marked by nests of 
urothelial cells with minimal atypia, especially in superficial layers 
(36, 37). 

However, deep infiltration into the muscularis propria is a key 
diagnostic feature signaling malignancy. Despite its benign 
appearance, nested carcinoma has a poor prognosis due to deep 
tissue invasion and delayed diagnosis (37, 38). 
4.6 Lymphoepithelioma-like urothelial 
carcinoma 

Lymphoepithelioma-like carcinoma, a rare MIBC subtype, bears a 
strong resemblance to nasopharyngeal lymphoepithelioma. This variant 
occurs as either a pure form or alongside conventional urothelial 
carcinoma. It is characterized histologically by large pleomorphic cells 
with prominent nucleoli, often surrounded by a dense inflammatory 
infiltrate of lymphocytes and plasma cells (39). Despite its aggressive 
appearance, the pure form often has a favorable prognosis and responds 
well to platinum-based chemotherapy. When coexisting with 
conventional carcinoma, prognosis depends on the non-
lymphoepithelioma component (39, 40). 
FIGURE 1 

(A) High-grade urothelial carcinoma (NOS) showing papillary growth-pattern (H&E; original magnification 150x); (B) Micropapillary urothelial 
carcinoma (H&E; original magnification 150x); (C) Plasmacytoid urothelial carcinoma exhibiting deep infiltration into the muscularis propria (H&E; 
original magnification 150x); (D) Nested urothelial carcinoma (H&E; original magnification 150x). 
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4.7 Clear cell (glycogen-rich) urothelial 
carcinoma 

Clear cell carcinoma is a rare MIBC variant featuring glycogen-
rich, clear cytoplasm, often resembling renal clear cell carcinoma. 
Histologically, it is characterized by cells with abundant glycogen-
rich cytoplasm, identifiable through special staining techniques like 
periodic acid-Schiff (PAS) with diastase digestion (41). Although 
the clinical course of clear cell carcinoma is not well documented 
due to its rarity, it generally has a poor prognosis. Early surgical 
intervention remains the primary treatment approach (42). 
4.8 Lipid-rich urothelial carcinoma 

Lipid-rich carcinoma is a rare and aggressive subtype of MIBC, 
marked by the presence of lipid vacuoles within tumor cells. These 
vacuoles compress the nuclei, giving cells a lipoblast-like 
appearance. This variant is highly pleomorphic, with significant 
nuclear atypia and mitotic activity, and is associated with poor 
prognosis due to extensive local invasion (43, 44). Early recognition 
and aggressive treatment are crucial, though outcomes remain poor 
given its resistance to conventional therapies (45). 
4.9 Sarcomatoid urothelial carcinoma 

Sarcomatoid carcinoma is an aggressive variant exhibiting both 
epithelial and mesenchymal differentiation, with high-grade spindle 
or pleomorphic cells (Figure 2A) and occasional heterologous 
Frontiers in Oncology 06
elements like osteosarcoma or chondrosarcoma (46). This 
subtype frequently presents with metastasis at diagnosis and is 
associated with a worse prognosis than conventional urothelial 
carcinoma (47). Radical cystectomy is commonly recommended, 
though the aggressive nature of the disease often results in poor 
outcomes (48). 
4.10 Microcystic urothelial carcinoma 

Microcystic carcinoma is a rare form of MIBC that can be 
mistaken for benign conditions like cystitis cystica (49). It features 
small cystic or tubular spaces lined by urothelial cells (Figure 2B), 
which can delay diagnosis due to its benign appearance (50). 
Despite this morphology, the tumor often invades deeply, leading 
to poorer prognosis. Radical cystectomy is usually required to 
manage the aggressive nature of this subtype (51). 
4.11 Urothelial carcinoma with glandular 
differentiation 

Glandular differentiation, the second most common form of 
divergent differentiation in urothelial carcinoma, is characterized by 
gland-like structures and enteric differentiation with glandular 
formations (Figure 2C) and mucin production (52). It can 
resemble colonic adenocarcinoma or mucinous adenocarcinoma, 
and sometimes contains signet-ring cells. This variant often 
correlates with a more aggressive course and higher metastasis 
risk, necessitating intensive treatment (52). 
FIGURE 2 

(A) Sarcomatoid urothelial carcinoma showing spindle cell sarcomatous differentiation (H&E; original magnification 200x); (B) Microcystic urothelial 
carcinoma consisting of bland- looking tubules lined by urothelium (H&E; original magnification 150x); (C) Muscle-invasive urothelial carcinoma with 
glandular differentiation, resembling intestinal-type adenocarcinoma (H&E; original magnification 150x). 
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4.12 Urothelial carcinoma with 
trophoblastic differentiation 

This  exceedingly  rare  variant  resembles  placental  
syncytiotrophoblast cells and is marked by Human Chorionic 
Gonadotropin (hCG) production. Histologically, it includes 
multinucleated giant cells, with elevated hCG serving as a tumor 
marker. Trophoblastic differentiation is associated with a particularly 
poor prognosis and usually requires radical treatment approaches due to 
its aggressive nature (53). 
4.13 Giant cell urothelial carcinoma 

