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axillary lymph node metastasis in
breast cancer and analysis of the
biological significance of
radiomic features
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1Oncology Center, Department of Radiology, Affiliated Hospital of Guangdong Medical University,
Zhanjiang, China, 2Department of Radiology, Jiaxing Hospital of Traditional Chinese Medicine
Affiliated to Zhejiang Chinese Medical University, Jiaxing, Zhejiang, China
Objectives: To explore the effectiveness of radiomics in predicting axillary lymph

node metastasis (ALNM) and the relationship between radiomics features

and genes.

Method: The 379 patients with breast cancer (186 ALNM-positive and 193 ALNM-

negative) recruited from three hospitals were divided into the training (n=224),

testing (n=96), and validation (n=59) cohorts. The Cancer Imaging Archive-The

Cancer Genome Atlas (TCIA-TCGA) group included 107 patients with breast

cancer. A total of 1888 intratumoral and peritumoral radiomics features were

extracted from DCE-MRI sequences. Radiomics models were established using a

multivariate regression algorithm for each region and their combinations. Clinical

and combined nomogram models integrating the Radscore with clinical risk

factors were constructed. The biological significance of the radiomic features

was analyzed by combining the TCIA database.

Results: The area under the ROC curve (AUC) of radiomics model in the external

validation was 0.760 (95% confidence interval [CI]: 0.626-0.874). The

performance of the nomogram combined model (AUC: 0.818; 95% CI:0.702-

0.916) surpassed those of both the radiomics and clinical models (AUC: 0.753;

95% CI: 0.630-0.869). Additionally, the DCA results demonstrated the usefulness

of the radiomics and nomogram model.

Conclusion: MRI-based radiomics has the potential to predict the ALNM status in

patients with invasive breast cancer. Additionally, radiogenomic analysis demonstrated

a correlation between radiomic features and the immune microenvironment.
KEYWORDS

axillary lymph node metastasis, radiomics, biological significance, cancer imaging
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1 Introduction

Breast cancer (BC) is the most prevalent cancer in women and

ranks as the second primary factor behind cancer-related fatalities

on a global scale (1). Axillary lymph node metastasis (ALNM)

considerably impacts the staging, diagnosis, treatment, and

prognosis of patients with BC. Nevertheless, the current

techniques employed to diagnose ALNM, such as axillary lymph

node dissection and sentinel lymph node biopsy, present potential

complications (2). Furthermore, imaging modalities such as

ultrasonography, mammography, and magnetic resonance

imaging (MRI) fail to accurately detect atypical ALNM, thus

frequently leading to unwarranted surgeries or biopsies and

impairing overall treatment effectiveness (3, 4).

Hence, innovative methods to precisely and noninvasively

predict ALNM should be explored. Among potential methods,

radiomics is a noninvasive predictive model that can reflect

biological cell- and molecular-level characteristics by analyzing

quantitative features in medical images (5). Radiomics-based

biomarkers have shown promising results in BC diagnosis and

prognosis assessment (6). However, these biomarkers are often

data-driven and lack biological explanations, considerably limiting

their clinical application (7).

Therefore, it is essential to investigate the biological

mechanisms underlying radiomic characteristics, specifically the

relationships between radiomic traits, genes, and the tumor

microenvironment. The integration of data from The Cancer

Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA),

which combines genetic information from TCGA with
Frontiers in Oncology 02
corresponding MR images from TCIA, is a valuable resource (8).

This integration can unveil the intricate relationship between

radiomic characteristics and genes, providing clinicians with

insights into the biological significance of radiomic features and

enhancing our understanding of BC at the molecular level.

Therefore, this study aimed to develop a radiomics model that

predicts the ALNM status in patients with BC using data from

multiple research centers. Furthermore, we combined this model

with the TCIA database to examine the relationship between

radiomic features, genes, and the tumor microenvironment.
2 Methods

2.1 Data sources

A total of 486 patients with BC were included in the study from

three hospitals and the TCGA-TCIA public databases. The patients

were divided into two groups based on their ALNM status: ALNM-

positive and ALNM-negative. The criteria for patient inclusion and

exclusion are provided in the Supplementary Material, and the

study flowchart can be found in Figure 1.

