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1Faculty of Information Engineering and Automation, Kunming University of Science and Technology,
Kunming, China, 2Faculty of Life Science and Technology, Kunming University of Science and
Technology, Kunming, Yunnan, China
Lung cancer remains a leading cause of global cancer mortality, demanding

precise diagnostic tools for accurate subtype classification. This paper introduces

a novel Enhanced GraphSAGE (E-GraphSAGE) framework that integrates graph-

based deep learning (GBDL) with traditional image processing to classify lung

cancer subtypes—Adenocarcinoma (ACA), Squamous Cell Carcinoma (SCC), and

Benign Tissue (BNT)—from H&E-stained Whole-Slide Images (WSIs). Our

methodology leverages Gray-Level Co-occurrence Matrix (GLCM) features to

quantify tissue texture, constructs a Sparse Cosine Similarity Matrix (SCSM) to

model spatial relationships, and employs DeepWalk embeddings to capture

topological patterns. The E-GraphSAGE architecture optimizes neighborhood

aggregation, incorporates dropout regularization to mitigate overfitting, and

utilizes Principal Component Analysis (PCA) for dimensionality reduction,

ensuring computational efficiency without sacrificing diagnostic fidelity. The

model is validated on multicell Lymphocytic cancer classification of Diffuse

Large B-cell lymphoma (DLBCL), Follicular Lymphoma (FL) and Small

Lymphocytic Lymphoma (SLL), experimental results demonstrate superior

performance, achieving 96% training accuracy and 90% validation accuracy,

with an F1-score of 0.91 and AUC-ROC of 0.95 (DLBCL), 0.92 (FL), and 0.89 (SLL).

Comparative analysis against state-of-the-art models (GAT, GCN, ResNet-50,

ViT) reveals our framework’s dominance, attaining an overall accuracy of 0.90,

F1-score of 0.905, andmacro-average AUC-ROC of 0.93. While maintaining 25.7

sec/slide inference speed—significantly faster than competing methods. This

study advances computational pathology by unifying Graph Neural Networks

(GNN) with interpretable feature engineering, offering a scalable, efficient

solution for cancer subtype classification. The framework’s ability to model

multi-scale histopathological patterns—from cellular interactions to tissue

architecture—positions it as a promising tool for clinical decision support,

enhancing diagnostic precision and patient outcomes in hemato-pathology.
KEYWORDS

lung cancer subtype classification, graph-based representation learning, medical image

analysis, GraphSAGE and DeepWalk embeddings, image-based cancer subtype detection
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1 Introduction

Lung cancer remains one of the most lethal cancers globally,

responsible for approximately 1.8 million deaths each year (1). A

major contributing factor to this high mortality rate is the

prevalence of late-stage diagnoses (2). Current diagnostic

methods relying on manual pathological examination present

several critical challenges: time-consuming, inherently subjective,

and suffer from significant inter-observer variability (3). These

limitations underscore the demanding for developing automated,

high-precision computational tools to support pathologists in

clinical decision-making.

The diagnostic challenge becomes particularly complex when

distinguishing between the three key histological subtypes—ACA,

BNT and SCC and other carcinomas (e.g., neuroendocrine tumors)

—each exhibiting subtle but clinically significant morphological

differences. Recent advances in Machine Learning (ML) have

demonstrated remarkable potential in addressing these complex

classification problems, offering accurate and reproducible solutions

that augment traditional histopathological analysis. For instance,

Deep Learning (DL) models, such as residual networks, have

achieved high accuracy in differentiating lung ACA from SCC by

analyzing histopathological images (4). These computational

approaches are transforming cancer diagnostics by providing

objective, quantitative assessments of tissue architecture and

cellular morphology, complementing conventional microscopy-

based evaluation (5). Studies have further shown that ML-based

methods enhance diagnostic reproducibility by detecting subtle

morphological variations that may be overlooked in manual

examination (6).

The advancements in DL have demonstrated remarkable

success in Medical Image Analysis (MIA), particularly

Convolution Neural Networks (CNNs) for tumor detection (7).

Yet, CNNs face critical limitations in histopathology, where spatial

relationships between tissue regions such as glandular formations in

ACA or keratinized nests in SCC are diagnostically decisive but

poorly captured by grid-based convolutions (8). However, such

problems are being solved by nuclear feature extraction, that has

successfully addressed a wide range of pathology applications,

including nucleus segmentation, tissue segmentation, nuclei

categorization (9), tumor identification (10) and staging (11).

Traditional ML models, such as Support Vector Machines (SVM)

(12) and CNN (13), have been widely employed for this purpose.

However, these models often face challenges in effectively capturing

the complex spatial dependencies inherent in tissue samples, which

are crucial for accurate classification of complex structure of

pathology images.

In recent years, GNN is introducing new techniques to cope

with the complex structures like histopathology images when

classifying multi-class tissue structures (14). Specifically,

GraphSAGE, offer a promising alternative by modelling WSIs as

topological graphs, where nodes represent tissue patches and edges

encode structural dependencies (15). However, conventional GNNs

struggle with computational inefficiency and loss of fine-grained
Frontiers in Oncology 02
morphological details when processing large-scale histopathology

datasets (16).

To address these challenges, we propose an E-GraphSAGE

framework that synergizes traditional texture analysis with GBDL

for robust lung cancer subtyping. Our methodology introduces

three key innovations:
1. Multi-scale feature extraction using GLCM to quantify

tumor heterogeneity, followed by sparse graph

construction via SCSM, preserving only biologically

relevant tissue interactions.

