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Introduction: Hypo-fractionated radiotherapy (HFRT) regimens can induce

immune system activation and help to identify a therapeutic window after RT

by measuring cytotoxic T-cell concentration. Here, we summarise previous

preclinical and clinical studies on the effects of HFRT on the immune system,

both locally and systemically. We also investigate the existing data on the optimal

dose and fractionation scheme of HFRT to enhance local and distant anti-

tumour immunity.

Methods: A search was conducted using the PubMed, ScienceDirect, and

Google Scholar databases. The systematic review was conducted in

accordance with the PRISMA-DTA guidelines. Quality was assessed utilising the

Prediction model Risk Of Bias ASsessment Tool (PROBAST). Data from

publications that met quality criteria were grouped via (1) hypo-fractionated

radiotherapy, (2) CD8+ T-cells infiltration, (3), immune stimulation, and (4)

abscopal effect.

Results: After eligibility consideration, 12 studies (7 = preclinical and 5 = clinical)

were selected for this systematic review article. Ten of the 12 studies observed T-

cell infiltration into the tumour environment following HFRT. Moreover, six of 12

preclinical and clinical studies tested the HFRT schemes with several-day

intervals to control tumour growth. To assess the possible immunogenic

impact of HFRT on the immune system both locally and systemically, eight

previous studies examined the abscopal effect (AE) and response rates following

optimal HFRT schedules.

Conclusions: Existing literature suggests that HFRT with an optimal regimen can

induce the activation of T lymphocytes and break tumour tolerance while

simultaneously reducing the frequency of Tregs. The collected studies also

suggested that optimal dosages and fractions of HFRT induce an immune

response. However, it should be further explored to provide clinicians with
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information that would be valuable when making decisions regarding patient

care. This strategy may simplify protocols, increase cancer patients’ response rate

to treatment, lower costs, and lower their chance of toxicity and developing

immune-related side effects after receiving chemotherapy and immunotherapy.
KEYWORDS

hypo-fractionated radiotherapy, CD8+ T-cells infiltration, immune stimulation,
abscopal effect, clinical outcomes
1 Introduction

Radiation therapy (RT) is usually considered a “local” treatment

modality in cancer therapy because radiation can only directly

eradicate cancer cells within the radiation field. Because of recent

developments in image guidance and RT delivery methods, single

ablative high doses can be safely delivered to many tumour sites by

using stereotactic radiosurgery (SRS), stereotactic body RT (SBRT),

or stereotactic ablative body irradiation (SABR) (1–4). High doses

of radiation can be achieved by a single treatment (extreme oligo-

fractionation) or by 2 to 5 high-dose treatments (oligo-fractionation

or hypo-fractionation), serving as an alternative to conventional

daily low-dose fractionated treatments (<3 Gy) over several weeks

(5). Limited results showed improved efficacy compared with

traditional fractionated RT in managing advanced or metastatic

colorectal, liver, and non-small cell lung tumours (2). The outcome

can be comparable to surgery for resectable tumours, and SRS can

be applied to unresectable tumours (2, 6).

Hypo-fractionated RT (HFRT) is a modern radiation technique

that provides targeted high-dose irradiation to a tumour while

limiting damage to surrounding normal tissues (7–9). HFRT

directly kills tumour cells via DNA double-strand breaks and

propagates dose-dependent vascular damage and destruction of

the tumour microenvironment, causing secondary tumour cell

death (10–12). Massive tumour cell death because of DNA

damage and vascular injury functions can produce strong anti-

tumour immunity. Therefore, it has been reported that the anti-

tumour immune response plays a significant role in the outcome of

SABR (10–12). However, RT may result in poor outcomes in

patients with a weakened immune system, whereas it may

effectively eradicate tumours in patients with a more robust

immune system (13, 14).

It has been shown that RT may contribute to making tumours

visible to the immune system (15–19). After RT treatment, MHC-I

molecules display an increased pool of peptides for antigen

presentation (20). Dendritic cells (DCs) can capture tumour-

associated antigens (TAAs) released to the tumour periphery (21).

These DCs become active via toll-like receptor (TLRs) recognition,

in which endogenous danger signals emitted by dying tumour cells

are identified (21). The activation of DCs is characterised by the
02
upregulation of cell surface molecules involved in antigen

presentation and co-stimulation (e.g., CD80 and CD86) and the

release of pro-inflammatory cytokines (21). Thus, activated DCs

migrate to secondary lymphoid organs, where TAAs are presented

to CD4+ Th cells in the MHC-II context (21). Active, effector T-

cells may recirculate through the body and generate a tumour-

specific immune response in distant areas (21). Using this

mechanism, adaptive immune responses may help to eradicate

metastasis of tumours that do not express MHC-II. CD4+ T-cells

may help kill tumour cells through several mechanisms (21). One

such mechanism enables the development of tumour-specific CD8+

T-cells that recognise tumour peptides by MHC-I (21).