One of the most aggressive bladder cancer forms, giant cell 
carcinoma is defined by multinucleated giant cells and significant 
cellular atypia. The presence of large, irregular cells and extensive 
necrosis reflects a highly aggressive and rapidly progressing tumor 
(54). Patients often present at advanced stages, and prognosis is 
generally poor even with aggressive interventions like radical 
cystectomy (54, 55). 
4.14 Poorly differentiated urothelial 
carcinoma 

This  subtype  is  characterized  by  extreme  nuclear  
pleomorphism, irregular nuclei, and frequent mitoses. Poorly 
differentiated tumors lack cohesive growth patterns and have an 
aggressive clinical course with early metastasis and deep tissue 
invasion. Treatment typically involves aggressive multimodal 
approaches, though outcomes remain guarded (56, 57). 
5 Molecular subtypes of muscle-
invasive bladder cancer 

The molecular classification of muscle-invasive bladder cancer 
(MIBC) has significantly advanced our understanding of the 
disease’s complexity, providing a foundation for predicting 
treatment responses and clinical outcomes. Widely accepted 
subtypes—Luminal, Basal/Squamous, Neuronal, and Stroma-Rich 
—arise from major classification systems such as The Cancer 
Genome Atlas (TCGA) and the Consensus Molecular Subtypes 
(CMS), which integrate genetic, epigenetic, and expression data to 
create a cohesive framework for diagnosis and treatment selection. 
Beyond these core categories, evolving subtypes like luminal 
immune-high and claudin-low underscore the expanding 
molecular heterogeneity recognized within MIBC, offering 
additional dimensions for guiding therapeutic strategies. Several 
alternative molecular subtyping approaches further enrich this 
landscape; for example, the TCGA classification delves into 
complex multi-omic profiles, enabling precise therapeutic 
targeting but requiring substantial resources, while the University 
of North Carolina (UNC) classifier simplifies MIBC into essential 
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luminal and basal subtypes, prioritizing clinical practicality with 
slightly less granularity. RNA-based signature classifiers provide 
another promising method, using gene expression data to predict 
responses to chemotherapy and immunotherapy, though these 
approaches demand RNA-sequencing infrastructure, which may 
limit accessibility. Together, these subtyping methodologies deepen 
our understanding of MIBC, allowing clinicians to tailor strategies 
based on available resources, patient needs, and specific tumor 
biology, ultimately advancing personalized care in bladder 
cancer (58). 
5.1 Luminal subtype 

The luminal subtype is one of the most common molecular 
categories in MIBC, marked by characteristics associated with 
urothelial differentiation and signaling pathways that resemble 
those found in normal urothelial cells. This subtype is generally 
associated with a better prognosis, showing lower rates of 
recurrence and metastasis compared to more aggressive 
subtypes (59). 

Driven by molecular alterations that promote urothelial 
differentiation, the luminal subtype features markers such as 
GATA3 and KRT20, which are essential transcription factors and 
cytokeratins involved in luminal epithelial cell differentiation (60). 
FGFR3 mutations, primarily activating mutations, are frequently 
observed in this subtype, enhancing urothelial differentiation and 
making these tumors candidates for FGFR inhibitors. One of the 
most significant advancements for patients with FGFR3-mutated 
luminal tumors is the development of erdafitinib, an FGFR inhibitor 
that has shown efficacy in clinical trials and is now an FDA-
approved therapy for this mutation (61). 

HER2/ERBB2 overexpression is also observed in some luminal 
tumors, particularly in the luminal-papillary subtype. This has 
opened the door to the exploration of HER2-targeted therapies, 
such as trastuzumab, which has shown promise in early trials for 
patients with HER2-positive bladder cancer (62). Although 
trastuzumab is widely used in breast cancer, ongoing studies are 
evaluating its role in improving outcomes for luminal MIBC with 
HER2 overexpression (62). 

The responsiveness of luminal tumors to NAC remains an area 
of active investigation, as these tumors tend to be less sensitive to 
traditional chemotherapy than the basal subtype. For example, 
luminal-papillary tumors, which often harbor FGFR3 mutations, 
are less responsive to NAC and show better outcomes with FGFR-
targeted therapies (61). In addition, low response rates for immune 
checkpoint inhibitors have been found in basal squamous subtype 
and luminal infiltrated subtype, which had the highest levels of 
immune infiltration (63). 
5.2 Basal/squamous subtype 

The basal/squamous subtype is characterized by aggressive 
tumor biology, with molecular features reminiscent of basal cells 
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found in the skin or breast. It is defined by the expression of basal 
cell markers KRT5/6, KRT14, and p63, which are involved in 
maintaining the stem-cell-like properties of tumor cells (10). 
These markers suggest a more primitive, undifferentiated cell 
origin, contributing to the aggressive clinical behavior of these 
tumors. This subtype shows worse overall survival than the 
luminal subtype but exhibits better responsiveness to platinum-

based chemotherapy regimens. 
Patients with basal/squamous MIBC often show TP53 and RB1 

mutations, which are typically inactivating; these mutations 
contribute to genomic instability and enhance chemosensitivity to 
neoadjuvant chemotherapy by reducing the tumor’s ability to repair 
DNA damage effectively (10). However, the prognosis remains poor 
due to high rates of recurrence and metastasis after treatment. 