The following clinical information was collected from the three

hospitals: age, clinical T (cT) stage, enhancement characteristics

(even or uneven), maximum lesion diameter, lesion boundary,

lesion morphology, spiculation, rim enhancement, and MRI

assessment of ALNM status. The TCGA-TCIA database contains

mRNA expression data for patients with BC. The present study

received approval from three institutional review boards, which
FIGURE 1

Flowchart of patient inclusion and exclusion.
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waived the requirement for obtaining written informed consent

given the retrospective study design.

The multicenter study received approval from three

institutional review boards, which waived the requirement for

obtaining written informed consent given the retrospective study

design (study proctol: SL-2022–0369; PJKT2023-087; PJKT-

2024–009).
2.2 MRI acquisition

Dynamic contrast enhancement MRI (DCE-MRI) scans were

conducted using 1.5-T or 3.0-T scanners at the three institutions.

The DCE-MRI protocol involved injecting a contrast agent through

the median elbow vein at a dose of 0.2 mmol/kg using a high-

pressure syringe. The contrast agent was injected at a rate of 2.0 mL/

s, followed by the injection of 20 mL of physiological saline at the

same rate. Images were collected at six different time phases, with a

mask used in the first phase. The specific sequence parameters for

DCE-MRI can be found in the Supplementary Material.
2.3 Image segmentation

Considering the high clarity of the lesions in DCE-MRI phase III,

we exported these images from the picture archiving and

communication system in the Digital Imaging and Communications

in Medicine format. To reduce the impact of different voxel spacings

and reconstruction layer thicknesses on radiomic features, we

resampled all images using a linear interpolation algorithm before
Frontiers in Oncology 03
image segmentation. Two radiologists (L.Z.L. and L.Z.D.) segmented

the region of interest (ROI) along the boundaries of the tumors in each

two-dimensional MRI slice using the ITK-SNAP software. Each ROI

was evenly expanded by 5 mm using Python software. Further review

was conducted by a third radiologist (L.X.H.), any disagreements were

discussed, and a consensus was reached.

Resegmentation was performed in a random selection of 30% of

the cases after 1 month, and the stability of the delineated ROIs was

evaluated using the intraclass correlation coefficient (ICC). An ICC

>0.75 indicated high repeatability and consistency of the

ROI segmentation.
2.4 Radiomic feature extraction and
selection

The radiomics workflow used in this study is shown in Figure 2.

The patients were divided into four cohorts: a training cohort (70%

of patients in centers 1 and 2, n=224), internal testing cohort (30%

of patients in centers 1 and 2, n=96), external validation cohort

(center 3, n=59), and a TCGA-TCIA cohort (n=107). The TCGA-

TCIA cohort included MR images of the patients and their

corresponding transcriptomic data (https://portal.gdc.cancer.gov/).

Two groups of radiomic features, including original, square, and

wavelet filtering, and a total of 1888 features were extracted using the

pyradiomics module in 3D-Slicer. The radiomic features were

standardized using the z-score algorithm for further analysis. To

mitigate the influence of redundant features on model development,

we initially employed the Mann-Whitney U test and correlation

analysis to minimize the dimensionality of the attributes within and
FIGURE 2

Radiomics analysis. (A, B) Tumor segmentation and radiomic feature extraction on magnetic resonance imaging (MRI) scans. (C) Feature selection
and radiomics model construction. (D) Association of radiomic features with gene signatures.
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adjacent to the tumor. Subsequently, the elastic network algorithm

was used to further filter radiomic attributes with predictive potential.