2. Unsupervised DeepWalk embeddings to encode global tissue

architecture, E-GSAGE to discern diagnostically critical

patterns (e.g., ACA’s glandular disarray vs. SCC’s

keratin pearls).

3. Optimized neighborhood aggregation with dropout

regularization and PCA-based dimensionality reduction,

ensuring computational tractability without sacrificing

discriminative power.
Validated on the LC25000 dataset, our framework achieves

88.7% accuracy, outperforming state-of-the-art models, including

GAT (84.3%), GIN (82.6%), and CNNs (ResNet-50: 79.8%), while

reducing inference time by 21% compared to GATs.

This paper is organized as Section 2: Literature Review -

Reviews state-of-the-art lung cancer diagnosis using ML. Section

3: Methodology - Outlines the study’s methodology and dataset.

Section 4: Experimental Results and Discussion - Presents and

discusses the experimental results. Section 5: Conclusion – Provides

conclusion remarks. Section 6: Discussion: – Discusses the key

points. Section 7: Future Work - Discusses potential directions for

future research. Section 8: References - Lists all cited references.
2 Literature review

The evolution of computational pathology has transformed lung

cancer diagnosis, progressing from traditional histopathological

methods to advanced Artificial Intelligence (AI) techniques (17).

Initial studies established fundamental limitations in manual

pathology, demonstrating significant inter-observer variability

through rigorous statistical analysis. This work highlighted the

critical need for objective diagnostic methods, though it preceded

the digital pathology revolution (18). The subsequent development of

WSI technology, as characterized by introducing both opportunities

and challenges, particularly regarding the management of high-

resolution digital slides often exceeding 1GB in size (19). However,

further studies contextualized these technical challenges within

clinical practice, quantifying pathologists’ limited capacity (40–100

WSIs/day) (20). Early computational approaches employed

traditional ML techniques with mixed success. Histopathological

studies have achieved 90% accuracy in nucleus segmentation using

handcrafted features and SVMs, though their methods faltered with

complex tumor morphologies (21). This limitation became more
frontiersin.org
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apparent in subsequent studies which reported 82% accuracy in

epithelial tissue classification (22), while managed only 76%

accuracy in multi-class scenarios (23), revealing fundamental

challenges in handling tumor heterogeneity with conventional

approaches. The advent of DL marked a significant advancement,

Inception-v3 has achieved 97% classification accuracy (24). However,

these convolutional approaches showed critical limitations in

capturing tissue architecture (25) and a systematic evaluations of

spatial relationship modelling has been observed in histopathology

(26). These findings encouraged the development of graph-based

approaches better suited to histopathology’s inherent network-

like structures.

Subsequent adaptations for lung cancer successfully modelled

tumor-stroma interactions but faced practical limitations in

annotation requirements and computational efficiency, later

quantified (27). These challenges prompted the development of

hybrid architectures combining the strengths of multiple

approaches (28). Recent innovations have significantly advanced

the field by integrating CNN features with graph representations

(29), while the attention mechanisms is also incorporated to

improve interpretability (30). These studies enhanced classification

by 12% using DeepWalk embeddings, though memory constraints

limited applicability to small regions (31). Parallel developments in

clinical implementation have addressed practical barriers (32)

optimized computational efficiency, improved visualization for

pathologist validation, and established regulatory frameworks for

clinical adoption (33). The analysis of WSIs has particularly

benefited from these technological advancements, with DL models

now capable of processing these complex images more effectively.

While CNNs have demonstrated strong performance in various

classification tasks (34), their fixed grid structures often fail to

capture the graph-like organization of tissue samples (35). This

limitation has become increasingly apparent as researchers attempt

to scale these methods for large WSIs, facing challenges with both

computational demands and spatial relationship modelling (36).

Recently, GNN emerged as a particularly promising solution,

reporting 8% accuracy improvements over CNNs in breast cancer

classification using GraphSAGE (37). The GraphSAGE framework

(38) has shown particular promise for MIA applications, with its

inductive learning capability offering advantages for large-scale WSI

analysis. When Enhanced with dimensionality reduction techniques

like PCA, these approaches can effectively manage the high-

dimensional nature of pathological data while preserving

diagnostically relevant features (39). Current research continues

to bridge the gap between technical innovation and clinical utility.

Vision GNN architectures like ViG-UNet demonstrate how

specialized graph networks can improve medical image

segmentation (40), while dynamic filter applications optimize

region-specific processing in histopathological analysis (41). These

developments, building upon foundational work in Multiple

Instance Learning (MIL) (42) and Ensemble methods (43),

represent a convergence of computer vision and graph theory that

is particularly well-suited to the spatial complexity of

cancer pathology.
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The integration of graph-based methods with traditional image

processing techniques has proven especially valuable for capturing

local tissue patterns and structural relationships (44). Studies have

consistently shown that incorporating spatial context significantly

improves classification performance for cancer subtypes (45),

validating the importance of architectural approaches that can

model tissue organization at multiple scales. As the field

progresses, these technical advances are being increasingly

evaluated against clinical needs, with particular attention to

computational efficiency, interpretability, and seamless integration

into diagnostic workflows.
3 Methodology

This study presents a GBDL framework for classifying lung

cancer subtypes ACA, SCC, and BNT tissues from H&E-stained

WSIs. As depicted in Figure 1, the methodology integrates texture

feature extraction, graph construction to model spatial relationships

between tissue regions, unsupervised DeepWalk embeddings for

efficient node representation, and a supervised GraphSAGE to

optimizely classify cell level histopathology images. By combining

traditional image analysis with supervised and unsupervised GNNs,

the enhanced approach preserves critical tissue morphology while

reducing computational costs compared to conventional DL

methods, addressing key challenges in scalability and diagnostic

accuracy for large-scale WSIs.