The plasmacytoid variant, notable for its discohesive growth 
pattern and frequent loss of E-cadherin due to CDH1 mutations, is 
often included within the basal/squamous category because of its 
similarly aggressive nature and poor prognosis (34, 35). 

Emerging research has shown that basal tumors might 
particularly benefit from immunotherapy, especially with immune 
checkpoint inhibitors. For example, atezolizumab, a PD-L1 
inhibitor, has been shown to be effective in MIBC cases 
expressing PD-L1, offering a promising therapeutic approach in 
basal subtypes (64). 

The basal subtype frequently expresses EGFR and sometimes 
HER2, making it a candidate for EGFR-targeted therapies. 
Lapatinib, a dual EGFR/HER2 inhibitor, is being explored for its 
potential in treating basal MIBC, especially in tumors with HER2 
overexpression or EGFR activation (64). 

Although lapatinib is more commonly used in breast cancer, its 
application in bladder cancer, particularly for EGFR-positive basal 
subtypes, is being investigated in clinical trials (64). Another promising 
area of research for basal MIBC involves STAT3 inhibitors. These 
drugs target the STAT3 signaling pathway, which is involved in tumor 
progression and immune evasion. Although STAT3 inhibitors are still 
experimental and not yet available as standard treatment, early clinical 
studies show potential for these inhibitors in basal tumors that rely on 
the STAT3 pathway (65). 

Thus, the combination of platinum-based chemotherapy, 
immune checkpoint inhibitors, and targeted therapies like EGFR 
inhibitors offers a multifaceted approach to treating the aggressive 
basal/squamous subtype of MIBC (64, 65). 
5.3 Neuronal subtype 

The neuronal subtype is the most aggressive molecular subtype of 
MIBC, exhibiting molecular and clinical characteristics similar to 
neuroendocrine tumors. This subtype is typically associated with the 
worst prognosis among all molecular classifications and necessitates 
highly specialized treatment approaches (58, 66). Neuronal subtype 
tumors express markers associated with neuroendocrine 
differentiation, such as SOX2, synaptophysin, and chromogranin A, 
which are involved in neurogenesis regulation and are commonly 
observed in small-cell neuroendocrine carcinomas. 
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Genomic studies reveal frequent alterations in TP53, RB1, and 
MYC pathways, driving the rapid proliferation and aggressive 
behavior of these tumors (58, 59). 

The neuronal subtype is highly sensitive to etoposide-cisplatin 
(EP) chemotherapy, a regimen often utilized for treating small-cell 
lung cancer. This chemotherapy approach has shown efficacy in 
controlling tumor growth in neuronal MIBC; however, despite 
aggressive treatment, the prognosis remains poor due to the high 
likelihood of early metastasis (59, 67). Emerging research is also 
evaluating immune checkpoint inhibitors for this subtype, but the 
heavily altered genome suggests variable immune responsiveness 
(10). While rare, neuroendocrine bladder cancers exhibit high 
sensitivity to immunotherapy due to unique molecular features, 
including elevated PD-L1 expression. 

Consequently, patients with neuroendocrine tumors may 
benefit from customized immunotherapy regimens, potentially 
combined with chemotherapy, given their aggressive behavior and 
rapid progression (68, 69). 

Among the MIBC molecular subtypes, the neuronal subtype has 
the worst prognosis, characterized by high mortality rates and poor 
overall survival. Most patients present with advanced-stage disease, 
and long-term survival remains limited even with aggressive 
chemotherapy. Early identification and treatment are crucial to 
prolong survival; however, the outlook for patients remains 
challenging (68–70). 
5.4 Stroma-rich subtype 

The stroma-rich subtype of MIBC is distinguished by a 
significant presence of stromal or mesenchymal components 
within the tumor microenvironment. This subtype represents a 
unique molecular category, influenced heavily by interactions 
between tumor cells and the surrounding stroma. Stroma-rich 
tumors exhibit high expression of mesenchymal markers, such as 
vimentin and smooth muscle actin, indicating epithelial-to
mesenchymal transition (EMT)—a process in which epithelial 
cells acquire fibroblast-like properties that enhance invasiveness 
and metastatic potential (58, 59). In addition to EMT markers, these 
tumors also express elevated levels of fibroblast activation markers 
and stromal-related genes, underscoring the crucial role of the 
stromal microenvironment in driving tumor behavior (71). 

Stroma-rich tumors are often resistant to standard chemotherapy, 
particularly platinum-based regimens. he dense stroma can act as a 
physical barrier, impeding drug penetration, while the mesenchymal 
signaling pathways active in these tumors contribute to intrinsic 
chemoresistance (26). However, the stromal component also 
suggests a potential sensitivity to immune checkpoint inhibitors. 
Research is ongoing to explore how the tumor stroma modulates 
immune responses, with a focus on therapies targeting the PD-1/PD
L1 axis that may be effective in such cases (72). 