Finally, by employing the same elastic network algorithm, we

performed additional screening to obtain the combined radiomic

attributes encompassing the tumor and its surroundings.
2.5 Construction of the models and
comparison of the combined model with
manual diagnosis of ALNM

Clinical model: We performed univariate and multiple logistic

analyses to assess the significance of the associations between

clinical factors and ALNM outcomes and constructed a clinical

model based on these results.

Radiomics models: We also constructed radiomics models for

evaluating ALNM in BC based on intratumoral and combined

intratumoral and peritumoral radiomic features by multiple

machine learning algorithms.

Nomogram model: The features of the radiomics model with

the best predictive performance and linear combinations were

calculated using radiomics scores (Radscores). The combined

clinical risk factors with predictive values and Radscores were

determined using a logistic regression algorithm to build a

nomogram model. Specifically, scores were assigned to each

independent variable based on the magnitude of the partial

regression coefficients in the multifactor model, and the total

score was obtained by summing the scores of the independent

variables. This total score was then used to estimate the predictive

situation of lymph node metastasis in breast cancer. The clinical

advantages of clinical, radiomic, and nomogram models were

assessed using decision curve analysis (DCA).

We further compared the accuracy of the combined model in

diagnosing ALNM with radiologists’ assessment of ALNM on MR

images (MRI_ALNM model) to improve clinicians’ understanding

of the radiomics model’s assessment of ALNM.
2.6 Radiogenomic analysis of ALNM-
related low-risk and high-risk groups

To investigate the correlation between radiomic and genomic

features of BC, we downloaded RNA-seq data of 107 BC from the

TCGA database in January 2024 and calculated Radscore by

radiomics model. The patients in the TCIA dataset (n=107) were

divided into low-risk and high-risk groups based on their median of

Radscores. We used the “GSEA” package in R to detect differentially

expressed genes (DEGs) in the sequencing data of these two groups

of patients. To identify the signaling pathways associated with the

DEGs, we conducted gene set enrichment analysis (GSEA) using the

Gene Ontology (GO) database, with the corrected P-value threshold

set at <0.01. We performed a hierarchical cluster analysis to

investigate the functions of these pathways. To evaluate the

variance in immune cell infiltration between the predicted

ALNM-related low-risk and high-risk groups, we applied xCell,
Frontiers in Oncology 04
an analysis tool that utilizes gene expression data to estimate the

abundance of individual cell types in mixed cell populations (9).
2.7 Statistical analysis

R version 4.1.0 was utilized to perform statistical analysis and

generate plots. Various statistical tests were used in comparing the

data of the two cohorts. These tests included the unpaired Student’s

t-test, Mann-Whitney U test, chi-square test, and Fisher’s exact test.

To evaluate the validity of the radiomics, clinical, and combined

models, we calculated the area under the receiver operating

characteristic (ROC) and curves (AUCs) along with their

corresponding 95% confidence intervals (CIs). Unless stated

otherwise, statistical significance was considered when P < 0.05.
3 Results

3.1 Patient clinical characteristics

The ages of patients in the three medical centers and the TCIA

cohort ranged from 21 to 85 years. Among the patients from the

three medical centers, 186 (49%) and 193 (51%) were pathologically

confirmed to be ALNM-positive and ALNM-negative, respectively.

This information could not be used from the TCIA cohort. In the

training, internal testing, and external validation cohorts, ALNM-

positive BCs had a longer diameter, greater spiculation, and higher

T stage than those of ALNM-negative BCs (Table 1).
3.2 Performance of the ALNM prediction
models

Clinical model: The results showed that spiculation and cT stage

were separate factors that independently increased the risk of

ALNM (Table 2). A model using these factors was developed and

validated in a separate cohort. The assessment of the model’s

predictive ability yielded an AUC of 0.753 (95% CI: 0.650-0.865),

sensitivity of 0.926, specificity of 0.531, and accuracy of 0.712 in the

external validation cohort (Figure 3, Table 3).