The following steps outline the key components of

the methodology:
3.1 Data acquisition and pre-processing

For this study, we employ the LC25000 dataset (46), a

comprehensive collection of WSIs of lung tissue samples that

provides a robust foundation for our research on lung cancer

subtype classification. This dataset contains 25,000 high-quality

color images (768 × 768 pixels, JPEG format) distributed equally

across five classes, with 5,000 images per category. In alignment

with our research objectives focusing on ACA, BNT and SCC, we

utilize a subset of 15,000 images from these three clinically relevant

classes as shown in Figure 2.

The images undergo pre-processing steps, including

normalization and resizing, to standardize the input data for the

model. This may also involve color normalization to reduce

variability in staining across different samples.
3.2 Image patch extraction

To optimize computational efficiency and enhance feature

representation, the proposed model begins by dividing WSIs into

64×64-pixel patches using a systematic sliding-window approach as

depicted in (Equation 1).
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This partitioning strategy serves three primary purposes:

reducing memory requirements while maintaining diagnostically

important cellular and tissue-level features, enabling localized

feature extraction at histologically meaningful scales, and

establishing a graph structure where each patch represents a node

with edges denoting spatial relationships between adjacent tissue

regions. The 64×64 patch size was carefully selected through

empirical optimization to achieve an optimal balance between

capturing fine cellular details (at the 20-40mm scale) and

preserving broader tissue architecture, thereby closely mirroring

the analytical approach used by pathologists. The total number of
Frontiers in Oncology 04
patches is calculated using Equation 1, where the floor function

ensures complete coverage by discarding partial patches at image

boundaries, with H andW representing the height and width of the

WSI in pixels, and ⌊ H
ph ⌋ denoting height fixed patch and ⌊ W

ph ⌋  
showing width fixed patch size of 64 pixels. This graph-based

representation overcomes the limitations of traditional pixel-grid

methods by explicitly encoding topological relationships between

tissue components, significantly improving both computational

efficiency for large WSIs and biological relevance for cancer

subtyping tasks. The resulting graph structure forms the

foundation for subsequent feature aggregation and classification
FIGURE 2

S&E pathology images of three types of lung cancers.
FIGURE 1

E-GraphSAGE for classification of lung cancer subtypes.
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within the E-GraphSAGE framework, enabling more effective

analysis of histopathological images.

Total Patches = ⌊
H
ph

⌋� ⌊
W
ph

⌋   (1)
3.3 Feature extraction

To extract the features from these patches, various feature

extraction techniques, such as raw pixel intensity, Histogram of

Oriented Gradients (HOG) (47), Local Binary Patterns (LBP) (48),

color histograms, CNN LSTM based features (49), and wavelet

transforms (50), were evaluated for lung cancer subtype

classification, but each had limitations. Raw pixel intensities

lacked texture details, HOG missed fine-grained features, LBP was

noise-sensitive, color histograms were unreliable, and CNN-based

features required large datasets and were computationally intensive.

Wavelet transforms added complexity without improving accuracy.

However, when we quantify tissue patterns using GLCM (a

statistical method shown in Equation 2), that captures how often

pair of pixel intensities co-occur in a defined spatial relationship.

Therefore, each patch the GLCM features are computed at multiple

angles (0°, 45°, 90°, 135°) and derive five key texture properties:

Contrast: Measures intensity variations, highlighting tumor

heterogeneity. Homogeneity: Quantifies local uniformity,

distinguishing smooth vs. irregular tissue regions. Energy: Reflects

the uniformity of pixel pairs, indicating organized vs. chaotic tissue

structures. Correlation: Captures linear dependencies in pixel

intensities, useful for detecting structured growth patterns.

Dissimilarity: Similar to contrast but with linear weighting,

emphasizing subtle differences.

This automated feature extraction process facilitates

quantitative analysis of lung cancer histopathology, aiding in the
Frontiers in Oncology 05
differentiation of malignant and benign tissue types based on

textural characteristics. This approach serves as a foundational

step in computer-aided diagnosis (CAD) systems, where texture-

based features contribute to improved classification accuracy in

lung cancer detection. Unlike DL, GLCM features provide

interpretable and computationally efficient descriptors of tissue

morphology, making it suitable for medical applications where

explain ability is crucial.

GLCM(d,  0)(k,  l) =oM
p=1  oN

q=1(d(Ig (p, q)

= k) �  d(Ig(p + d cos(Q),  q + d sin (Q)) (2)

The given equation represents the calculation of the GLCM for

a specific distance d and angle Q. The GLCM is a statistical method

used to analyze texture by examining the spatial relationships

between pixel intensities. In Equation 2, the k and l denote

intensity values of two pixels in the image. The matrix GLCM(d,  

0)(k,   l) counts how frequently a pixel with intensity k occurs at a

distance d and angle Q from another pixel with intensity l. The

double summation iterates over all pixel coordinates (p, q) in the

image of size M×N. The Kronecker delta function d(·) acts as a

conditional indicator: it evaluates to 1 only if the intensity Ig(p, q) of

the reference pixel at (p, q) is equal to k, and the intensity of the

neighboring pixel at an offset d and angle Q is equal to l. If both

conditions are met, the count for the pair (k, l) is incremented.

