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Chronic myeloid leukemia is one of the onco-hematologic diseases in which the

identification of disease markers and therapeutic advances have been particularly

impactful. Despite this, significant gaps remain in our understanding of disease

pathogenesis, progression, mechanisms of immune escape, and resistance to

standard therapies. Recently, advances in technology and biological knowledge

have drawn attention to several promising areas of research. Among these, leukemic

stem cells, miRNAs, extracellular vesicles, and additional BCR::ABL1 mutations, with

particular reference to the ASXL1 gene, have been the most extensively investigated.

In this review we summarized and critically commented the main findings on these

key topics over the past 5 years, evaluating their potential impact on patient

management and their role in the development of new therapeutic strategies.
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Introduction to chronic myeloid leukemia

The uncontrolled proliferation of myeloid cells at various stages of maturity, found in

both bone marrow (BM) and peripheral blood (PB), is the hallmark of chronic myeloid

leukemia (CML), a hematologic malignancy. Traditionally classified into three phases,

chronic (CP), accelerated (AP), and blastic phases (BP), CML has served as a pioneer in

numerous therapeutic advancements (1). The Philadelphia (Ph)-chromosome, or

translocation t (9,22), was identified as the cytogenetic hallmark of CML, and the BCR::

ABL1 fusion gene was later recognized as the central pathophysiological driver of the disease.

The 210 KDa chimeric protein encoded by BCR::ABL1 exhibits constitutively active tyrosine

kinase activity, stimulating multiple downstream signaling pathways in leukemic cells (2).

Specifically, the expression of this oncoprotein alters cell adhesion to stromal components

and the extracellular matrix, enhancing survival and inhibiting apoptosis (3). Furthermore, it

promotes the acquisition of self-renewal capacity and cellular transformation. The

cornerstone of modern CML therapy is the use of tyrosine kinase inhibitors (TKIs). Their

introduction has resulted in high remission rates and significantly improved patient survival.
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This paradigm shift has moved the clinical focus from patient salvage

to improved monitoring and quality of life (4–10). Among approved

TKIs, imatinib, dasatinib, nilotinib, and bosutinib are recommended

as frontline treatments for CML patients according to current

guidelines (11, 12). Conversely, individuals who have received two

or more TKI treatments in the past or who have the T315I mutation

are the target of third-generation TKI ponatinib and the more recent

asciminib (13, 14). Although CML therapy has achieved remarkable

progress, the disease still poses significant clinical challenges due to its

unpredictable progression and prognosis, as well as the highly

individualistic nature of the CP’s duration and response to

treatment. In fact, CML has recently become a subject of interest

for Artificial Intelligence (AI)- based approaches, which aim to

enhance prognostic accuracy and optimize prediction of treatment

response (15–17). Indeed, it is well recognized that the BCR::ABL1

oncoprotein contributes to the acquisition of additional genetic

lesions, likely as a result of increased genomic instability (18, 19).

The consequences of this clonal evolution include a higher risk of

relapse, poorer prognosis, resistance to TKI therapy, and,

unfortunately, progression to BP-CML (20, 21). For these reasons,

ongoing biological research aimed at further elucidating the

molecular mechanisms of CML remains essential (22). In the

present review, we focused on the study of Leukemic Stem Cells

(LSCs), microRNA (miRNA), Extracellular Vesicles (EVs) and

genomic mutations others than BCR::ABL1, with particular

emphasis on ASXL1 (Figure 1).
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CD26+LSCs, which are specific to CML, have garnered

considerable attention due to their persistence at diagnosis,

during treatment, and even in treatment-free remission (23).

They have been implicated in TKI resistance and disease relapse

following therapy (24–26). In parallel, the expression of various

miRNAs plays a role in the development, progression, and drug

resistance of CML. Additionally, EVs have been investigated for

their ability to modulate the microenvironment and immune

system and transfer leukemic elements like BCR::ABL1 to

recipient cells (27, 28). Finally, mutations in the ASXL1 gene,

particularly in genes involved in epigenetic regulation and DNA

repair, have been linked to treatment resistance and rapid disease

progression (29–31). These mutations are crucial in identifying

high-risk patients who may need alternative or intensified treatment

approaches (29, 32–35).
Material and methods

We performed an electronic search in the PubMed database to

find papers published between 2020 and 2025 and critically

evaluated their potential implications for the improvement of the

CML analysis and understanding. The search strategy included

terms such as “CD26” (or DPP-4, or DPPIV), “Leukemia Stem

Cells”, “miRNA”, “extracellular vesicles” (or EVs), “mutations” (or

ASXL1) in combination with “CML” or “Chronic myeloid
FIGURE 1

Schematic representation of the main biological characters investigated in the present review (Leukemic stem cells, mutations different from BCR::
ABL1, miRNA, and EVs) and their influences on disease progression (miRNA, microRNA; EVs, Extracellular Vesicles; CP-CML, Chronic Phase Chronic
Myeloid Leukemia; TKI, Tyrosine Kinase Inhibitor; BM, Bone Marrow; BC – CML, Blast Crisis or Blast Phase Chronic Myeloid Leukemia).
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leukemia”. In this review, we summarized the information extracted