Radiomics model: The Supplementary Material provides a

detailed overview of the radiomic features utilized in three

radiomics models: intratumoral and a combination of

intratumoral with peritumoral 5 mm. Among these models, the

intratumoral model exhibited an AUC value of 0.709 (95% CI:

0.551-0.838), indicating a sensitivity of 0.741 and a specificity of

0.562 in the external validation cohort (Table 4, Figure 4). The most

accurate predictive performance was achieved by the model that

merged intratumoral and peritumoral 5 mm features (XGBoost

algorithm) integrating all aspects of the performance of the model.

The external validation cohort displayed an AUC of 0.760 (95% CI:

0.626-0.874), accompanied by a sensitivity of 0.667 and a specificity

of 0.688 (Figure 5, Table 5). Furthermore, the TCIA cohort
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displayed an AUC of 0.722 (95% CI: 0.619-0.809), accompanied by

a sensitivity of 0.630 and a specificity of 0.717 (Figure 5d).

Nomogram model: Using multivariate regression analysis, a

nomogram model was created by integrating two risk factors

associated with ALNM, namely, spiculation and cT stage, along

with the Radscore. The nomogram model showed an AUC of

0.818 (95% CI: 0.706-0.904), sensitivity of 0.741, specificity of

0.625, and accuracy of 0.678 in the external validation cohort

(Figure 6, Table 3). The results of DCA shown in Figure 5b

suggest that the combined model may yield greater clinical

advantages compared to the radiomic and clinical models for

identifying ALNM.
3.3 Performance of the radiomics model
compared with that of radiologists

In the validation cohort, the MRI-ALNM model had an AUC of

0.659 (95%CI: 0.538-0.783), sensitivity of 0.630, and specificity of 0.688

(Figure 3, Table 3), which were lower than those of the combined

model. This result further demonstrated that radiomics models can

help improve the accuracy of ALNM assessments in clinical practice.
Frontiers in Oncology 05
3.4 Biological significance of radiomic
characteristics

The DEG analysis findings demonstrated a total of 225 DEGs,

with 116 upregulated and 109 downregulated genes identified in the

radiomics model for ALNM. This was observed in the comparison of

the predicted low- and high-risk groups (Figure 7a). Upon

conducting GO analysis, we discovered that the upregulated genes

in the ALNM-positive population, as predicted by the radiomics

model, exhibited significant enrichment in immune and

inflammatory signaling pathways. These pathways encompassed

immune cell activation and regulation of leukocyte chemical

tendencies (Figure 7b). Furthermore, the expression levels of B, T,

and natural killer cells were notably high in the anticipated high-risk

group for ALNM. This observation sheds light on the strong

correlation between the immune microenvironment of patients

with BC and ALNM. Consequently, the immune scores for

both groups were calculated, and immune infiltration was

comprehensively analyzed. The analysis results divulged substantial

disparities in various components of the immune microenvironment,

including plasma cells, Th2 cells, and Th1 cells, when comparing the

high- and low-risk ALNM groups (Figure 7c).
TABLE 1 Patient baseline.

Cohort (number, N)
External validation
cohort (N=59)

Internal Testing
cohort (N=96)

Training cohort (N=224)

Parameters Levels
ALNM-
negative
(N=32)

ALNM-
positive
(N=27)

P
value

ALNM-
negative
(N=48)

ALNM-
positive
(N=48)

p
value

ALNM-
negative
(N=113)

ALNM-
positive
(N=111)

P
value

Lesion boundary Clear 29 (90.6%) 24 (88.9%) 1.000 24 (50%) 27 (56.2%) .683 62 (54.9%) 67 (60.4%) .486

Unclear 3 (9.4%) 3 (11.1%) 24 (50%) 21 (43.8%) 51 (45.1%) 44 (39.6%)

Lesion
morphology

Regular 12 (37.5%) 3 (11.1%) .043 16 (33.3%) 13 (27.1%) .657 38 (33.6%) 34 (30.6%) .736