The Figure 3 proves the computation of a GLCM from an image

patch. The left panel represents a 3×3 image patch with pixel

intensity values (1, 2, and 3), as depicted in Figure 3. The GLCM

(right panel) is calculated for a distance d=1 and angle q=0∘,
meaning each pixel is compared to its immediate right neighbor.

Rows and columns of the GLCM represent the intensity values of

the reference and neighboring pixels, respectively, and each cell

indicates the frequency of a particular intensity pair in the image

patch. For example, the value 2 in cell (3,3) indicates that the pair
FIGURE 3

Image patches converted to GLCM.
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(3,3) occurs twice. This process captures texture information by

analyzing spatial relationships between pixel intensities, essential

for extracting features like contrast, homogeneity, and correlation.
3.4 Distribution of features

Figure 4, represents the fundamental feature distributions that

enable robust classification of lung ACA, SCC, and BNT tissues

through graph-based learning. The numerical sector labels

correspond to specific spatial or feature dimensions within a

high-dimensional representation space, where each sector

potentially captures distinct histopathological characteristics. ACA

plotting likely occupies intermediate positions in this high-

dimensional manifold, reflecting its characteristic glandular

fragmentation and moderate architectural disorganization. This

would manifest computationally through balanced node degree

distributions in graph representations, capturing the partial

preservation of tissue structure amidst malignant transformation.

SCC plotting would cluster in distinct sectors due to its dense

keratinization and cellular pleomorphism, producing high local

clustering coefficients that mirror its tightly packed, abnormal cell

aggregates. BNT plotting would form compact, homogeneous
Frontiers in Oncology 06
clusters in specific sector ranges, corresponding to its preserved

alveolar architecture and regular cellular spacing. The sector-based

numerical organization implies a radial or circular feature mapping,

where angular positions may represent different feature types (e.g.,

texture, morphology) and radial distances indicate feature

magnitudes. The structural distribution of features clearly shows

how the GLCM features enables the GraphSAGE algorithm to

perform several critical functions
3.5 Sparse cosine similarity matrix

Following the features extraction of GLCM features, the SCSM

is introduced to formalize the spatial relationships among image

patches for graph-based learning. The SCSM constructs a graph

where each node represents an image patch encoded by its GLCM

feature vector xi ∈ R²⁵⁶, and edges are weighted by the pairwise

cosine similarity (Equation 3), retaining only values above a

threshold q=0.3. This yields an adjacency matrix A with 4–6%

density, effectively filtering noise and preserving biologically

meaningful connections between patches. The computational

implementation optimizes memory and efficiency by pre-

allocating storage for three key components: row indices (Source
FIGURE 4

Distribution of extracted feature.
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nodes of edges), column indices (Target nodes of edges), and the

similarity values (Edge weights or (cosine scores)) with a fixed

capacity (max_edges) to avoid dynamic resizing overhead.

This design ensures scalability by processing large datasets

in batches while maintaining critical spatial patterns. The

implementation of SCSM helps in memory efficient and enhanced

discriminative power and acts a bridge to the GNN (GraphSAGE) by

justifying how the SCSM converts raw features into a biologically

plausible, computationally tractable graph.

Cosine Similarity(i, j) =
Xi · Xj

∥Xi  ∥� ∥Xj ∥
(3)

The cosine similarity equation, measures the similarity between two

vectors by calculating the cosine of the angle between them.Here,Xi  · Xj

represents the dot product of vectors Xi  and Xj, which is the sum of the

element-wise products of their components. This dot product quantifies

the extent to which the vectors point in the same direction. The terms

Xi  and Xjdenote the Euclidean norms (or magnitudes) of the vectors,

computed as the square root of the sum of their squared components.

These norms serve as scaling factors, ensuring the similarity measure is

normalized and independent of the vectors’ magnitudes. The

denominator, Xi  and Xj, normalizes the dot product, confining the

result to the range ½−1   and   1�. A value of 1 indicates identical

vectors with the same direction, 0 signifies orthogonality (no

similarity), and -1 represents diametrically opposed vectors. This

metric is particularly useful in ML and data analysis for comparing

the orientation of vectors while disregarding their scale, making it ideal

for applications like text similarity, recommendation systems, and image

retrieval. This approach preserves memory, improves model efficiency,

and saves significant spatial patterns by filtering low-similarity scores.

The threshold, adjustable to balance accuracy and memory usage,

ensures scalability by processing feature vectors in batches. The

resulting adjacency matrix enables the GCN to leverage spatial

relationships effectively, enhancing tissue classification accuracy.
3.6 DeepWalk embeddings and skip-gram
model

After successful processing of (SCSM), the next critical step

involves learning latent node representations that encode both local

and global topological relationships within the tissue architecture.

This is achieved through DeepWalk, a graph embedding technique

that leverages random walk sampling and the skip-gram model to

generate dense, low-dimensional vector representations for each

node (tissue patch). The implementation employs Node2Vec with

empirically optimized parameters (p = q = 1, walk length l = 20,

context size c = 10), enabling the model to capture diagnostically

relevant tissue structures across multiple scales (200mm–2mm) in

WSI’s. These parameters ensure that the random walks balance

breadth-first (BFS) and depth-first (DFS) exploration, preserving

both fine-grained cellular patterns and broader tissue organization.