The dense stromal content in stroma-rich tumors, characterized 
by a high abundance of fibroblasts and other stromal cells, poses 
significant challenges for immunotherapy. The stroma can serve as 
a physical and immunosuppressive barrier, restricting the 
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infiltration of immune cells, particularly T cells. High levels of 
transforming growth factor-beta (TGF-b) signaling in these tumors 
further promote an immunosuppressive environment, often 
confining immune cells to the periphery of the tumor and 
reducing the efficacy of immune checkpoint inhibitors (73–85). 
Consequently, combination therapies that target both stromal 
components and enhance immune cell infiltration are being 
actively investigated. For instance, clinical trials are assessing the 
efficacy of combining TGF-b inhibitors with checkpoint inhibitors 
to break down stromal barriers and facilitate immune cell access to 
the tumor (62, 76). 

The prognosis for stroma-rich tumors can be variable, but these 
tumors are generally associated with higher resistance to conventional 
therapies and an increased propensity for metastasis. Nonetheless, the 
potential for immunotherapy opens new therapeutic avenues, 
particularly for patients who have not responded to traditional 
chemotherapy (76, 77). 
 

6 Immunohistochemical markers for 
molecular subtyping 

The use of IHC markers in the molecular subtyping of MIBC is 
critical for diagnostic pathology and therapeutic decision-making. IHC 
offers a reliable and cost-effective method for identifying molecular 
subtypes, particularly in clinical settings where comprehensive genomic 
profiling may not be accessible. By targeting specific protein

expressions, IHC enables the classification of MIBC into subtypes 
such as Luminal, Basal, Neuronal, and Stroma/Immune-rich (Table 2). 
These subtypes have significant clinical implications, especially in 
predicting treatment response and survival outcomes (78). 
6.1 Luminal markers 

The luminal subtype of MIBC is predominantly characterized 
by markers that indicate urothelial differentiation. Essential IHC 
markers for identifying luminal tumors include GATA3, 
Cytokeratin 20 (CK20), and Uroplakin 2 (UPK2). While HER2 is 
more commonly associated with aggressive subtypes like 
micropapillary urothelial carcinoma, its role in standard luminal 
MIBC remains limited. 
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These markers are integral for both diagnosis and the development 
of targeted therapeutic strategies (58–60, 79, 80) (Table 3). 

GATA3 is a transcription factor that plays a critical role in the 
differentiation of urothelial cells. It is one of the most sensitive and 
specific markers for luminal bladder cancer, displaying nuclear 
staining in the majority of cases. Expression of GATA3 is observed 
in approximately 90% of luminal tumors, reliably indicating this 
subtype (78). Its nuclear staining pattern helps distinguish luminal 
tumors from other subtypes. KRT20 is an epithelial marker associated 
with luminal cell differentiation and typically exhibits cytoplasmic 
staining. It is highly prevalent in luminal MIBC, making it a valuable 
marker alongside GATA3 for identifying luminal tumors. While 
KRT20 is commonly used as a marker, evidence supporting its role 
in predicting response to neoadjuvant chemotherapy is limited, and 
further studies are required to clarify its prognostic value (81). UPK2, 
a transmembrane protein integral to the urothelial umbrella cell layer, 
presents a membranous staining pattern in luminal bladder cancer. 
This marker is highly specific to urothelial cells, strengthening the 
classification of tumors as luminal. UPK2, along with GATA3 and 
KRT20, provides a robust IHC panel to identify luminal tumors when 
molecular testing is unavailable or impractical (78, 81). 

HER2 overexpression and/or amplification is observed more 
frequently in aggressive subtypes of bladder cancer, such as 
micropapillary urothelial carcinoma, which is known for its 
aggressive behavior and poor prognosis. HER2 assessment in 
bladder cancer is conducted similarly to breast cancer, utilizing 
IHC to evaluate protein overexpression and fluorescence in situ 
hybridization (FISH) for gene amplification. HER2-targeted 
therapies may benefit patients with micropapillary bladder cancer, 
but its relevance in standard luminal subtypes is less clear (82). In 
micropapillary cases, determining HER2 status can assist in 
selecting targeted treatments, potentially improving outcomes for 
affected patients (83). 
6.2 Basal markers 

The expression of basal markers, such as KRT5/6, KRT14, and 
p63, has been associated with an enhanced response to NAC, 
particularly with platinum-based regimens. However, recent 
research indicates that the response to NAC in basal tumors may 
also depend on other factors, such as the tumor’s molecular profile 
TABLE 2 Molecular subtypes of muscle-invasive bladder cancer. 

Molecular 
Subtype 

Characteristics Prognosis Therapeutic Implications 

Luminal Urothelial differentiation, FGFR3 mutations; 
markers include GATA3, KRT20. 

Generally better; lower recurrence 
and metastasis. 

Potential candidates for FGFR inhibitors; less 
responsive to NAC. 

Basal/Squamou s Basal cell markers (KRT5/6, KRT14); TP53 and 
RB1 mutations common 

Poorer overall survival, higher 
recurrence and metastasis rates. 