from original studies with the aim of providing a comprehensive

overview of the role of these biological markers and their potential

clinical applications in the management of CML. Additionally, for

each section of the review, we specified the number of articles

found, those excluded for being off-topic or for other reasons, and

the number of articles ultimately analyzed.
Leukemic stem cells: lights and shadows

An important milestone in the timeline of CML research is

represented by the study of Leukemia stem cells (LSCs). In recent

years, several studies exploring the presence and persistence of LSCs

have been conducted (36, 37). As is now known, CML-LSCs reside

in the CD34+/CD38- Lin- cellular fraction and express the antigen

CD26+ (dipeptidyl peptidase IV or DPP-4), which is considered the

specific marker of the LSCs of CML. It is not expressed in the

normal hematopoietic stem cells or in LSCs of other hematological

diseases (38–41). Furthermore, retrospective flow cytometry studies

have demonstrated that CD26+LSCs are detectable in PB samples in

addition to BM aspirates, as previously documented (42). Moreover,

it has been demonstrated that all CML patients at diagnosis express

CD26+LSCs, with variable values, and that a fraction of these

residual cells has been measured during TKI treatment and

during TFR, without a clear correlation to molecular response

(43). Following these preliminary observations, Bocchia and

colleagues conducted prospective multicenter studies to better

understand the behavior of these residual cells during TKIs

treatment and during the TKI discontinuation. Prospective data

showed that PB CD26+LSCs are measurable during TKIs treatment

at the same time-points of molecular evaluations (at 3, 6, 12 and 24

months of TKI therapy), although their levels are drastically

reduced compared to baseline values at diagnosis. Consequently,

researchers investigated the role of the CD26+LSCs burden in PB at

diagnosis in relation to treatment response. Data obtained from the

“Prospective Flowers Study” suggested for the first time the

correlation between the bulk of CD26+LSCs at diagnosis and the

response to TKI treatment. Specifically, a lower number of CD26

+LSCs at diagnosis was associated with an optimal molecular

response at 3, 12, and 24 months (BCR::ABL1 <10% and <0.1%,

respectively) (44). In detail, in CML patients with optimal molecular

responses at 3 months (BCR::ABL1 <10%), the median CD26+LSCs

at diagnosis was 6,21 cells/µl, compared to 19,87 cells/µl of

suboptimal responders. In patients with an optimal molecular

response at 12 and 24 months (BCR::ABL1 <0.1%), the median

CD26+LSCs counts at diagnosis were 5,50 cells/µl and 6,05 cells/µl

respectively, compared to 16,87 cells/µl and 20,52 cells/µl of

suboptimal responders (44). Instead, at the time of TKI

withdrawal, approximately half of CML patients showed

detectable but lower level of PB CD26+LSCs, regardless of their

prior TKI treatment. No significant correlation was observed

between the persistence of PB CD26+LSCs and the relapse

rates (45).
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Although the CD26+LSCs expression has been fully

investigated in these last years, confirming their involvement in

TKI resistance and disease progression, the mechanisms supporting

LSCs survival remain unclear, and several questions are still

unanswered. How do these leukemic cells remain quiescent? Are

they able to elude the immune system? If so, by what strategies? Are

there other features of these cells that are not yet known?

We conducted an electronic search on PubMed to examine the

presence of recent publications addressing these unresolved issues.

We obtained 81 results in the timeframe from 2020 to 2025. Several

articles were rejected for being off-topic. After a careful selection

process, we included only a few scientific articles considered novel

and original. Two noteworthy recent research papers (published in

December 2024 and January 2025) investigated the cellular

heterogeneity of CML by using single-cell multiomics and single-

cell proteo-transcriptomic analysis. In the first study, data reveal

that antigens CD26 and CD35 play distinct roles in CML, and their

interaction helps to differentiate between LSCs and normal

hematopoietic stem cells (HSCs). CD26+CD35- cells are

identified as leukemic and express high levels of BCR::ABL1,

while CD26-CD35+ cells are healthy and have low or negative

levels of BCR::ABL1. This distinction is crucial for understanding

CML cellular heterogeneity and for developing targeted and

effective therapies (46). The second paper investigated the effects

of hydroxyurea (HU) treatment on stem and progenitor cells (SPC)