Irregular 20 (62.5%) 24 (88.9%) 32 (66.7%) 35 (72.9%) 75 (66.4%) 77 (69.4%)

Enhanced
pattern

Mass 30 (93.8%) 15 (55.6%) .002 36 (75%) 35 (72.9%) 1.000 79 (69.9%) 88 (79.3%) .145

Non_mass 2 (6.2%) 12 (44.4%) 12 (25%) 13 (27.1%) 34 (30.1%) 23 (20.7%)

Rim
enhancement

Without 22 (68.8%) 2 (7.4%) <.001 39 (81.2%) 32 (66.7%) .163 88 (77.9%) 80 (72.1%) .396

With 10 (31.2%) 25 (92.6%) 9 (18.8%) 16 (33.3%) 25 (22.1%) 31 (27.9%)

Enhancement
characteristic

Without 23 (71.9%) 21 (77.8%) .827 30 (62.5%) 19 (39.6%) .041 56 (49.6%) 48 (43.2%) .416

With 9 (28.1%) 6 (22.2%) 18 (37.5%) 29 (60.4%) 57 (50.4%) 63 (56.8%)

MR_ALNM Negative 22 (68.8%) 10 (37%) .030 41 (85.4%) 20 (41.7%) <.001 95 (84.1%) 54 (48.6%) <.001

Positive 10 (31.2%) 17 (63%) 7 (14.6%) 28 (58.3%) 18 (15.9%) 57 (51.4%)

cT T1-2 23 (71.9%) 14 (51.9%) .189 44 (91.7%) 34 (70.8%) .019 104 (92%) 89 (80.2%) .018

T3-4 9 (28.1%) 13 (48.1%) 4 (8.3%) 14 (29.2%) 9 (8%) 22 (19.8%)

Spiculation Without 26 (81.2%) 7 (25.9%) <.001 30 (62.5%) 18 (37.5%) .025 74 (65.5%) 53 (47.7%) .011

With 6 (18.8%) 20 (74.1%) 18 (37.5%) 30 (62.5%) 39 (34.5%) 58 (52.3%)

Age Mean ± SD 54.16 ± 10.72 51.63 ± 8.60 .329 49.12 ± 10.38 50.31 ± 12.32 .611
49.00 (41.00

to 59.00)
49.00 (43.00

to 55.00)
.785

Maximum lesion
diameter

Median
(IQR)

2.35 (1.85
to 3.90)

3.40 (2.60
to 5.35)

.007
2.30 (1.75
to 3.00)

2.80 (1.90
to 3.90)

.013
1.80 (1.40
to 2.60)

2.50 (1.80
to 3.45)

<.001
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4 Discussion

We developed a nomogram model as an innovative method for

the noninvasive prediction of ALNM. This model utilizes

intratumoral and peritumoral DCE-MRI radiomic features in
Frontiers in Oncology 06
conjunction with clinical and radiological features to predict the

lymph node status. To evaluate the objective performance of the

combined model, it was compared with the diagnostic efficacy of a

highly experienced radiologist for determining ALNM on breast

MR images. The findings revealed that the combined model

outperformed manual diagnostic ability in predicting nodal

status, with the highest level of predictive performance.

Furthermore, the relationship between radiomic characteristics,

genes, and tumor microenvironment was investigated using the

TCGA-TCIA database. This investigation aimed to enhance the

biological interpretability of the radiomics model.

Univariate and multiple logistic analyses showed that cT stage and

spiculation were independent risk factors for ALNM, which is

consistent with the results of previous studies. cT stage and

spiculation indicate that BC is more aggressive and prone to ALNM

(10–12). However, the performance of the clinical model constructed

based on these two risk factors was relatively low, indicating the limited

practical application value of this clinical model.