Good response to platinum-based NAC; research into 
DNA damage repair inhibitors. 

Neuronal Neuroendocrine differentiation, SOX2, 
synaptophysin, chromogranin 

Worst prognosis, high mortality and 
early metastasis. 

Sensitive to etoposide-cisplatin chemotherapy; 
exploring immune checkpoint inhibitors. 

Stroma-Rich High stromal content, EMT markers (vimentin); 
mesenchymal transition 

Variable prognosis, often 
chemotherapy-resistant 

Potential for immunotherapy; PD- 1/PD-L1 inhibitors 
being investigated. 
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and the presence of immune markers like PD-L1. Basal tumors, 
which often express these markers, are more likely to achieve 
pathologic downstaging following NAC, leading to improved 
survival outcomes. IHC profiling can help identify patients most 
likely to benefit from NAC and more aggressive treatment 
approaches (59). 

Cytokeratins 5 and 6 are critical basal cell markers that exhibit 
strong cytoplasmic staining in basal/squamous subtype tumors. 
Their expression highlights the stem cell-like traits of basal 
tumors, which are often poorly differentiated and more 
aggressive. KRT5/6 expression correlates with shorter overall 
survival, as these tumors are frequently diagnosed at advanced 
stages with squamous differentiation (59, 83). 

KRT14 is another cytoplasmic basal cell marker that is 
frequently co-expressed with KRT5/6, reinforcing the basal/ 
squamous characteristics of MIBC. This marker underscores the 
clinically aggressive nature of basal-like tumors. Additionally, 
KRT14 expression is associated with poor prognosis, particularly 
in tumors co-expressing EGFR and p53, which further emphasize 
the aggressive phenotype (59, 83). 

In MIBC, p53 presents in one of three patterns: strong nuclear 
positivity, cytoplasmic accumulation, or a null phenotype. These 
patterns correspond to mutations that generally inactivate p53’s 
tumor-suppressive function, correlating with poor prognosis and 
resistance to cisplatin-based chemotherapy. 

The null phenotype, indicative of complete loss of p53, is linked 
to severe genomic instability. These p53 patterns, often seen 
alongside basal markers like KRT5/6, help identify high-risk 
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patients and support personalized treatment strategies. The 
presence of p53 mutations, particularly when associated with RAS 
pathway activation, is known to drive EMT in MIBC, promoting a 
basal phenotype and aggressive cancer cell behavior (84, 85). 

The nuclear protein p63 is a crucial tumor suppressor in basal 
cells and is fundamental in identifying the basal subtype of bladder 
cancer. It maintains stem cell-like properties in epithelial cells and is 
frequently co-expressed with KRT5/6 and KRT14. The nuclear 
expression pattern of p63 aligns with the aggressive clinical 
behavior commonly associated with basal markers (58, 59). 
6.3 Markers for neuronal subtype 

Neuroendocrine tumors expressing markers like SOX2, 
Synaptophysin, and Chromogranin A generally exhibit high 
aggressiveness and poor prognosis. These markers help guide 
treatment, often involving EP chemotherapy regimens similar to 
those used in small-cell lung cancer due to shared neuroendocrine 
characteristics. However, emerging treatments such as immune 
checkpoint inhibitors (anti-PD-1/PD-L1) are showing promise in 
improving outcomes for patients with neuroendocrine bladder 
cancers, particularly those with high levels of T cell infiltration (86, 
87). Early identification of these markers through IHC enables timely 
initiation of aggressive treatment, although long-term survival remains 
limited for patients with neuroendocrine bladder cancers (86, 87). 

SOX2 is a transcription factor crucial for maintaining 
pluripotency in stem cells, frequently demonstrating nuclear 
TABLE 3 Immunohistochemical markers for MIBC molecular subtype. 

Molecular 
Subtype 

Marker Interpretation criteria 

Lioninal GATA-3 Moderate to strong nuclear staining 

Lioninal CK20 Moderate cytoplasmic staining 

Lioninal UPK2 Moderate to strong membranous staining 

Basal/Squanous CK5/6 Moderate to strong cytoplasmic staining 

Basal/Squanous CK14 Moderate cytoplasmic staining 

Basal/Squanous p63 Strong ruslear staining 

Basal/Squanous 
E-Cadherin 
and CD138 

E-Cadherin absence of membranous staining and CD138 membranous positivity for plasmocytoid variant 

Basal/Squanous 
and Neuronal 

p53-mutated Three patterns: (1) Strong nuclear accumulation, (2) Complete absence or "rull-phenotype", (3) cytoplasmic staining 

Neuronal Synaptophysin Strong cytoplasmic staining 

Neuronal Chromogranin Strong cytoplasmic staining 

Neuronal SOX2 Moderate to strong nuclear staining 

Stroma- Rich/ 
Imprache-Rich 

PD-L1 
Tumor Proportion Score (TPS ≥1-5%) and Combined Positive Score (CPS ≥10); membranous staining in tumor and 

immune cells 

Stroma-Rich Vimentin Moderate to strong cytoplasmic staining 

Stroma-Rich CD8 Moderate to strong cytoplasmic staining 

Stroma-Rich FOXP3 Moderate to strong nuclear staining 
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staining in neuroendocrine tumors of the bladder. It is associated 
with aggressive clinical behavior and poor prognosis. In addition to 
promoting EMT, SOX2 has been implicated in therapeutic 
resistance and tumor plasticity, further enhancing tumor 
invasiveness (88–90). 