A growing body of evidence suggests that the systemic anti-

tumour effect in metastatic disease in response to high-dose local

radiation results in the regression of non-irradiated distant

tumour sites (22). This phenomenon, known as the abscopal

effect (AE) of radiation, was first described by RH Mole in 1953

(23). Multiple mechanisms have been proposed to cause the AE

(16, 24), such as the systemic secretion of specific cytokines and

chemokines, a systemic immune response against local tumour

antigens released, or local inflammation that can lead to a distant

effect (25). In any case, the hypothesis that the AE is immune-

mediated is becoming stronger. If the radiation dose is sufficient to

generate cell death, this can lead to the induction of the adaptive

immune response. RT directly elicits an innate immune

recognition of tumour by releasing danger signals”. Thus, these

signals can increase immune-mediated cell death, which promotes

the uptake of circulating tumour antigens by DCs via cross-

priming and ultimately leads to the activation of tumour-

specific T-cell response (26). The tumour-specific T-cells are

capable of recirculating throughout the body, detecting any

tumour cells (across multiple antigens) and eradicating them

(24, 27). Therefore, tumours that are even at a distance from the

irradiated field can be immunologically killed (24, 27). This is

described as an AE (24, 27, 28).

Here, we summarise previous preclinical and clinical studies on

the effects of hypo-fractionated RT (HFRT) on the immune system

locally and systemically. We also investigate the existing data on the

optimal dose and fractionation scheme of HFRT to enhance local

and distant anti-tumour immunity.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1546875
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Singh et al. 10.3389/fonc.2025.1546875
2 Materials and methods

2.1 Search strategy and study selection

This systematic review followed the PRISMA statement for

reporting systematic reviews and meta-analyses (29). A

comprehensive electronic search was conducted between March and

October 2024 using PubMed (https://pubmed.ncbi.nlm.nih.gov/),

ScienceDirect (https://www.sciencedirect.com/), and Google

Scholar (https://scholar.google.com.au/) databases for articles

published between 2010 and 2024. The studies investigated RT-

induced immune stimulation at optimal HFRT improves AE and

clinical outcomes. The systematic search for relevant studies was

carried out using the following keywords: RT, hypo-fractionation

RT, immune system, anti-tumour CD8+ T, Infiltration of CD8+

cytotoxic T-cells, tumour-specific, monocytic myeloid-derived

suppressor cells (M-MDSCs), immune stimulation, RT-schedule,

RT-dose, RT-fraction, and clinical outcome. Similarly, we

performed a manual review of references to select additional

studies. Table 1 summarises the search strategy of this systematic

review.
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2.2 Selection (inclusion and exclusion)
criteria

The titles and abstracts of relevant studies were evaluated for

their contents, ensuring adherence to this systematic review

article’s inclusion and exclusion criteria. Inclusion criteria were

(I) the studies investigating RT-induced immune stimulation; (II)

the studies investigating immune cells such as CD8+ cytotoxic T-

cells, regulatory T-cells (Tregs), and M-MDSCs after using HFRT;

(III) the studies monitoring optimal RT-type, RT-dose, RT-

fraction, RT-schedule, (IV) the studies investigating AE after

using HFRT, time to AE, and site of AE; (IV) the studies

recorded patient’s characteristics and association with the

clinical outcome; and (V) the studies analysed the association of

HFRT-induced immune stimulation and improved clinical

outcomes including complete response (CR), partial response

(PR) and stable disease (SD).

The exclusion criteria for this systematic review were (I)

editorials, (II) case reports, (III) studies did not have primary

data, (IV) studies did not report bystander effect (BE) and AE

following HFRT in metastatic disease, (V) studies monitoring RT

with Immunotherapy/Chemotherapy combination, (VI) studies

which were not written in English, and (VII) did not have full

text available. The articles that fulfilled the inclusion criteria were

shortlisted, and the primary characteristics are summarised

in Table 2.
2.3 Data extraction and quality assessment
method

The data were extracted from selected studies by two authors.