The skip-gram model (Equation 4) trains these embeddings by

maximizing the probability of predicting context nodes v given a

central node u within a random walk sequence:
Frontiers in Oncology 07
max
f ou∈Vov∈W(u) log Pr (v ∥ f (u)) (4)

Where

V: The set of all nodes (tissue patches) in the graph.

W(u): The context window around node u, defining its

neighborhood in the random walk.

f(u): The embedding function mapping node u to its

latent representation.

Pr(v∣f(u)): The probability of observing context node v given u’s

embedding, computed via the softmax function in (Equation 5):

Pr(v ∥ f (u)) =
exp (f (u) :  f (v))

on∈Vexp(f (u) : f (n))
(5)

Where:

Numerator Dot product of embeddings for nodes u and v,

measuring their similarity.

Denominator Normalization term summing over all nodes,

ensuring probabilities sum to 1.

The integration of DeepWalk and skip-gram generates 128-

dimensional topological embeddings that preserve structural

relationships among tissue patches by analyzing node co-

occurrence patterns in random walks. These embeddings are

concatenated with the original 12-dimensional GLCM features,

creating a hybrid representation that captures both textural

(GLCM) and architectural (graph-based) tissue characteristics.

This approach significantly E-GraphSAGE neighborhood

aggregation, as the embeddings pre-cluster nodes according to

their histological organization evident in the distinct topological

patterns of SCC (star-like, C = 0.18 ± 0.03) and ACA (glandular

clusters, C = 0.32 ± 0.05).

Computationally, the method is highly efficient, processing

50,000 patches in 23.4 ± 2.1 minutes (a 42% speedup over

baseline GraphSAGE), while maintaining diagnostic relevance. By

unifying SCSM, topological embedding (DeepWalk), and feature

fusion, this pipeline ensures biologically interpretable and

computationally scalable graph representations, ultimately

improving classification accuracy for complex structures like lung

cancer subtypes. The seamless transition from graph sparsification

to embedding underscores the framework’s robustness for

histopathological analysis.
3.7 Dimensionality reduction using PCA

Following the DeepWalk and Skip-Gram, we employ PCA as a

critical pre-processing step shown in Figure 5. This dimensionality

reduction technique serves two primary purposes: it preserves the

most significant variance in the data while enabling effective

visualization of the high-dimensional feature space, where K-

means clustering clearly reveals distinct groupings corresponding

to the three lung cancer subtypes (SCC, ACA, and BNT). These

visual clusters, color-coded for intuitive interpretation (red for SCC,

green for ACA, and blue for BNT), provide valuable qualitative

validation that our embeddings successfully capture discriminative

patterns in both tissue architecture and cellular texture. This
frontiersin.org

https://doi.org/10.3389/fonc.2025.1546635
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Dad et al. 10.3389/fonc.2025.1546635
visualization step is particularly crucial for histopathological

analysis, as it allows pathologists to verify that the algorithm’s

learned representations align with known morphological

characteristics of each cancer subtype.
3.8 Graph convolution network
(GraphSAGE)

Our E-GraphSAGE framework represents a novel advancement

in GNN for computational pathology, uniquely combining global

topological learning with local feature aggregation to improve lung

cancer subtype classification. The architecture innovatively

integrates two complementary data representations: firstly, graph

structural information derived from SCSM, and secondly, rich node

embeddings generated through DeepWalk embeddings. This dual-

input design enables simultaneous capture of both macroscopic

tissue architecture patterns and microscopic cellular relationships

through an elegant neighborhood aggregation mechanism

(Equation 6), where node representations are iteratively refined

by weighted combinations of a node’s own features and those of its

sampled neighbors.

huk  =  s (W(k) :  AGGREGATE  h(k−1)v : vN(u)
n o� �

) (6)

Where huk : Hidden representation of node u at layer k : W(k) :

Trainable  weight  matrix   for   layer   k,   transforming   agregated   f

eatures AGGREGATE: Function (e.g., mean, max-pooling)

combining features from node u’s neighbors N(u)

The model employs a carefully designed with three convolution

layer SAGE architecture with multiple optimization strategies, ReLu

activation functions introduce necessary non-linearity while
Frontiers in Oncology 08
maintaining computational efficiency. Dropout regularization

(p=0.3) prevents overfitting to training data artifacts, Log-softmax

output transformation ensures stable probability estimation

(Equation 7). The success of this approach highlights the

importance of combining multiple scales of tissue representation

from cellular texture to architectural organization for accurate

cancer classification in digital pathology

log − softmax(zi) = log
ezi

oj   eZj

� �
(7)

Zi : Logit value for class i :

Denominator oj eZj  :  Normal i za t ion term summing

exponentials of all log probabilities sum to 1.
4 Experiments and results

This study evaluates the performance of an E-GraphSAGE

based model in classifying lung cancer subtypes— ACA, SCC,

and BNT — using a graph-based approach. Compared to State-

of-the-Art (SOTA) models like CNN, GAT, and GCN, the E-

GraphSAGE model achieved high classification performance with

an overall accuracy of 0.90, F1-scores of 0.90 for SCC and 0.98 for

BNT, and a ROC score of 0.89. While the model demonstrated

strong recall for SCC and BNT, reducing the risk of missed

diagnoses, its lower recall for ACA (0.75) indicates areas for

improvement to ensure better detection of all cancerous patches.

These results highlight the model’s effectiveness and its potential for

clinical applications.

As depicted in Figure 6, the evaluation of the model based on

the provided code reveals promising results in classifying lung

cancer subtypes: ACA, BNT, and SCC. The precision, recall and
FIGURE 5

Principal component analysis.
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F1 score metrics provide comprehensive insights into the model’s

performance and overall accuracy.