Synaptophysin is a membrane glycoprotein that exhibits 
cytoplasmic staining and is a reliable indicator of neuroendocrine 
differentiation. Its presence in bladder cancer suggests a neuronal 
subtype, typically seen in more aggressive forms, such as small-cell 
neuroendocrine carcinomas. 

Recently, the marker INSM1 has been identified as another 
promising marker for neuroendocrine tumors, potentially improving 
diagnostic accuracy when combined with synaptophysin and 
chromogranin A (91). Synaptophysin is instrumental in 
distinguishing neuroendocrine bladder cancers from other subtypes, 
aiding in accurate diagnosis (91). Chromogranin A, displaying 
cytoplasmic staining, is a classic marker for neuroendocrine cells. It 
is often co-expressed with Synaptophysin, confirming the 
neuroendocrine subtype. Elevated levels of Chromogranin A are 
linked to poor prognosis and reduced survival rates in 
neuroendocrine bladder cancer patients (91). 
6.4 Stroma/immune markers 

Stroma-rich tumors frequently show substantial resistance to 
chemotherapy due to the physical and biochemical barriers posed 
by their dense stromal components. However, the presence of 
markers like PD-L1 and CD8 suggests potential sensitivity to 
immune checkpoint inhibitors. This underscores the importance 
of early identification through IHC analysis, which can guide the 
selection of targeted therapies, particularly when conventional 
chemotherapy proves ineffective (89). These markers, particularly 
PD-L1 and CD8, are essential in selecting candidates for 
immunotherapy. However, recent studies indicate that PD-L1 
expression is not always a definitive predictor of response, an 
responses to immune checkpoint inhibitors can occur even in 
patients with low PD-L1 expression. 

Therefore, combining PD-L1 assessment with other markers, such 
as CD8 and tumor mutational burden (TMB), may provide a more 
reliable stratification method for immunotherapy candidates (89, 90). 

PD-L1 is expressed on tumor and immune cells within the 
tumor microenvironment, facilitating immune evasion by the 
tumor. High PD-L1 expression is linked to better responses to 
immune checkpoint inhibitors, such as anti-PD-1/PD-L1 therapies. 
However ,  the  corre lat ion  between  PD-L1  l eve ls  and  
immunotherapy response is not absolute, and other factors, such 
as CD8+ T cell infiltration, TMB, and IFN-g expression, are being 
increasingly used to predict response more accurately (90, 91). 

CD8 is a marker for cytotoxic T cells, indicating an active 
immune response within the tumor. High infiltration of CD8+ cells 
is associated with improved prognostic outcomes and enhanced 
responses to immunotherapy, as these cells directly target and 
eliminate cancer cells. Studies show that increased CD8+ T cell 
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presence correlates with favorable responses to treatments, 
including chemotherapy and immune checkpoint inhibitors. 
Furthermore, the ratio of CD8+ T cells to FOXP3+ regulatory T 
cells (Tregs) may serve as a more precise predictor of immunotherapy 
success than CD8+ cell infiltration alone (90, 91). 

FOXP3  is  a  marker  for  Tregs,  contributing  to  an  
immunosuppressive environment within the tumor. 

High FOXP3 expression is typically associated with poor prognosis 
due to its role in immune suppression, which may facilitate tumor 
growth and resistance to therapies. However, the CD8+ T cell to 
FOXP3+ Treg ratio offers additional insight into the tumor’s immune  
landscape and can be a more accurate predictor of therapeutic 
response. Recent research indicates that Tregs can have dual roles, 
promoting immune suppression in some contexts but potentially 
beneficial in others by regulating chronic inflammation (91–93). 

Vimentin is a key marker of mesenchymal cells and plays a 
critical role in EMT, which promotes tumor invasiveness. In 
stroma-rich MIBC, vimentin exhibits cytoplasmic staining and is 
associated with aggressive clinical behavior. Its expression 
highlights the stromal and mesenchymal characteristics of this 
subtype, suggesting a tumor environment conducive to increased 
invasiveness and metastatic potential. Additionally, EMT plasticity, 
including mesenchymal-to-epithelial transition (MET), is also 
involved in metastatic progression and could be a target for 
future therapeutic strategies (90, 91). 
7 Diagnostic approach in the absence 
of molecular profiling 

Molecular profiling methods, such as next-generation 
sequencing (NGS) and transcriptomic analysis, have significantly 
enhanced the diagnosis and treatment of MIBC. These technologies 
facilitate precise molecular subtyping, enabling personalized 
treatment strategies. In recent years, the cost of NGS and 
transcriptomic analyses has decreased, and their accessibility has 
improved in many clinical settings, including smaller hospitals and 
cancer centers. This has made these technologies increasingly 
available, reducing the limitations cited in the past due to high 
costs and the need for specialized infrastructure (26, 59). However, 
integrating histological examination with IHC markers still 
provides a cost-effective alternative that offers valuable insights 
into tumor biology and enables accurate subtyping without full 
molecular data (26, 59). 