The extracted data included (I) general information (first author,

publication’s year, method of patient recruitment, and sampling

methods); (II) clinical characteristics (T-stage, age, treatment

option, RT-type, RT-dose, RT-fraction, and RT-schedule); (III) T-

cell response following HFRT and (IV) clinical outcomes (time to

AE, site of AE, biochemical recurrence, side effects of RT or RT-

induced toxicity, treatment response (CR and PR), tumour control,

PFS and OS).

The study’s quality was assessed using the PROBAST

(Prediction Model Risk of Bias Assessment Tool), which

evaluates the applicability and risk of bias in diagnostic tests

(30). To address discrepancies in interpretation, two assessors

jointly assessed one article first. Articles were then scored for each

study, and section deficiencies were noted for further discussion.

The relevant published articles were retrieved and imported into

an Endnote X21 database (31). Analogous articles were identified

and deleted using the Endnote’s duplicate function. We

considered studies only describing multivariable-adjusted hazard

ratios (aHR). Moreover, we excluded studies that reported crude

or unadjusted outcome measures between patients treated

with HFRT.
TABLE 1 Summarises the search strategy.

Search strategy

• PubMed

Academic
databases
searched

• Science Direct

• Google Scholar

• Journals papers

Targeted
items

• Workshop papers

• Conference papers

• Non-academic papers

• Titles

Searched
applied to

• Abstracts

• Keywords (RT, hypo-fractionation RT, immune system, anti-
tumour CD8+ T, Infiltration of CD8+ cytotoxic T-cells,
tumour-specific, monocytic myeloid-derived suppressor cells
(M-MDSCs), immune stimulation, RT-schedule, RT-
dose, RT-fraction, and clinical outcome)

Language • English

Publication
periods

• Published between 2010 and 2024

• RT-induced immune stimulation

Outcomes • Improves bystander and Abscopal effects

• Clinical outcomes, such as treatments and immune-related
side effects.
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3 Results

3.1 Systematic review analysis

The literature search identified 1431 preclinical and clinical

studies: 140 from PubMed, 550 from Science Direct, and 741 from

Google Scholar, respectively. Of these 1431 studies, 832 were

excluded after reviewing the titles and abstracts, and 599 were

selected at the first screening stage. At the second screening stage,

550 studies were removed after full-text examination, and 14 were

selected. Furthermore, 49 studies were assessed for eligibility, and

34 studies were removed for the following reasons: (1) case report =

5; (2) editorial = 5; (3) lack of present primary data = 4; (4) lack of

bystander and abscopal information = 3; (5) no full text available =

7; (6) studies investigating RT effect in combination with

Immunotherapy/Chemotherapy = 13. After el igibi l i ty

consideration, 12 (7 = preclinical and 5 = clinical) studies were
Frontiers in Oncology 04
selected. Figure 1 shows our literature search and selection strategy

as a flowchart.
3.2 T-cell response following HFRT

To evaluate the potential immunogenic modulation of HFRT at

the optimal schedule, 10 of the 12 selected studies have observed T-

cell infiltration to the tumour environment following HFRT

(Table 3) (5, 32–40).

Out of 10, 7 preclinical studies reported an increased infiltration

of T-cells to the tumour microenvironment after HFRT (5, 32–34,

36, 38, 39). For example, Filatenkov et al. reported that the

unirradiated tumour with HFRT contained approximately 19%

CD8+ T-cells, the irradiated tumour contained approximately

70% at day 35, and the percentage of MDSCs decreased after day

24 (5). In addition, there was a trend toward an increase in CD8+ T-
TABLE 2 The main clinical characteristics of the included studies.

Authors, year Pat. no. Tumour type Biopsy sample HFRT schedule/no.
fractions

Total dose
(Gy)

Preclinical studies

Filatenkov et al. (2015) (5) 14 mice Colon tumours CT26 and MC38 Cell lines 30 Gy × 1 fr 30 Gy

Markovsky et al. (2019) (32) NA Breast cancer and
Lung cancer

67NR murine and
LLC mouse model

3.5 Gy/minute 10 Gy

Kim et al. (2023) (33) NA Lung metastasis FSaII, CT-26, and 4T1 cells 20 Gy × 1 fr and
10 Gy × 2 frs

20 Gy

Frey et al. (2017) (34) NA Colon Cancer CT26 cells 5 Gy × 2 frs 10 Gy

Zhao et al. (2022) (36) NA Lung Cancer Lewis lung carcinoma (LLC)
cells

3.7 Gy × 4 frs,
4.6 Gy × 3 frs,
6.2 Gy × 2 frs, and
10 Gy × 1 fr

20Gy

Schaue et al. (2012) (38) NA Melanoma B16-OVA murine 15 Gy × 1 fr and
7.5 Gy × 2 frs