in early-phase CML, suggesting that initial HU treatment modifies

the characteristics of LSCs in CML and that studies on LSC and

progenitor populations in CML should take into account the effects

of HU therapy (47). Instead, another study demonstrated the

existence of a distinct cell phenotype, in a subgroup of CD34+

stem cells, known as very small embryonic-like stem cells (VSELs)

that are less sensitive to apoptosis than leukemic hematopoietic

stem cells (LHSCs) after imatinib treatment. The study revealed that

imatinib induces apoptosis and reduces proliferation and Ki67

mRNA expression more effectively in LHSCs than LVSELs.

Moreover, some miRNAs, such as miR-451, miR-126, and miR-

21, showed a significant increase in their expression in LVSELs

compared to LHSCs after imatinib therapy. Nevertheless, further

loss- or gain-of-function experiments in cell line models are

necessary to validate these findings (48). Wang and colleagues

explored the mechanism of survival of LSCs demonstrating their

high expression of the hypoxia-inducible factor 2a (HIF-2a), which

is responsible for controlling the metabolic state of the niche (49).

Regarding the survival ability, the role of YBX1 has been

investigated on CML cell lines and mouse models. The YBX1

expression is high in CML cells confirming its ability in

regulation of the expression of gene related to the apoptosis (50).

Dr. Scott conducted a study to demonstrate that the regulatory

programs of quiescent LSC in CP-CML are analogous to that of

embryonic stem cells; he displayed the role of wild type p53 in LSC

self-renewal. Experiments on cell lines and CML double transgenic

(DTG) mouse models showed that a p53 activation by the MDM2

inhibition could be considered an optimal strategy to inactivate

quiescent LSC in the presence of TKI (51).
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Regarding the role of the LSC niche in drug resistance, we

selected two interesting studies conducted by Valent P. and Shi R,

respectively. In the first, the authors demonstrated that osteoblasts

are a major site of niche-mediated LSC resistance against TKI and

identified PI3 kinase and mTOR as drugs capable of suppressing the

growth and viability of osteoblasts and/or other niche cells,

suggesting their use to neutralize the drug resistance of LSCs (52).

The second study, on the other hand, explored the role of

glycoprotein CD44 in microenvironmental communication,

involving cell survival, resistance and persistence (53). An

Argentinian study analyzed by NGS, the miRNome of the cellular

fraction CD34+CD38-CD26+ vs. HSC obtained from the same CP-

CML patients, comparing with stem cells from healthy donors.

Levels of miR-196a-5p were significantly higher in CD26+

compared to the CD26- fraction at diagnosis, and in silico

analysis showed an association with lipid metabolism and

haematopoiesis functions, suggesting the relevant role of miRNAs

in the cellular metabolism (54).

These data add novel interesting information to the study of

LSCs, confirming their heterogeneity and association with response

to treatment. However, several questions remain unanswered, and

additional studies are needed to fully elucidate the involvement of

LSCs in the TKI resistance. One hypothesis could be the ability of

these cells to ‘survive’ the immune system, which would partly

explain why CD26+ cells remain in circulation even many years

after patients have discontinued TKIs, resulting in disease relapse.

Although, at this moment, no data confirming these suggestions are

available. It remains to be investigated and understood how these

cells escape or elude the immune system. What mechanisms are

activated? Are other molecules involved?
Dysregulation of microRNA in CML: role in
progression of disease and drug resistance

miRNA are short and non-coding RNAs consisting of 20–25

nucleotides that bind the 3’untranslated (3’UTR) region of specific

mRNA target by regulating the gene expression at the post-

transcriptional level (55). In addition to their canonical role,

miRNAs can also function through non-canonical mechanisms

such as binding to non-3’ UTR regions, miRNA-mediated

activation, miRNA sponging, regulation of transcription, and

epigenetic modulation (56). The miRNA origin consists of a

series of processes foreseeing an initial conversion of primary

miRNA (pri-miRNA) to a miRNA precursor (pre-miRNA) by the

Drosha RNAse III enzyme in the nucleus. Subsequently, the pre-

miRNA is exported from nucleus to cytoplasm by exportin-5

protein and cleaved by another RNAse III enzyme (Dicer) in the

functional mature miRNA (57). miRNAs are present in body fluids

such as blood, serum and plasma (58).