The diagnostic process starts with a detailed histological 
examination, identifying structural characteristics of the tumor. 
For instance, papillary architecture often signifies luminal 
subtypes, which tend to have a favorable prognosis but are less 
responsive to chemotherapy. Luminal tumors, frequently harboring 
FGFR3 mutations, may benefit from FGFR-targeted therapies. 
Recent studies reinforce the efficacy of Erdafitinib, an FDA-
approved FGFR inhibitor for MIBC patients with FGFR3 
mutations, providing an alternative to traditional chemotherapy 
for patients with luminal tumors. Additionally, innovative 
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approaches are under investigation, such as bispecific FGFR3

antibodies that inhibit FGFR3 dimerization, which offer promise 
for patients resistant to tyrosine kinase inhibitors (TKIs) (94, 95). 

IHC markers further refine subtype confirmation. In luminal 
MIBC, markers like GATA3, KRT20, and UPK2 confirm 
urothelial differentiation, supporting a diagnostic pathway that 
may lead to alternative therapies rather than chemotherapy. In 
settings where molecular profiling techniques are not available, 
immunohistochemistry offers a valuable approach to approximate 
molecular subtypes and guide prognostic and therapeutic 
stratification. Basal/squamous tumors express markers such as 
KRT5/6, KRT14, and p63, indicating basal cell traits. These 
tumors, despite a poorer prognosis, respond well to NAC, which is 
critical for treatment planning (28). For basal/squamous subtypes, 
characterized by squamous differentiation or basal-like aggressive 
features, neoadjuvant chemotherapy (NAC) remains a primary 
choice due to high chemosensitivity. Immunotherapy is also 
increasingly considered, given that the immune environment in 
these tumors often favors immune response. STAT3 inhibitors 
represent an additional therapeutic option for this subtype, as the 
STAT3 pathway is frequently active in basal tumors, where it 
promotes growth and immune evasion. STAT3 inhibitors like 
TTI-101 and SH5–07 have shown efficacy in reducing tumor 
proliferation and enhancing cell death, potentially augmenting 
responses to existing therapies. Another STAT3 inhibitor, 
WP1066, has demonstrated effectiveness in reducing tumor 
invasiveness and improving immune response, making it 
promising for reducing tumor spread (96, 97). For tumors 
exhibiting neuroendocrine characteristics, the neuronal subtype 
can be identified by markers like SOX2, synaptophysin, and 
chromogranin. These tumors are highly malignant and typically 
require aggressive chemotherapy akin to regimens for small-cell lung 
cancer. Tumors with significant stromal or immune cell infiltration 
fall into the stroma/immune-rich subtype, often expressing PD-L1 
and CD8 markers, which highlight immune activity and suggest 
responsiveness to immune checkpoint inhibitors (91, 94). However, 
recent studies have shown that the effectiveness of immunotherapy is 
not solely dependent on PD-L1 expression, but also on other factors 
like T-cell cytosis and the TMB (91, 93). An algorithmic approach, 
incorporating histological and IHC findings, streamlines the 
subtyping process. Identifying histological features and using 
specific IHC markers help confirm the subtype and correlate with 
known clinical behaviors. For example, luminal tumors, with their 
susceptibility to FGFR mutations, may be better suited for FGFR 
inhibitors, whereas basal/squamous tumors necessitate aggressive 
treatments due to high chemotherapy responsiveness (59). 
8 Limitations of histology and 
immunohistochemistry in muscle-
invasive bladder cancer subtyping 

Histology and IHC provide practical and accessible means of 
subtyping MIBC, yet they have limitations that can impact 
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diagnostic accuracy and reliability. One primary challenge is 
intratumoral heterogeneity, as MIBC tumors often contain diverse 
cellular populations with varying molecular and histological traits. 
A biopsy sample may not fully capture this diversity, potentially 
leading to inaccurate molecular subtype identification. This 
sampling bias can affect treatment decisions, as the chosen 
therapy may not address the tumor’s full complexity. Recent 
advances in diagnostic methods, such as multiregional profiling 
and AI-assisted analysis, are being developed to mitigate these 
challenges (98, 99). 

Additionally, there is variability in IHC staining protocols across 
different laboratories due to differences in antibody selection, staining 
conditions, and interpretation criteria. Such inconsistencies can lead to 
divergent IHC results, with the same tumor potentially classified into 
different subtypes depending on the facility. New international 
guidelines aim to standardize IHC protocols to reduce these 
discrepancies. However, despite these guidelines, standardization 
remains a challenge in diverse clinical settings, where access to 
specific antibodies and optimized staining protocols may be limited, 
potentially leading to inconsistency in subtype classification (96, 97). 
This variability highlights the ongoing need for standardized protocols 
to improve diagnostic consistency. 