15 Gy

Grapin et al. (2019) (39) NA Colon Cancer CT26 cells 2 Gy × 18 frs
8 Gy × 3 frs and
16.4 Gy × 1 fr

36 Gy
24 Gy
16.4 Gy

Clinical studies

Zhang et al. (2017) (35) 6 Non-small-cell lung cancer Blood 48 Gy × 8 frs or
48 Gy × 6 frs

48 Gy

Muraro et al. (2017) (37) 21 Breast Cancer Blood 10 Gy × 3 frs 30 Gy

McGee et al. (2018) (40) 31 Lung,
Liver,
Adrenal,
Brain, Bone, and
Other organs

PBMC and serum (pre- and
1–2 weeks post-SAR)

1–5 frs SBRT or
1–10 frs HCRT

NA

Tubin et al. (2019) (42) 23 Lung = 16
Kidney = 3
Skin = 2
Prostate = 1
Unknown = 1

NA 10–12 Gy × 1–3 frs 10–12 Gy

Tubin et al. (2019) (41) 60 Non-small cell lung cancer NA 10 Gy × 3 frs 30 Gy
RT, radiotherapy; NA, not available; PD1, Programmed cell death protein 1; LLC, Lewis lung carcinoma; HFRT, hypo-fractionated RT; Gy, gray; no., number; frs, fractions; SBRT, stereotactic
body radiation therapy; SRS, stereotactic radiosurgery; and HCRT, hypo-fractionated conformal radiotherapy.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1546875
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Singh et al. 10.3389/fonc.2025.1546875
cells in both irradiated and non-irradiated parts of the tumour

seven days post-10 Gy RT (32). Kim et al. reported that five-day

spacing was more effective than a one-day interval in enhancing

anti-tumour immunity via activating the CD8+ T-cells and

suppressing the M-MDSCs (33).

Some studies have demonstrated that optimal RT dose and

fraction can cause immunologic effects and increased CD8+ T-cell

infiltration in the tumour microenvironment (34, 36, 38, 39). Fray

et al. stated that on day 8, more cytotoxic T-cells and a lower

percentage of Tregs (CD4+/CD25+/FoxP3+) were identified in the

irradiated tumours using irradiation two fractions × 5 Gy (34). In

addition, an increase in CD8+ T-cells concentration was observed

from 48 h to 3 weeks after HFRT in 4.6 Gy × 3 fractions and 6.2 Gy

× 2 fractions (p < 0.05), but not in 3.7 Gy × 4 fractions and 10 Gy × 1

fraction (36). A single HFRT dose of 15 Gy increased CD8+ T-cell

responses and decreased Tregs (38). The increased proportion of

CD8+ T-cells was noticed on day seven after the first HFRT session

in the 1 Fraction × 16.4 Gy group (p = 0.002), 3 fractions × 8 Gy

group (p < 0.001), and in the 18 fractions × 2 Gy group (p < 0.001);

versus 1.4% ± 0.3% in the control group (39).

In the clinical study group, three studies also stated the effect of

HFRT on T-cell infiltration in cancer patients (35, 37, 40). Zhang

et al. demonstrated that HFRT increased the frequency of CD8+ T-

cell infiltration but decreased the frequency of inhibitory Tregs (35).

Moreover, Muraro et al. also identified that half of the patients

showed increased numbers of activated natural killer (NK) cells and

T-cells (CD4+ and CD8+) immediately after the first dose of SBRT
Frontiers in Oncology 05
(37). Additionally, activated CD25+ CD4+ memory T-cells and

CD25+ CD8+ memory T-cells increased following SAR to

parenchymal sites, not bone or brain (40).
3.3 Tumour control following HFRT

To evaluate the efficacy of HFRT delivered in various schedules,

6 out of 12 selected preclinical and clinical studies tested the HFRT

schemes with several-day intervals to control tumour growth

(Table 4) (33, 34, 36, 38, 39, 41).

In the preclinical studies group, 5 out of 6 reported tumour

control after HFRT (33, 34, 36, 38, 39). Kim et al. reported that

tumour growth delays by a five-day interval RT (p = 0.0293) or a

seven-day interval RT (p = 0.0434) were more significant than those

by a one-day interval (p = 0.6413) (33). Moreover, tumour growth

was significantly delayed in the mice irradiated with 2 fractions × 5

Gy in a 4-day interval (34).