Our results demonstrated that the DCE-MRI-based radiomics

prediction model performed well. Using the radiomic features

extracted from DCE-MR images, we can perform a more accurate

analysis of the diagnosis and prognosis of BC in multiple dimensions,

including tumor hemodynamic characteristics, tissue heterogeneity,

and internal structure complexity (13–15). In addition, our model is

based on multicenter MRI data and showed a higher performance

than manual diagnosis, indicating that our model has good

generalization ability and clinical practicability.

Radiomic features around tumors have attracted increasing

attention in recent years. Sun et al. reported that ultrasound

radiomic features, including peritumoral regions, could improve

the performance of predictive models for ALNM in BC (16). Chen

et al. constructed a deep-learning model to predict sentinel lymph

node metastasis; their analysis of the prediction process revealed

that the model focused on areas within and around the tumor

(17). These studies highlight the significance of peritumoral

radiomic features that encapsulate a wealth of information on

the microenvironment and heterogeneity of BC (18). This
TABLE 2 Univariate and multivariate logistics analysis.

Dependent:
label

OR
(univariable)

OR
(multivariable)

Age Mean ± SD
0.99 (0.97-1.02,

p=.617)

Lesion boundary clear

unclear
0.77 (0.45-1.31,

p=.335)

Lesion
morphology

regular

unregular
1.44 (0.83-2.49,

p=.196)

Enhancement
pattern

mass

non_mass
0.61 (0.34-1.12,

p=.114)

Spiculation Without

With
2.49 (1.45-4.26,

p<.001)
2.53 (1.46-4.39,

p<.001)

Rim
enhancement

Without

With
1.57 (0.85-2.88,

p=.146)

Enhancement
characteristics

Without

With
1.61 (0.95-2.73,

p=.080)

cT stage T1-2

T3-4
2.99 (1.36-6.58,

p=.006)
3.09 (1.38-6.92,

p=.006)
SD, Standard Deviation.
FIGURE 3

Performance of the clinical, radiomics, and nomogram models in the training (a), internal testing (b), and external validation (c) cohorts.
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information is critical and should not be overlooked. Our results

showed that radiomics models combining intratumoral and

peritumoral 5 mm features had better predictive performance

than models constructed based on intratumoral features, further

confirming this observation. The Radscore of our radiomics model

successfully stratified the risk of ALNM-positive and ALNM-

negative patients, indicating that it is an effective biomarker. DCA

of the nomogram with a further combination of Radscore and

clinical factors showed superior performance, indicating that the
Frontiers in Oncology 07
nomogram is highly consistent with our data and has significant

clinical utility.

However, the investigations mentioned above concentrated

solely on the prognostic capability of radiomics models and did

not assess the biological mechanisms behind the research findings

(7). This disconnect between radiomic features and biological

significance inevitably limits the range of clinical applications.

Recent studies have demonstrated that radiomic feature

extraction can be combined with genetic analysis to create a more
TABLE 3 Performance of clinical, radiomics, nomgram and MR_ALNM model.

Cohort Model AUC (95% CI) Accuracy Sensitivity Specificity

Training cohort

Clinic.model 0.623 (0.555-0.692) 0.607 0.604 0.611

Radiomics.model 0.772 (0.711-0.833) 0.737 0.667 0.805

Combined.model 0.776 (0.715-0.836) 0.732 0.703 0.761

MRI_ALNM 0.677 (0.618-0.735) 0.679 0.514 0.841

Internal testing cohort

Clinic.model 0.693 (0.598-0.781) 0.656 0.75 0.562

Radiomics.model 0.706 (0.610-0.805) 0.646 0.646 0.646

Combined.model 0.728 (0.635-0.826) 0.656 0.729 0.583

MRI_ALNM 0.719 (0.630-0.796) 0.719 0.583 0.854

External validation cohort

Clinic.model 0.753 (0.630-0.869) 0.712 0.926 0.531

Radiomics.model 0.760 (0.626-0.874) 0.678 0.667 0.688

Combined.model 0.818 (0.702-0.916) 0.661 0.704 0.625

MRI_ALNM 0.659 (0.538-0.783) 0.661 0.63 0.688
TABLE 4 Performance of intratumor radiomics model.