The first miRNA was identified in 1993 in a clone of C. elegans

(59) and afterward numerous miRNAs have been discovered in

cellular mechanisms, confirming their important role. Several

studies demonstrated that miRNAs are involved in human

cancers, including hematological disease. Particularly, primary
Frontiers in Oncology 04
studies on cancer cells demonstrated a reduced expression of

mature miRNA, which should be associated with an upregulation

of the mRNA target, leading to aberrant gene expression (60).

Although over the years, several miRNAs associated with CML

and therefore with the BCR::ABL1 expression have been identified,

in this review we summarized the most recently studied miRNA

and focused on different roles in development, progression and

drug resistance, exploring their biological significance and potential

clinical impact.

We performed an electronic search to find papers in the

PubMed database, considering only the time frame 2020–

2025 years.

From the search a total of 133 publications have been obtained;

47 of them were off-topic and discarded. Editorials or case reports

were excluded. Publications describing the same miRNAs were

compared and merged. Of the remaining 86 publications, 21

manuscripts have been selected, based on the type (review article,

systematic article or original article) and free full access.

Due to their great variety, miRNAs can be divided into two large

categories based on their association with different biological states

or responses to TKIs treatment.

miRNAs associated with cell proliferation and apoptosis:
• miR-7-5p, miR-17-92, miR-21, miR-29a-3p, miR-152-3p,

miR-155-5p, miR-181, miR-221, miR-362-5p, miR-486-3p,

miR-486-5p: overexpression of these miRNAs in CD34+

CML cells causes their proliferation, inhibition of phases

G0/G1 of the cellular cycle, and induction of apoptosis

(61–66);

• miR-10a: functions as a tumor suppressor by regulating the

expression of upstream stimulatory factor 2 (USF2) in

CML. Reduced levels of miR-10a-5p are observed in

CD34+ cells from CML patients (67);

• miR-15a-5p: negatively regulates cell survival and

metastasis by targeting CXCL10 in CML (68);

• miR-30a: functions as an autophagy inhibitor by

downregulating the expression of autophagy proteins

ATG5 and Beclin-1. miR-30a mimic amplifies the

cytotoxicity generated by imatinib and promotes

apoptosis (61);

• miR-188-5p: acts as an oncomiRNA in CML pathogenesis

by upregulating BUB3 and SUMO2, promoting cell

proliferation and inhibiting apoptosis (69);

• miR-21, miR-23a, miR-29b, miR-122, miR-126, miR-138,

miR-140-5p, miR-142a-3p, miR-142a-5p, miR-146a, miR-

150, miR-153-3p, miR-181c, miR-196b, miR-199a-3p, miR-

203, miR-217, miR-223, miR-320a, miR-326, miR-342-5p,

miR-370-3p, miR-379-5p, miR-409-5p, miR-424-5p, miR-

451, miR-570-3p: are responsible for cell proliferation and

promoting apoptosis. Several of these miRNAs play a role in

regulating hematopoiesis or in immune response and act as

tumor suppressors by targeting genes involved in cell

proliferation (66, 70–72).
miRNAs Influenced by Tyrosine Kinase Inhibitors (TKIs):
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• miR-17-92: reduced in response to imatinib treatment

(65, 66);

• miR-181a: levels are elevated in imatinib-resistant cells;

inhibiting miR-181a may enhance the effectiveness of

imatinib and other TKIs (65, 66, 71);

• miR-342-5p: reduced expression of miR-342-5p contributes

to CML progression and imatinib resistance. Enhancing

miR-342-5p expression may improve response to imatinib

(65, 73);

• miR-21: reduced expression after 6 months of imatinib

(61, 74);

• miR-146a, miR-122, miR-126: higher expressed in

responder patients compared with non-responders after 3

and 6 months of imatinib treatment, respectively (61,

75, 76);

• miR-106a and miR-155: higher expressed in patients

resistant to TKI treatment and associated with higher

bone marrow microvessel density (MVD) (77);

• miR-203: higher in imatinib responder patients and lower

in non-responders; down-regulated in CML cells, miR-203

suppression leads to increased BCR::ABL1 activity.

Restoring miR-203 levels could help suppress BCR::ABL1

and induce apoptosis (78).
Table 1 summarizes the main dysregulated miRNA in CML.

Observations from these studies revealed the importance of

investigating the miRNA and particularly studying the correlation

between their expression and the status of the disease, to better

understand the potential significance of these molecules on the

development of the disease, but also their possible role as

therapeutic targets.