To evaluate the tumour control at different RT schedules, Zhao

et al. reported that tumour growth was considerably delayed in the 6.2

Gy × 2 fractions group compared with the control group (p < 0.01)

(36). Furthermore, the group receiving local single-dose HFRT at 7.5

and 15 Gy showed significant tumour control, whereas the group

receiving 5 Gy had a minimal effect (38). In addition, Grapin et al.

monitored the tumour’s growth with 18 fractions × 2 Gy and 3

fractions × 8 Gy regimens and found the most extended tumour

growth delay compared to 1 fraction × 16.4 Gy (39).
FIGURE 1

Representation of the PRISMA workflow for selecting studies.
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TABLE 3 Studies reported tumour-infiltrating CD8+ T-cell response in cancer patients following HFRT.

Authors, year Country Sample Treatment
option

RT dose/no.
fractions

P - values T-cell response
observed

Preclinical studies

Filatenkov et al. (2015) (5) USA CT26 and MC38 Cell lines SABR 30 Gy × 1 fr NA Yes

Markovsky et al. (2019) (32) USA 67NR murine,
Lung Carcinoma (LLC) mouse
model

SFR 10Gy × 3.5 Gy/
minute

NA Yes

Kim et al. (2023) (33) Korea FSaII, CT-26, and 4T1 cells HFRT 20 Gy × 1 fr and
10 Gy × 2 frs

NA Yes

Frey et al. (2017) (34) Germany CT26 cells HFRT 5 Gy × 2 frs NA Yes

Zhao et al. (2022) (36) China Lewis lung carcinoma (LLC) cells HFRT 3.7 Gy × 4 frs,
4.6 Gy × 3 frs,
6.2 Gy × 2 frs, and
10 Gy × 1 fr

P < 0.05 Yes

Schaue et al. (2012) (38) USA B16-OVA murine SFR 15 Gy × 1 fr and
7.5 Gy × 2 frs

NA Yes

Grapin et al. (2019) (39) France CT26 cells HFRT 2 Gy × 18 frs
8 Gy × 3 frs and
16.4 Gy × 1 fr

P < 0.0011 Yes

Clinical studies

Zhang et al. (2017) (35) China Blood SBRT 48 Gy × 8 frs or
48 Gy × 6 frs

P = 0.0143 Yes

Muraro et al. (2017) (37) Italy Blood SBRT 10 Gy × 3 frs NA Yes

McGee et al. (2018) (40) USA PBMC and serum (pre- and 1–2
weeks post-SAR)

SAR 1–5 frs SBRT or
1–10 frs HCRT

NA Yes
F
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NA, not available; RT, radiotherapy; Gy, gray; no., number; frs, fractions; LLC, Lewis lung carcinoma; HFRT, hypo-fractionated RT; SBRT, stereotactic body radiation therapy; SABR, stereotactic
ablative body irradiation; SFR, Single fraction radiotherapy.
TABLE 4 Studies reported tumour control following HFRT.

Authors and Year Country Sample Study endpoint P - values Tumour control
observed

Preclinical studies

Kim et al. (2023) (33) Korea FSaII, CT-26, and 4T1 cells Tumour control One-day interval RT
(P = 0.641),
Five-day interval RT
(P = 0.029), and
Seven-day interval RT
(P = 0.043)

Yes

Frey et al. (2017) (34) Germany CT26 cells Tumour control NA Yes

Zhao et al. (2022) (36) China Lewis lung carcinoma (LLC)
cells

Tumour control P < 0.01 Yes

Schaue et al. (2012) (38) USA B16-OVA murine Tumour control NA Yes

Grapin et al. (2019) (39) France CT26 cells Tumour control NA Yes,

Clinical studies

Tubin et al. (2019) (41) Austria NA Tumour control NA Yes
RT, radiotherapy; NA, not available; LLC, Lewis lung carcinoma; HFRT, hypo-fractionated RT; Gy, gray; no., number; frs, fractions; SBRT, stereotactic body radiation therapy; SRS, stereotactic
radiosurgery; and HCRT, hypo-fractionated conformal radiotherapy.
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On the other hand, only one clinical study reported that the

bulky tumour control rate was 95% for the SBRT groups compared

with 20% in the other two groups (41).
3.4 Consequent vaccine-like effect
following HFRT

BE, or AE effect of HFRT, is a rare and unpredictable outcome

encountered during the metastatic treatment, where tumour regression

is observed to be distant from the irradiated volume. Eight previous

preclinical and clinical studies have reported AE and clinical outcomes

at optimal HFRT schedules (Table 5) (5, 32, 35–37, 40–42).