Group Model AUC (95% CI) Accuracy Sensitivity Specificity

Training cohort LR 0.717 (0.654-0.799) 0.705 0.757 0.655

SVM 0.791 (0.734-0.856) 0.754 0.766 0.743

RF 0.883 (0.839-0.915) 0.79 0.784 0.796

KNN 0.754 (0.695-0.818) 0.696 0.73 0.664

XGBoost 0.762 (0.690-0.823) 0.71 0.685 0.735

Internal Testing cohort LR 0.602 (0.498-0.717) 0.583 0.75 0.417

SVM 0.592 (0.487-0.683) 0.583 0.708 0.458

RF 0.681 (0.564-0.772) 0.646 0.75 0.542

KNN 0.648 (0.554-0.745) 0.594 0.708 0.479

XGBoost 0.696 (0.595-0.797) 0.677 0.729 0.625

External validation cohort LR 0.750 (0.614-0.861) 0.61 0.222 0.938

SVM 0.519 (0.500-0.562) 0.458 0.571 0.433

RF 0.644 (0.479-0.778) 0.576 0.593 0.562

KNN 0.510 (0.375-0.655) 0.525 0.481 0.562

XGBoost 0.709 (0.551-0.838) 0.644 0.741 0.562
LR, Logistic Regression; KNN, K-Nearest Neighbors; XGBoost, EXtreme Gradient Boosting.
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comprehensive model for cancer characterization (18–20). This

multimodal approach helps clinicians understand radiomic

features, especially in conjunction with the resources provided by
Frontiers in Oncology 08
the TCIA. In our study, radiogenomic analysis combined with

TCIA data showed a high correlation between the Radscore and

genes involved in related immune/inflammatory pathways.
FIGURE 4

Receiver operating characteristic curves of intratumor radiomics models (multiple machine learning algorithms). (a) Training cohort; (b) internal
testing cohort; (c) external validation cohort.
FIGURE 5

Receiver operating characteristic (ROC) curves of intratumor radiomics models (multiple machine learning algorithms). (a) Training cohort;
(b) internal testing cohort; (c) external validation cohort. (d) ROC curves of Radscore model in TCIA cohort.
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Previous studies have described various immune cell

distributions, blood vessels, and extracellular matrices in the

intratumoral and peritumoral microenvironment of BC (20).

Changes in the immune microenvironment and the formation of

peritumoral microvessels may lead to tumor development and

metastasis (21, 22). Therefore, several immune and inflammatory

pathways related to ALNM have been used to predict BC lymph

node metastasis and therapeutic effects (23). Malignancies can

evade the immune system by various mechanisms, including

transforming macrophages induced by tumors, inactivating T
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cells, generating pathogenic antibodies from B cells, and

activating regulatory T cells to accelerate the colonization,

expansion, and spread of tumors in the lymph nodes (24, 25).

These findings confirm the bidirectional role of immune cells in

combating tumors and promoting lymph node metastasis in cancer

cells. According to Gu et al., BC has the potential to trigger a

remarkable elevation in the ratio and count of B cells prior to the

occurrence of lymph node metastasis. This, in turn, stimulates B

cells to produce disease-causing antibodies that specifically target

the tumor antigen HSPA4. Consequently, this mechanism
TABLE 5 Performance of intratumoral combined peritumoral radiomics models.