Recent studies promoted miRNA-based therapeutic

approaches, such as synthetic miRNA mimics or anti-miRNA

Oligonucleotides (AMOs). The first are artificially created

molecules replicating the function of naturally occurring

miRNAs. They can be used to restore the function of down-

regulated miRNAs, such as miR-203 and miR-342-5p, thereby

suppressing oncogenic pathways and promoting apoptosis (78,

80, 81). AMOs are short, synthetic strands of nucleotides

designed to bind to specific miRNAs and inhibit the function of

miRNAs that are up-regulated such as miR-155 and miR-181a,

reducing their oncogenic effects and enhancing the efficacy of

existing therapies (79, 80). Therefore, in light of these evidences,

the study of dysregulation of miRNAs plays a significant role in

CML and needs to be fully investigated to add furthers information

for developing new tools for the management of CML and the

improvement of patient outcomes.
Extracellular vesicles: what they shuttle
and which are the effects

Both eukaryotic and prokaryotic cells secrete extracellular

vesicles (EVs), a wide variety of cell-derived membrane structures

that include proteins, lipids, and nucleic acids. EVs have been
tiers in Oncology 05
identified in several biological fluids and are found to be secreted

by the majority of cell types. Based on their physical traits and

biogenesis mechanism, EVs can be broadly divided into two

subtypes: small-EVs and large-EVs. As previously indicated, it is

now well documented that EVs play a crucial role in mediating

intercellular communication and can transmit bioactive chemicals

from their original cell to another in both healthy and pathological

pathways (82). In fact, released EVs may interact with various cell

types both near and distant from the cell of origin, serving as

autocrine mediators for the releasing cells. They do indeed function
TABLE 1 Dysregulated miRNAs in CML.

miRNA Associated
with Cell Prolifera-
tion and Apoptosis

Function Ref.

miR-7-5p, miR-17-92, miR-
21, miR-29a-3p, miR-152-
3p, miR-155-5p, miR-181,
miR-221, miR-362-5p, miR-
486-3p, miR-486-5p

Promote cell proliferation
and apoptosis

(61–66)

miR-10a Tumor suppressor (67)

miR-15a-5p Regulates cell survival
and metastasis

(68)

miR-30a Inhibits autophagy,
promotes apoptosis

(61)

miR-188-5p Promotes cell proliferation,
inhibits apoptosis

(69)

miR-21, miR-23a, miR-29b,
miR-122, miR-126, miR-
138, miR-140-5p, miR-
142a-3p, miR-142a-5p,
miR-146a, miR-150, miR-
153-3p, miR-181c, miR-
196b, miR-199a-3p, miR-
203, miR-217, miR-223,
miR-320a, miR-326, miR-
342-5p, miR-370-3p, miR-
379-5p, miR-409-5p, miR-
424-5p, miR-451, miR-
570-3p

Regulate hematopoiesis,
immune response, act as

tumor suppressors

(60, 66– 70)

miRNAs Influenced by Tyrosine Kinase Inhibitors (TKIs)

miR-17-92 Reduced by imatinib (65, 66)

miR-181a Elevated in imatinib-
resistant cells

(65, 66, 71, 79)

miR-342-5p Reduced expression
contributes to

CML progression

(65, 73)

miR-21 Reduced after 6 months
of imatinib

(61, 74)

miR-146a, miR-122,
miR-126

Higher in responders
to imatinib

(61, 75, 76)

miR-106a, miR-155 Higher in TKI-
resistant patients

(77)

miR-203 Higher in imatinib
responders, lower in
non-responders

(78)
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as endocrine or paracrine mediators. By transporting a variety of

substances, including proteins, lipids, and the previously mentioned

nucleic acids, many of which are carefully sorted inside the vesicles,

EVs facilitate information flow between cells (28, 83). It can be

stated that phenotypic changes in the cell of origin are reflected in

the composition of the secreted EVs, both in terms of EV type and

cargoes, as it is evident that the composition of EVs is mainly

dependent on the status of the producer cells. Hematopoietic and

mesenchymal stem cells, myeloid-derived suppressor cells, and

endothelial cells (ECs) are the primary cells with which the

leukemic cell communicates in the context of CML through sEVs

(84, 85). Tumor-derived EVs are known to have an extensive impact

on the various receiving cells. In fact, they continue to play a vital

role as mediators in important cancer processes due to their effects

on cellular proliferation and resistance to apoptosis, promotion of

angiogenesis, transfer of mutations, and modification of the tumor

microenvironment (TME). This latter process, together with the

pro-leukemic polarization of the immune system by interacting

with cells both of the innate and of the adaptative immunity (e.g.

interacting with T-cell lymphocytes, included Treg, and Natural

killer cells), is one of the key mechanisms for immune escape by

leukemic cells. The pro-tumorigenic action mentioned above was

validated by recent research on EVs produced from CML (86, 87).