Inter-observer variability further complicates the interpretation 
of IHC results, as staining intensity and patterns are often subjective 
and heavily reliant on the pathologist’s expertise. This subjectivity 
introduces a significant source of inter-observer variability, where 
different pathologists may reach different conclusions based on the 
same data. To address this, AI-based tools are being integrated into 
pathology workflows to assist in standardizing interpretations and 
reducing subjectivity. Despite the promise of AI, challenges remain, 
as these tools still require extensive validation to ensure they can 
reliably replicate human judgment in diverse clinical scenarios. 
Such variability can significantly affect MIBC subtype classification 
and subsequent treatment choices (3, 100). 

While markers  such  as  GATA3 and  CK20  are frequently

utilized for identifying the luminal subgroup, and CK5/6 and 
CK14 for the basal subgroup, further validation is necessary to 
confirm their reliability in defining MIBC subgroups. Hybrid 
techniques combining IHC and molecular profiling have emerged 
as promising tools to enhance diagnostic accuracy by integrating 
histological features with genetic data. However, the integration of 
molecular data presents its own challenges, including the high costs 
associated with molecular profiling and the need for sophisticated 
infrastructure and technical expertise. Consequently, there remains 
a need for accessible yet accurate methods that can serve as practical 
alternatives to comprehensive molecular profiling, particularly in 
settings with limited resources (98). Finally, the reliance on IHC and 
histology for MIBC subtyping raises questions about bias in current 
methodologies, as these approaches may not capture the full 
spectrum of molecular heterogeneity present in tumors. Subtypes 
identified solely through IHC may overlook significant genetic and 
epigenetic variations, resulting in a less comprehensive 
understanding of tumor biology. As research continues to refine 
IHC panels and standardize protocols, there is a pressing need for 
more studies validating these markers across diverse patient 
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populations and clinical settings to minimize diagnostic 
discrepancies and optimize the use of IHC in MIBC subtyping. 
The ongoing effort to improve histology and IHC subtyping seeks to 
bolster the overall diagnostic reliability for MIBC, while providing 
clinicians with robust tools for accurate subtyping to facilitate 
better-informed, personalized treatment decisions even in the 
absence of molecular profiling (3). 
9 Future directions in muscle-invasive 
bladder cancer research and clinical 
applications 

Future research in muscle-invasive bladder cancer (MIBC) 
should prioritize the validation of novel biomarkers to improve 
subtyping accuracy and reduce diagnostic variability, emphasizing 
multicenter studies for broad applicability. Integrating genomic 
data with histology and immunohistochemistry (IHC) can 
address the limitations of single-modality diagnostics, allowing a 
more complete characterization of tumor heterogeneity and 
enabling targeted therapy. The identification of new therapeutic 
targets, such as mutations in FGFR3 and HER2, remains critical, 
particularly for aggressive subtypes where innovative treatments are 
needed. Developing hybrid diagnostic protocols that incorporate 
histology, IHC, and molecular data could enhance accessibility 
while maintaining accuracy, especially in settings without 
extensive molecular testing capabilities. 

Furthermore, AI and machine learning offer valuable tools for 
standardizing IHC interpretations and reducing observer bias, with 
potential to expand into real-time analysis that combines histological, 
IHC, and genomic information. Together, these advances aim to 
refine diagnostic precision, support personalized treatment decisions, 
and ultimately improve patient outcomes in MIBC management. 
10 Conclusions 

MIBC is not only histologically diverse, with subtypes like 
squamous differentiation and neuroendocrine variants, but also 
exhibits significant molecular heterogeneity, which adds 
complexity to its diagnosis and treatment (101–103). 

Advancements in genomic profiling have led to the 
identification of specific molecular subtypes—namely luminal, 
basal/squamous, neuronal, and stroma-rich. Each of these 
subtypes presents unique biological behaviors and sensitivities to 
different treatments, making molecular subtyping invaluable for 
personalizing therapeutic strategies. However, the widespread 
adoption of molecular profiling is hindered by its high costs and 
limited accessibility, particularly in settings with fewer resources. 
This limitation underscores the necessity for alternative diagnostic 
methods that can approximate molecular subtypes without relying 
on genomic technologies. 

Histopathology, combined with IHC markers, offers a feasible 
and cost-effective solution for predicting molecular subtypes in 
Frontiers in Oncology 13 
clinical practice. Key IHC markers, such as GATA3 for luminal 
subtypes and KRT5/6 and p63 for basal/squamous subtypes, enable 
clinicians to approximate the molecular characteristics of MIBC 
and tailor treatments accordingly. This approach not only broadens 
access to subtype-specific insights but also facilitates a more 
personalized approach to managing MIBC, especially where 
genomic profiling is not available. 

Incorporating histology and IHC into routine practice allows 
healthcare providers to make informed decisions about patient care 
based on accessible and reliable data. As more research validates the 
effectiveness of these markers for predicting molecular subtypes, 
histological and IHC methods are likely to become even more 
integral to the management of MIBC. In summary, while molecular 
profiling remains the gold standard, histology and IHC present a 
viable alternative that can enhance the precision of treatment 
strategies, offering a practical pathway to improved patient 
outcomes in diverse clinical settings. 
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