ROC curve visualization demonstrates the exceptional

performance of a GraphSAGE-based model in classifying lung

cancer subtypes using a multi-class, one-vs-rest approach

depicted in Figure 7. With a near-perfect macro-average AUC of
Frontiers in Oncology 09
0.97 and uniformly high AUC scores across all three classes, the

model exhibits outstanding discriminatory power, reliably

distinguishing between malignant subtypes and benign tissue

while maintaining precision in differentiating ACA from SCC, a

critical factor for treatment planning. The tight clustering of all

ROC curves near the top-left corner indicates minimal false
FIGURE 6

Lung cancer subtype classification metrics.
FIGURE 7

Multi-class ROC curve for GraphSAGE model.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1546635
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Dad et al. 10.3389/fonc.2025.1546635
positives and false negatives, suggesting strong potential for clinical

deployment in diagnostics. However, this idealized performance

may reflect controlled validation data, as real-world scenarios often

present challenges such as histological overlaps, particularly for

ACA, which typically shows lower recall due to its morphological

variability. For practical implementation, further validation on

diverse datasets and refinement of ACA-specific features would

ensure robustness, though the model’s current performance already

positions it as a highly accurate tool for lung cancer subtyping.

The Training and Validation Loss and Training and Validation

Accuracy over a series of epochs, with modifications to illustrate

minimized overfitting.
4.1 Training and validation loss

As depicted in Figure 8, the training loss (yellow line) and

validation loss (orange line), in the left plot, decrease steadily

throughout the epochs, reaching similarly low values by the end

of training. The minimal divergence between the two lines indicates

that the model is effectively learning from the training data without

overfitting. This consistency reflects the model’s ability to generalize

well, maintaining low error rates on both the training and

validation datasets.
4.2 Training and validation accuracy

The training and validation accuracy curves show strong

alignment, both stabilizing around 90%, indicating effective model

generalization with minimal overfitting. The slight accuracy gap

between training and validation data demonstrates robust learning

without excessive dependence on training-specific patterns.

Simultaneously, the consistent decrease in both training and

validation losses reflects successful optimization using gradient

descent methods like Adam, which minimizes the Negative Log-

Likelihood Loss (Equation 8) to iteratively improve model
Frontiers in Oncology 10
performance. This balanced behavior confirms the model’s

stability and predictive reliability across different data subsets.

Loss = −o
N

i=1
yi log(y ̂i) (8)

The model achieves optimal performance with training

accuracy plateauing at 90% and validation accuracy stabilizing at

88%, as shown in Figure 9. The close alignment between these

metrics demonstrates strong generalization capability with minimal

overfitting. This convergence indicates successful optimization,

where the architecture effectively balances learning capacity with

robust predictive performance across both training and validation

datasets. The narrow accuracy gap (just 2 percentage points) further

confirms the model’s stability and reliability in making accurate

predictions on unseen data.
4.2.1 Plotting of the E-GraphSAGE
Figure 10 demonstrates the powerful capabilities of E-

GraphSAGE, in accurately classifying three distinct lung cancer

subtypes ACA, BNT and SCC by simultaneously analyzing both

Network-level Topological Patterns (NLTP) and Node-Level

Molecular Features (NLMF). Unlike conventional methods that

examine these aspects separately, E-GraphSAGE integrates them

through an advanced message-passing framework, allowing it to

capture the complex interplay between cellular architecture and

biochemical signatures that define each cancer subtype. For (ACA),

the model identified a sparse, heterogeneous network structure with

scale-free connectivity patterns. Which clearly reflects the irregular

growth and chaotic angiogenesis typical of this aggressive cancer. In

contrast, BNT exhibited a highly uniform, densely interconnected

lattice structure, mirroring the organized architecture of healthy

lung tissue. Meanwhile, SCC displayed an intermediate, clustered

connectivity pattern, consistent with its characteristic keratinized

cell nests and more structured yet still abnormal tissue organization.

These distinct topological patterns were extracted through E-

GraphSAGE’s multi-hop neighborhood sampling and hierarchical
FIGURE 8

Training and validation accuracy epochs.
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feature aggregation, which preserve both local cellular relationships

and global tissue organization.

At the molecular level, E-GraphSAGE leveraged texture-based

features derived from GLCM to further refine classification. Key

discriminative metrics included contrast, homogeneity, and

dissimilarity, which exhibited clear differences across subtypes:

ACA showed high contrast (>50) and dissimilarity (>0.7),

reflecting its chaotic cellular arrangement; BNT displayed extreme

homogeneity (>0.9) and low energy (<0.2), confirming its uniform,

non-cancerous structure; and SCC demonstrated moderate values

(contrast ~30, homogeneity ~0.6), aligning with its semi-organized

pathology. These quantitative differences were propagated through

the graph via learned aggregation functions, ensuring that both
Frontiers in Oncology 11
feature and structural information contributed to the final

classification. The graph metrics such as edge density, clustering

coefficients, and node centrality provided additional separation

between subtypes. ACA’s low edge density (<0.3) confirmed its

sparse, irregular growth, while BNT’s high density (>0.8) reflected

healthy tissue’s tight cell-cell interactions. SCC fell in between

(~0.5), consistent with its partially organized clusters. When

visualized in latent space (e.g., via UMAP or t-SNE), the subtypes

formed well-separated clusters, proving that E-GraphSAGE’s

embeddings encode biologically meaningful distinctions.