Additionally, it is known that they can transmit the BCR::ABL1

transcript, both with and without mutations associated with TKI-

resistance (27, 88–90).

In PubMed, 23 publications resulted between 2020 and 2025, 4

of which are out of topic. The search also brought out 1

commentary to the Editor (27)and 5 reviews (88, 91–94). Some of

these latter are focused on specific aspects or effects of EVs in CML,

underlying the importance of this topic for scientists involved in

CML biology and the intense research activity. Moreover, the first

application of artificial intelligence (AI) on the effect of exosomes in

a mouse xenograft model of CML was published in the considered

time frame (95). The exclusive application of Bayesian model to

estimate the effect of TKIs, EVs, and TKIs-exosomes mixture in

CML is of pivotal importance because this is the evidence of how

much info can be derived from EVs analysis and how many effects

they can drive in the cells. Among the published research articles,

the majority focused on the investigation of how the EVs cargoes

influence the response to therapy or may be used to boost the drugs’

efficacy, both when CML cells are the origin or the recipient ones

(96). In particular, it has been demonstrated that exosomes derived

from a natural killer cell line (NK92MI) are able to support anti-

leukemic effect and eliminate different in vitro models of

hematologic malignancies, including K562 as CML models.

Moreover, NK92MI derived exosomes resulted selective against

malignant cells by testing their lack of effect on healthy B-cell

(97). NK cells have been investigated in parallel in another study,

which explored the effect of EVs released by NK3.3 cell lines on

solid tumors and CML (K562) cell lines. NK3.3 derived EVs

resulted with a cytotoxic effect on K562 imatinib-resistant cells,

more than on sensitive K562. In addition, the authors demonstrated
Frontiers in Oncology 06
that NK3.3 EVs reduced the viability of in vitro leukemic stem cells

and their expression of leukemia promoting genes (98). On the

same in vitro model, another group previously demonstrated the

impact of vesicular miRNA in the setting of CML by evaluating

miR-711 transferred from K562 cell line to BM-MSCs. By

performing a co-cultured experiment, vesicular miR-711

decreased adhesive abilities in BM-MSCs by reducing the

expression of CD44 (99). In parallel, umbilical cord mesenchymal

stem cell-derived EVs have been observed as able to support the

apoptosis induced by imatinib in an in vitromodel, even in resistant

cell type, in association with miR-145a-5p/USP6 content. This latter

target glutaminase-1 ubiquitination. The results of this study

highlight the importance of glutaminase-1 ubiquitination and

vesicular miRNA in the setting of therapy resistance in leukemia

(100). EVs-mediated regulation of imatinib resistance in CML was

related with EVs miRNA cargoes also by another publication just

few months ago. This latter research has described the effects of

miR-629-5p shuttled by EVs released by imatinib-resistant cells and

administered to sensitive ones and observed the activation of the

SENP2/PI3K/AKT/mTOR pathway (101). Again, the results

confirm that vesicular miRNA are able to drive the TKIs-

resistance in CML in vitro models and support further

investigations, such as the induction of resistance to other

therapies. In 2023, an international study corroborated the

knowledge about vesicular miRNA impact on therapy-resistance

in animal leukemic models by demonstrating how the EVs shuttled

miRNA modulates different pathways including those involved in

ionizing radiation resistance (Figure 2) (102). Finally, EVs

shuttled miRNA are the topic of another important study

investigating exosomal miR-130a/b-3p and demonstrating its

capacity to support the development of a leukemia-favored

microenvironment by acting on bone marrow stromal cells, and

the subclonal evolution (103). Very similarly, in a leukemic mouse

model, leukemic EVs were reported to induce notable

transcriptome alterations in Tregs, inhibit mTOR-S6, and trigger

STAT5 signaling. This research demonstrates again how leukemic

EVs promote the formation of leukemia and immunosuppressive T

lymphocytes (104). This last evidence confirms what previously

demonstrated by the same group concerning the capability of CML

derived EVs to drive Treg lymphocytes via Foxp3 modulation (105).

Similarly, K562-derived exosomes were reported to alter human

primary cord blood-derived T cells, favoring a leukaemia-

promoting microenvironment. Again, NQO1, PD1, and FoxP3

and other genes involved in inhibiting T cells resulted over-

expressed after the exposure to CML-derived EVs. In conclusion,

these publications suggested that CML cells release EVs that may

drive the T cells fates toward malignant-favorable T cells instead of

normally activated T cells (106). All together the results published

in the last 5 years stressed the importance of EVs analysis in CML to

better understand the disease pathogenesis and clinical evolution.