In the preclinical studies group, three studies have observed

immunological effects and response rates following the use of HFRT.

For example, 13 of the 14 mice achieved complete remissions when

treated with 30 Gy, while 3 of 5 developed complete tumour remissions

when the HFRT dose was specified at 20 Gy (5). Eight 67NR models

(35%) experienced a significant AE after partial irradiation with a single

dose of 10 Gy (32). Another preclinical study also stated that those

treated with 6.2 Gy × 2 fractions showed a noteworthy improvement in

OS compared to the control group (36).

In the clinical studies group, Kim et al. observed a better OS in

patients treated with HFRT regimens of 48 Gy × 6 fractions or 48

Gy × 8 fractions, which activate the immune system three weeks

after treatment (35). The patients showed increased numbers of

activated natural killer (NK) cells immediately after the first SBRT

dose, showing better PFS (37). Authors from another study have

identified an AE in lung and liver cancer patients treated with 1–5
Frontiers in Oncology 07
fractions of SBRT or 1–10 fractions of HCRT, but it was not

observed in bone and brain (40).

Moreover, Tubin et al. observed AE in 45% (9/20) of patients

treated with SBRT (41). They also observed that SBRT was more

likely to improve survival OS rates (p = 0.099), cancer-specific

survival (CSS) (p = 0.049) and PFS rates (p = 0.003) (41). Another

Tubin study reported significant BE and AE response rates of 96%

(22/23 patients) and 52% (12/23 patients), and improved OS 70%

(16/23) and PFS 87% (20/23) rates, respectively, in patients whose

bulky tumours were partially irradiated (42).
4 Discussion

Though RT has long been used in cancer therapy, it has a

history of immunosuppressive side effects. Researchers believe that

lymphopenia can result from localised RT, which includes radiation

to the chest or central nervous system (43, 44). The leading causes of

this are the radiation exposure of the bloodstream and the inherent

radiation sensitivity of immune cells, even at low radiation doses

(<1 Gy) (43–45). Although radiation has long been believed to

suppress the immune system, there is a bunch of evidence showing

that radiation can, under certain conditions, actually increase the

immune system’s ability to fight cancer (5, 27, 32–41, 46–48).

Established tumour cells often lose their capacity to present

antigens through various genetic and epigenetic mechanisms,

enabling them to avoid the immune system. Radiation’s direct

cytotoxic effects may cause the release of tumour-specific

antigens, which can then prompt antigen-presenting cells to
TABLE 5 Studies reported vaccine-like effects following HFRT.

Authors and Year Country Sample Treatment
option

Study
endpoints

P - values Response rate
observed

Filatenkov et al. (2015) (5) USA CT26 and MC38 Cell lines SABR CR NA Yes

Markovsky et al. (2019) (32) USA 67NR murine, Lung Carcinoma
(LLC) mouse model

SFR AE NA Yes

Zhao et al. (2022) (36) China Lewis lung carcinoma (LLC) cells HFRT OS NA Yes

Clinical studies

Zhang et al. (2017) (35) China Blood SBRT OS NA Yes

Muraro et al. (2017) (37) Italy Blood SBRT PFS NA Yes

McGee et al. (2018) (40) USA PBMC and serum (pre- and 1–2
weeks post-SAR)

SAR AE NA Yes

Tubin et al. (2019) (41) Austria NA SBRT OS
CSS
BE
SE
Symptom control

P = 0.099
P = 0.049
NA
NA
P = 0.018

Yes

Tubin et al. (2019) (42) Austria NA SBRT BE
AE
OS
PFS

NA
NA
NA
NA

Yes
RT, radiotherapy; Gy, gray; no., number; frs, fractions; LLCs, Lewis lung carcinoma; AE, abscopal effect; BE, bystander effect; PR, partial response; CR, complete response; OS, overall survival;
PFS, progression-free survival; CSS, cancer-specific survival; ORR, objective rate response; HFRT, hypo-fractionated RT; SBRT, stereotactic body radiation therapy; SABR, stereotactic ablative
body irradiation; SFR, Single fraction radiotherapy.
NA, Not available.
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trigger a T-cell immune response (49). Although dendritic cells can

present tumour antigens to T cells, the successful activation of

tumour antigen-specific T-cell immunity requires additional danger

signals to enhance T-cell activation (49). Therefore, during

radiation-induced cell death, both tumour antigen release and

presentation are improved, helping to activate an immune

response (50). These specific events following radiation-induced

tumour cell killing have led to the concept of utilising RT as a

method of in situ vaccination” (51, 52).