By fusing graph topology with deep feature learning, E-

GraphSAGE clearly integrated Explainability in the architecture

that can easily be understandable and provide a framework that
FIGURE 9

Loss and accuracy.
FIGURE 10

Graph representation and plotting of classified features.
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outperformed traditional diagnostic approaches, achieving superior

accuracy while providing interpretable biological insights. For

instance, how ACA’s disorganized microvasculature differs from

SCC’s keratin pearls—critical distinctions for prognosis and

treatment. The model’s success underscores the importance of

integrating spatial relationships with molecular profiling in cancer

diagnostics, offering a more holistic and clinically actionable

understanding of tumor heterogeneity.

4.2.2 Validation on lymphocytic cancer dataset
We validated the E-GraphSAGE model on Lymphocytic cancer

subtype classification having three subtypes aggressive DLBCL,

indolent FL, and chronic SLL, require precise classification due to

their distinct treatment needs and prognostic implications.

GraphSAGE revolutionizes lymphoma diagnosis by analyzing

pathology images as cellular interaction graphs rather than pixel

grids, capturing critical spatial relationships in the tumor

microenvironment. As the Figure 8 clearly shows that this

approach achieves exceptional diagnostic accuracy, with AUC

scores of 0.95 for DLBCL, 0.92 for Follicular, and 0.89 for SLL,

along with 90% validation accuracy and a 20% reduction in

misclassification errors compared to traditional methods. By

preserving the architectural signatures of each subtype through

neighborhood aggregation and hierarchical learning, GraphSAGE

enables reliable, clinically actionable subtyping that directly

improves treatment decisions and patient outcomes.

The model’s robust performance is evidenced by its stable

training dynamics, showing parallel improvement in training and

validation metrics (loss decreasing to 0.17 and 0.10, accuracy rising
Frontiers in Oncology 12
to 0.94 and 0.90 respectively) with only a 4% gap between training

and validation accuracy as depicted in Figure 11. This demonstrates

strong generalization without overfitting, further validated by

consistent performance across datasets (F1-score 0.88 ± 0.03). E-

GraphSAGE unique ability to identify DLBCL’s aggressive patterns

(22% better than conventional methods) while accurately

distinguishing subtle differences in Follicular and SLL cases makes

it particularly valuable for clinical applications. The combination of

high ROC performance and reliable training curves confirms E-

GraphSAGE superiority in extracting diagnostically relevant

features from lymphoma pathology data, offering pathologists a

powerful tool for precise cancer classification.

4.2.3 ROC curve
E-GraphSAGE model demonstrates excellent performance in

classifying three B-cell lymphoma subtypes, achieving a near-

perfect macro-average AUC of 0.97 while maintaining 0.89

validation accuracy.

It shows strongest discrimination for aggressive DLBCL

(AUC=0.95) due to its distinct biological patterns, followed by FL

(AUC=0.92), with slightly lower but still robust performance for

SLL (AUC=0.89) which presents greater diagnostic challenges as

shown in Figure 12. The results highlight graph neural networks’

ability to capture disease-specific cellular interactions, particularly

for clearly distinguishable subtypes like DLBCL. While the high

AUC values indicate excellent probabilistic separation, the slightly

lower validation accuracy suggests potential for threshold

optimization in clinical applications. This study showcases graph-

based deep learning’s promise for lymphoma diagnosis, especially
FIGURE 11

Training and validation loss/accuracy of cancer lymphoma.
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for aggressive forms, while identifying opportunities to improve

classification of biologically similar subtypes through additional

data integration.
4.3 Comparative analysis with state-of-
the-art methods

Our E-GraphSAGE model establishes state-of-the-art

performance in lung cancer subtyping, achieving superior
Frontiers in Oncology 13
diagnostic metrics (accuracy: 0.887, F1: 0.892, AUC-ROC: 0.938)

to effectively capture both local histological patterns and global

tissue architectures (Table 1). The model demonstrates exceptional

balanced performance across all subtypes—ACA (precision: 0.91),

ACC (recall: 0.85), and BNT tissue (recall: 0.96)—while

maintaining significant computational efficiency (28.3 seconds per

slide), outperforming conventional CNNs by 5-9% in accuracy and

basic GraphSAGE by 7.5%. Comparative analysis reveals its

advantages over both graph-based alternatives (10.7% faster than

standard GraphSAGE) and self-supervised approaches (4.1% higher
FIGURE 12

Multi-class ROC curve for lymphoma classification.
TABLE 1 Performance evaluation of state-of-the-art approaches.

Model Accuracy Macro
F1

AUC-
ROC

Precision (ACA/
SCC/BNT)

Recall (ACA/
SCC/BNT)

Inference Time
(sec/slide)

Standard GraphSAGE 0.812 0.801 0.872 0.83/0.79/0.86 0.81/0.76/0.88 31.7

Graph Attention
Network (GAT)

0.843 0.832 0.891 0.85/0.82/0.89 0.83/0.80/0.91 35.1

Graph Isomorphism
Network (GIN)

0.826 0.819 0.882 0.84/0.80/0.87 0.81/0.78/0.89 39.2

ResNet-50 (CNN) 0.798 0.784 0.853 0.81/0.77/0.83 0.79/0.75/0.85 42.6

Vision Transformer (ViT) 0.832 0.821 0.902 0.84/0.81/0.88 0.82/0.80/0.90 38.9

DenseNet-121 0.809 0.793 0.864 0.82/0.78/0.85 0.80/0.77/0.86 45.2

EfficientNet-B4 0.818 0.803 0.871 0.83/0.79/0.86 0.81/0.78/0.87 40.7

MoCo v2 (SSL) 0.837 0.823 0.896 0.85/0.80/0.89 0.83/0.79/0.90 36.4

SimCLR (SSL) 0.841 0.828 0.899 0.85/0.81/0.90 0.83/0.80/0.91 37.8

Our Enhanced GraphSAGE 0.887 0.892 0.938 0.91/0.87/0.94 0.89/0.85/0.96 28.3
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AUC-ROC than ViT), positioning it as an optimal solution for

clinical deployment where diagnostic reliability and processing

speed are paramount. These results validate GNN, particularly

our enhanced architecture, as the premier methodology for

computational pathology applications requiring precise cancer

subtyping and practical workflow integration.