Moreover, the data could drive further investigation for the

identification of new treatment strategy for myeloid neoplasms

targeting EVs cargoes or cell-to-cell communication.
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The dual role of BCR::ABL1 and non BCR::
ABL1 mutations: a focus on ASXL1

CML remains a major clinical challenge due to resistance to

TKIs, the cornerstone of therapy. The BCR::ABL1 fusion protein,

responsible for leukemic transformation, is the target of these TKIs,

but mutations in the ATP binding site and myristoyl pocket drive

resistance to both first line and novel treatments (107, 108).

ATP binding site mutations, particularly T315I, confer

resistance to first- and second-generation TKIs (imatinib,

dasatinib, nilotinib), necessitating third-generation inhibitors like

ponatinib. Other mutations (E255K/V, F359V/C, M351T, T315A,

V299L, Y253H) alter drug binding, reducing efficacy (109–111).

Recently, resistance mutations in the myristoyl pocket have

gained attention, particularly affecting asciminib, a novel allosteric

inhibitor (112). Asciminib prevents kinase activation by disrupting

BCR::ABL1-myriostate interactions, but mutations in this pocket

(e.g., F317L/V) impair its efficacy, adding complexity to resistance

mechanisms (113–115).

In parallel, additional somatic mutations, especially in ASXL1

(30–32, 116, 117), RUNX1 (118–121), TET2 (33, 122–127),

DNMT3A (33, 123, 124) and TP53 (33, 117, 118, 128),

significantly influence disease progression (119, 129) and

treatment resistance (130–132), even if it is still matter of

debate (133).

The prognostic significance of these mutations is complex and

sometimes contradictory. For instance, ASXL1mutations have been
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associated with worse event-free survival in chronic phase CML,

suggesting a negative impact on prognosis (70). Conversely, some

studies indicate that while these mutations are prevalent, their

direct influence on treatment outcomes may vary, highlighting

the need for further research to clarify their roles (134). Similarly,

mutations in RUNX1 and TP53 are often linked to disease

progression and poor clinical response, yet the extent of their

impact can differ between patients (135). This variability

underscores the importance of personalized genetic assessment in

CML management (136).

These mutations disrupt clonal evolution, creating a complex

molecular landscape that affects prognosis and complicates therapy,

particularly in advanced stages (30, 116, 118, 137). Many of these

mutations occur in genes involved in epigenetic modifications (31,

125, 128), chromatin remodeling (124, 138), and DNA repair (128,

129), which can lead to treatment resistance (118, 139, 140), rapid

disease transformation (127, 129, 137), and adverse clinical features

such as high leukocyte counts and splenomegaly (34, 129). These

acquired mutations, typically in advanced stages, correlate with

poor responses to TKIs and higher relapse rates (29, 30, 141).

Integrating genetic testing into routine management of CML is

crucial for improving risk stratification and identifying patients who

might benefit from alternative or more aggressive therapies (32, 35,

118, 142, 143).

Among these mutations, ASXL1 mutations play a particularly

prominent role in CML (30, 118, 121, 125), affecting chromatin

remodeling and epigenetic regulation (144), processes essential for
FIGURE 2

Schematic representation of the main impacts of up-regulated miRNAs, down-regulated miRNAs, and miRNAs shuttled by Extracellular Vesicles in
the specific context of Chronic Myeloid Leukemia (miRNA, microRNA; EVs, Extracellular Vesicles; CP, Chronic Phase; BC, Blast Crisis; TKI, Tyrosine
Kinase Inhibitor).
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maintaining normal cellular differentiation and function. ASXL1

mutations promote a myeloproliferative phenotype and accelerate

the transition to blast phase, complicating disease management (29,

31, 118, 122). Patients with ASXL1 mutations often present with

high-risk features such as elevated leukocyte counts, splenomegaly,

and resistance to TKIs, resulting from disruptions in transcriptional

repression and DNA methylation pathways (29, 30, 32, 122). Some

studies suggest that ASXL1 mutations increase leukemic cell self-

renewal and resistance to differentiation (128), promoting rapid

disease progression and reduced TKI efficacy (123). These

mutations are increasingly recognized as independent prognostic

markers, especially in patients whose disease does not respond well

to first-line TKI treatment (32, 118, 119, 139). Identifying ASXL1

mutations through genetic diagnostics can help in stratifying high-

risk patients and informing targeted therapies (122, 127).

A PubMed search resulted in 123 publications from 2020 to

2025, of which 100 were unrelated to CML. Thus, 23 articles were

selected for analysis, revealing several key themes regarding the role

of mutations in CML, with particular focus on ASXL1 mutations.