Considering the increasing evidence that underlying anti-

immune responses may be essential in eradicating certain

tumours with SBRT, investigations have been conducted to

delineate optimal radiation schedules for maximising anti-

tumoural immunity in animal models (53, 54). Marciscano et al.

extensively reviewed past studies on the optimal dose and

fractionation schedule for increasing anti-tumoural immunity

(55). Bae et al. reported that three days of fraction intervals

significantly decreased gastrointestinal complications without

impairing the tumour control rate of SABR in hepatocellular

carcinoma (14). Moreover, using immunological hot and cold

tumours, researchers also compared anti-tumoural immunity

exposed to two fractions of irradiation administered on

consecutive days or at intervals of 5 days in the mouse model (33).

Furthermore, when radiation is administered at moderate or

higher dose fractions, local RT can activate CD8+ cytotoxic T-cells

involved in both local and systemic tumour control (abscopal) (24,

46, 56). Therefore, in previous studies, RT with 3 to 5 doses of <10

to 12 Gy appears particularly immunogenic (11, 38, 57–59). Some

earlier studies revealed that hRT elevates CD8+ concentration

between days 5 and 8 after hRT (34, 60, 61). Filatenkov et al.

reported that irradiation with 1 Fraction × 30 Gy was curative and

induced protective CD8+ T-cell-mediated immunity (5). A similar

protracted schedule (4 fractions × 5 Gy over 14 days) failed to

locally control B16 melanoma tumours expressing a model antigen

with a low total dose of RT and large inter-fraction intervals;

however, a single 20 Gy fraction did so (46). Moreover, SRS with

a single dose of at least 30 Gy has been suggested to be more

effective than daily fractionated radiation (2, 6).

Several researchers have previously reported substantial immune

effects and tumour reduction/cure through selective and time-

dependent RT, which targets the immune system instead of the

tumour (62–64). The effectiveness of these methods depended on the

ability to determine when Tregs were dividing synchronously and

periodically during cell division (65). At this brief window in time

(mitosis), the Tregs were highly sensitive to selective ablation, thus

mitigating or removing their homeostatic immunosuppressive effects

on other tumour-specific immune cells not in mitosis at that specific

time point (64). Due to the tumour’s underlying immunology, RT

may evolve towards more “immunologically relevant” schedules to

break tumour tolerance locally and systemically (66, 67).

Contrary to the results of RT studies, some studies, in

combination with immunotherapy, found no evidence of AE and

response rate after using HFRT (68, 69). For example, McBride’s

and Kim et al. studies found no evidence of AE and improved

clinical outcomes by adding SBRT to nivolumab and Nivolumab
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plus ipilimumab in patients with metastatic head and neck

squamous cell carcinoma (HNSCC) and Advanced Merkel Cell

Carcinoma, respectively (68, 69). The small sample size may have

contributed to the lack of evidence of an additional benefit or

support for AE with the addition of SBRT, as mentioned in these

clinical trials. Some previous studies have shown potential

therapeutic benefits with systemic therapies given at the right

time to selectively ablate synchronously dividing suppressor T

cells (now called Regulatory T Cells) while sparing the effector T

cells (63, 70, 71). Therefore, it suggests that the timing of

immunotherapy and RT may play a role in treatment efficacy via

immune modulation. We believe that additional investigation is

warranted to determine the optimal RT dose and timing,

immunotherapeutic agent, and large patient cohort to fully

evaluate the potential of the AE on the response rate.
5 Conclusions

Our systematic review data revealed that HFRT with an optimal

regimen can induce the activation of T lymphocytes while

simultaneously reducing the frequency of Tregs. These studies

also suggested that optimal dosages and fractions of HFRT induce

immune response. However, it should be further explored to

provide clinicians with information that would be valuable when

making decisions regarding patient care. This strategy may increase

cancer patients’ response rate to treatment, lower the cost and

length of treatment and lower thir chance of developing immune-

related side effects and general toxicity after receiving chemotherapy

and immunotherapy.
Author contributions

JS: Conceptualization, Data curation, Methodology, Writing –

original draft, Writing – review & editing. MA: Conceptualization,

Data curation, Methodology, Supervision, Writing – original draft,

Writing – review & editing. SB: Conceptualization, Data curation,

Methodology, Supervision, Writing – original draft, Writing –

review & editing.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. Genesis Cancer Care

covered the cost of publication for this work; however, no funding

was received for the preparation of this manuscript.
Acknowledgments

We acknowledge Genesis Cancer Care Research for Open-

access publishing facilitation.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1546875
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Singh et al. 10.3389/fonc.2025.1546875
Conflict of interest