The study demonstrates that the E-GraphSAGE architecture

outperforms existing methods in accuracy, speed, and clinical

interpretability, making it a viable and superior tool for

automated lung cancer classification in diagnostic settings. Its

ability to handle overlapping cellular features while maintaining

computational efficiency marks a significant advancement in

computational histopathology.
5 Conclusion

This study introduces an E-GraphSAGE (E-GraphSAGE)

framework that significantly advances computational pathology for

lung cancer classification by innovatively integrating GBDL with

traditional image processing techniques. Our model sets new

standards in diagnostic performance, achieving exceptional accuracy

(0.887), macro F1-score (0.892), and AUC-ROC (0.938) while

maintaining remarkable computational efficiency (28.3 seconds per

slide). The strategic combination of GLCM features and DeepWalk

embeddings enables comprehensive analysis of both microscopic

cellular patterns and macroscopic tissue architecture, outperforming

conventional CNNs (ResNet-50, DenseNet-121) by 5-9% in accuracy

and surpassing other graph networks (GAT, GIN) in both performance

and speed. The model demonstrates particular clinical value through its

high precision in ACA detection (0.91) and strong recall for SCC (0.85),

effectively addressing critical diagnostic challenges in pulmonary

pathology. Beyond lung cancer, the framework shows excellent

generalization capabilities, achieving 89% validation accuracy on

Lymphoma cancer datasets, underscoring its potential as a versatile

diagnostic tool. While these results represent significant progress, we

acknowledge current limitations regarding dataset diversity and

computational requirements that needs further investigation through

validation studies. The model’s interpretable quantitative analysis and

scalable architecture nevertheless position it as a transformative

solution for precision oncology. Future research directions include

expanding validation to additional cancer types, optimizing real-time

performance for clinical integration, and developing enhanced

explainability features to facilitate pathologist-AI collaboration. This

work makes substantial contributions to the MIA and AI by delivering

a robust, clinically relevant framework that successfully bridges

advanced computational analysis with fundamental histopathological

principles, paving the way for more accurate and efficient cancer

diagnostics in routine practice.
6 Discussion

E-GraphSAGE model establishes new benchmarks in lung

cancer subtyping, achieving superior diagnostic accuracy (AUC-
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ROC: 0.938) and computational efficiency (28.3 seconds/slide). The

architecture outperforms CNNs (ResNet/DenseNet) by 5–9% in

accuracy by effectively modeling tissue-level structural relationships

critical for distinguishing histologically similar subtypes (e.g., ACA

vs. SCC). Key clinical strengths include high SCC recall (0.85) and

benign precision (0.96), addressing diagnostic challenges in

minimizing false positives while maintaining sensitivity. The 7.5%

improvement over standard GraphSAGE validates our multi-scale

feature aggregation and optimized neighborhood sampling.

Notably, the model’s inference speed (21% faster than GATs) and

robust performance position it as a practical solution for pathology

workflows, outperforming self-supervised methods in both

efficiency and subtype-specific accuracy. These advances

underscore GNNs as the premier approach for precise, deployable

computational pathology.
6.1 Future work

Future directions include incorporating multi-scale hierarchical

graphs to capture cellular and tissue-level structures, integrating

diverse features such as color, morphology, and molecular data, and

exploring advanced architectures like Graph Attention Networks

(GAT) or transformer-based GNNs for enhanced interpretability

and performance. Semi-supervised approaches could leverage

unlabeled data, reducing the need for extensive labelling, while

optimization techniques (e.g., pruning, quantization) could

adapt models for real-time use in resource-limited clinical

settings. Broader validation on diverse datasets would improve

generalizability, and extending the framework to other cancers

and pathologies could broaden its applicability. Additionally,

explain-ability tools like saliency maps could help pathologists

interpret model outputs, while uncertainty quantification could

boost prediction reliability. Modelling disease progression by

analyzing sequential WSIs could provide insights into treatment

response and disease evolution, advancing predictive oncology.

These enhancements collectively aim to bring GNN-based digital

pathology closer to clinical application, supporting accurate,

personalized care.
6.2 Limitations

E-GraphSAGE model demonstrates strong performance,

several limitations must be acknowledged. The study relies on the

LC25000 dataset, which may not capture the full spectrum of

lung cancer variations, potentially limiting generalizability.

Computational demands for WSI analysis could restrict

deployment in resource-constrained settings. The model’s

complexity may also hinder interpretability, a critical factor for

clinical adoption. Although dropout layers mitigate overfitting risks,

further validation across diverse cancer types and real-world clinical

data is needed to ensure robustness. These limitations underscore

the necessity for continued refinement to optimize the model’s

practical utility in pathology workflows.
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