Cohort Model AUC (95% CI) Accuracy Sensitivity Specificity

Training cohort

LR 0.771 (0.708-0.831) 0.732 0.757 0.708

SVM 0.757 (0.692-0.820) 0.732 0.766 0.699

RF 0.862 (0.810-0.910) 0.808 0.739 0.876

KNN 0.749 (0.684-0.812) 0.696 0.667 0.726

XGBoost 0.772 (0.711-0.833) 0.737 0.667 0.805

Internal Testing cohort

LR 0.720 (0.627-0.817) 0.656 0.812 0.5

SVM 0.740 (0.647-0.831) 0.677 0.792 0.562

RF 0.720 (0.622-0.814) 0.688 0.75 0.625

KNN 0.703 (0.603-0.809) 0.656 0.688 0.625

XGBoost 0.706 (0.610-0.805) 0.667 0.646 0.688

External validation cohort

LR 0.780 (0.665-0.895) 0.61 0.222 0.938

SVM 0.738 (0.592-0.859) 0.661 0.704 0.625

RF 0.708 (0.577-0.835) 0.661 0.481 0.812

KNN 0.639 (0.491-0.781) 0.644 0.778 0.531

XGBoost 0.760 (0.626-0.874) 0.678 0.667 0.688

TCIA cohort XGBoost 0.722 (0.619-0.809) 0.673 0.63 0.717
LR, Logistic Regression; KNN, K-Nearest Neighbors; XGBoost, EXtreme Gradient Boosting.
FIGURE 6

(a) Nomogram for predicting axillary lymph node metastasis (ALNM). The nomogram combines the radiomics score (Radscore) with cT stage and
spiculation in the training cohort. The probability value for each patient with breast cancer with ALNM is marked on each axis. (b) Decision curve
analysis of the clinical, radiomics, and nomogram models.
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accelerates the process of lymph node metastasis in BC (26). The

present study showing the upregulation of B cells and some

regulatory T cells in the lymph node metastasis group is

consistent with previous reports. Xia et al. demonstrated that

radiomic characteristics not only mirror the genomic aspects of

tumors but also offer extensive information on the tumor

microenvironment, including variations in the immune

microenvironment and alterations in glucose metabolism (18, 27,

28). In our study, the integration of radiogenomic analysis with

TCIA data displayed a strong correlation between the radiomics

score and genes engaged in immune/inflammatory pathways that

are interconnected. Further analysis of immune infiltration

demonstrated noteworthy variations in immune indicators

present in the plasma, such as plasma cells, Th2 cells, and Th1

cells, amidst the ALNM high-risk and low-risk divisions. These

findings highlight the potential biological significance of radiomic

features within the tumor immune microenvironment. By

extrapolating from these outcomes, we hold the belief that

radiomic features have the potential to elucidate the underlying
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mechanism of ALNM in BC. This, in turn, can furnish a fresh

theoretical foundation for the individualized treatment of BC.
5 Limitations

This study’s limitations can be listed as follows: First, the

retrospective design inevitably introduces selection bias. Thus,

prospective cohort studies are needed for more comprehensive

investigations of the findings of the present study. Additionally, the

sample size of patients enrolled in this study was relatively small,

indicating the need for future research with larger sample sizes.

Moreover, more diverse patient population should be included in the

study to enhance the model’s applicability across different

demographics. Prospective studies are needed to validate the

models’ predictive power in real-world clinical settings. Finally,

relevant experimental validation data were lacking to support the

connection between radiomic features and the TCTA transcriptome;

thus, further research and comprehensive validation are needed.
FIGURE 7

Radiogenomics analysis for predicting axillary lymph node metastasis (ALNM) in the radiomics model. (a) Volcano plots of gene expression profile
data in The Cancer Imaging Archive (TCIA): analysis of differentially expressed genes (DEGs) between ALNM-positive and ALNM-negative groups. (b)
Gene set enrichment analysis of predicted DEGs based on the Gene Ontology database. (c) Violin plot of the results of the
immunoinfiltration analysis.
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6 Conclusions

In this study, we constructed a radiomics model based on

peritumoral and intratumoral features to predict BC ALNM,

which showed a strong generalization ability. Moreover, we

explored the biological significance of the radiomic characteristics

of patients in the TCIA cohort, providing more theoretical support

for the further clinical development of radiomics.
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