To summarize, the majority of studies analyzed highlight

ASXL1 mutations as significant prognostic biomarkers,

consistently linking them to worse event-free survival, increased

resistance to TKIs, and disease progression (30–32, 119, 140, 145).

Also in pediatric patients, germline mutations in genes such as

ASXL1 and NOTCH1 suggest a genetic predisposition that

accelerates leukemogenesis (127, 140, 146).

Advanced diagnostic techniques like whole-exome sequencing

have revealed a broader mutational landscape, highlighting the

potential for expanded diagnostic panels to improve clinical

management (117, 128). Complex clinical cases of resistant CML

further underscore the role of multiple mutations in driving disease

progression and influencing outcomes (119, 139, 141).
Discussion

This review provided a comprehensive overview of the latest

insights into CML biology, emphasizing critical advancements in

understanding its pathogenesis, progression, and therapeutic

resistance. While CML is generally viewed as a manageable

disease with survival rates comparable to the general population

(147), significant challenges persist, particularly for patients who

develop TKI resistance, relapse, or transition to advanced stages.

Among the key areas of investigation, LSCs stand out for their

persistence during treatment-free remission and their potential role

in disease relapse and resistance (148). Their quiescent nature and

ability to evade both therapeutic and immune responses make them

a central challenge in CML management, necessitating deeper

exploration into their survival mechanisms and resistance

pathways. Understanding how LSCs interact with their niche and

maintain dormancy could pave the way for targeted interventions to

eliminate these reservoirs of disease.
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EVs have emerged as pivotal mediators of intercellular

communication, influencing drug resistance, immune evasion,

and leukemogenesis. By transferring bioactive cargoes, such as

BCR::ABL1 transcripts and resistance-associated miRNAs, EVs

not only facilitate disease progression but also present a

promising avenue for therapeutic targeting. However, their

heterogeneity and the complexity of their cargoes, which reflect

the heterogeneity of patients’ and in vitro models’ (149), highlight

the need for advanced technologies to better characterize and

harness their potential (91).

Furthermore, mutations beyond the primary BCR::ABL1 fusion

gene, particularly in genes such as ASXL1, RUNX1, and TP53,

complicate the molecular landscape of CML. These mutations are

strongly linked to poor prognosis, accelerated disease progression,

and resistance to TKI therapy. Incorporating comprehensive

genetic profiling into routine clinical practice could enhance risk

stratification and enable the development of personalized treatment

strategies for high-risk patients (150).

Additionally, miRNAs play a dual role in CML, acting as

regulators of leukemogenesis, progression, and therapeutic

response. Dysregulated miRNAs contribute to resistance

mechanisms and promote leukemic stem cell survival. As they are

accessible in biological fluids and show potential as therapeutic

targets, miRNAs represent a promising area of focus. However, a

deeper understanding of their context-dependent roles is essential

to translate these findings into clinical applications.

Integrating these insights into CML biology is pivotal for

transforming the landscape of disease management. Future efforts

must prioritize the development of precision medicine approaches

that address the multifaceted challenges posed by LSCs, EVs,

mutations, and miRNAs. Nevertheless, we expect that in the near

future, analyses related to LSCs and genomic landscape will be more

easily translated into clinical practice than those related to EVs and

miRNAs. This is both taking into consideration the workflow they

require, the speed of interpretation of the resulting information, and

the possibility that these same elements may become targets for

further targeted therapies.

Advanced technologies, such as single-cell multiomics and

targeted therapeutics, could enable the elimination of minimal

residual disease and overcome therapy resistance. Achieving these

goals requires a multidisciplinary approach that leverages the latest

advancements in molecular biology, immunology, and clinical

practice. By embracing this integrative strategy, the goal of

complete disease eradication and improved patient outcomes

becomes increasingly attainable.
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114. Réa D, Hughes TP. Development of asciminib, a novel allosteric inhibitor of
BCR-ABL1. Crit Rev Oncol Hematol . (2022) 171:103580. doi: 10.1016/
j.critrevonc.2022.103580

115. Costa A, Scalzulli E, Bisegna ML, Breccia M. Asciminib in the treatment of
chronic myeloid leukemia in chronic phase. Future Oncol. (2025) 21(7):815–31.
doi: 10.1080/14796694.2025.2464494

116. Ernst T, Busch M, Rinke J, Ernst J, Haferlach C, Beck JF, et al. Frequent ASXL1
mutations in children and young adults with chronic myeloid leukemia. Leukemia.
(2018) 32:2046–9. doi: 10.1038/s41375-018-0157-2

117. Menezes J, Salgado RN, Acquadro F, Gómez-Ló Pez G, Carralero MC, Barroso
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