Author JS was employed by Limestone Coast Local Health

Network Inc.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Frontiers in Oncology 09
Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Durante M, Reppingen N, Held KD. Immunologically augmented cancer
treatment using modern radiotherapy. Trends Mol Med. (2013) 19:565–82.
doi: 10.1016/j.molmed.2013.05.007

2. Goodman KA, Wiegner EA, Maturen KE, Zhang Z, Mo Q, Yang G, et al. Dose-
escalation study of single-fraction stereotactic body radiotherapy for liver Malignancies.
Int J Radiat oncology biology physics . (2010) 78:486–93. doi: 10.1016/
j.ijrobp.2009.08.020

3. Favaudon V, Caplier L, Monceau V, Pouzoulet F, Sayarath M, Fouillade C, et al.
Ultrahigh dose-rate FLASH irradiation increases the differential response between
normal and tumor tissue in mice. Sci Trans Med. (2014) 6:245ra93. doi: 10.1126/
scitranslmed.3008973

4. Park C, Papiez L, Zhang S, Story M, Timmerman RD. Universal survival curve
and single fraction equivalent dose: useful tools in understanding potency of ablative
radiotherapy. Int J Radiat oncology biology physics. (2008) 70:847–52. doi: 10.1016/
j.ijrobp.2007.10.059

5. Filatenkov A, Baker J, Mueller AM, Kenkel J, Ahn GO, Dutt S, et al. Ablative
tumor radiation can change the tumor immune cell microenvironment to induce
durable complete remissions. Clin Cancer Res. (2015) 21:3727–39. doi: 10.1158/1078-
0432.CCR-14-2824

6. Loo BWJr. Stereotactic ablative radiotherapy (SABR) for lung cancer: What does
the future hold? J Thorac Dis. (2011) 3:150–2. doi: 10.3978/j.issn.2072-1439.2011.06.08

7. Jaffray DA. Image-guided radiotherapy: from current concept to future
perspectives. Nat Rev Clin Oncol. (2012) 9:688–99. doi: 10.1038/nrclinonc.2012.194

8. Bae SH, Kim MS, Jang WI, Kay CS, KimW, Kim ES, et al. A survey of stereotactic
body radiotherapy in Korea. Cancer Res Treat. (2015) 47:379–86. doi: 10.4143/
crt.2014.021

9. Lund CR, Cao JQ, Liu M, Olson R, Halperin R, Schellenberg D. The distribution
and patterns of practice of stereotactic ablative body radiotherapy in Canada. J Med
Imaging Radiat Sci. (2014) 45:8–15. doi: 10.1016/j.jmir.2013.09.001

10. Rodriguez-Ruiz ME, Vitale I, Harrington KJ, Melero I, Galluzzi L.
Immunological impact of cell death signaling driven by radiation on the tumor
microenvironment. Nat Immunol. (2020) 21:120–34. doi: 10.1038/s41590-019-0561-4

11. Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider
RJ, et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour
immunogenicity. Nat Commun. (2017) 8:15618. doi: 10.1038/ncomms15618

12. McLaughlin M, Patin EC, Pedersen M, Wilkins A, Dillon MT, Melcher AA, et al.
Inflammatory microenvironment remodelling by tumour cells after radiotherapy. Nat
Rev Cancer. (2020) 20:203–17. doi: 10.1038/s41568-020-0246-1

13. Kang JK, Kim MS, Cho CK, Yang KM, Yoo HJ, Kim JH, et al. Stereotactic body
radiation therapy for inoperable hepatocellular carcinoma as a local salvage treatment
after incomplete transarterial chemoembolization. Cancer. (2012) 118:5424–31.
doi: 10.1002/cncr.27533

14. Bae SH, Kim MS, Kim SY, Jang WI, Cho CK, Yoo HJ, et al. Severe intestinal
toxicity after stereotactic ablative radiotherapy for abdominopelvic Malignancies. Int J
colorectal disease. (2013) 28:1707–13. doi: 10.1007/s00384-013-1717-6

15. Kaminski JM, Shinohara E, Summers JB, Niermann KJ, Morimoto A, Brousal J.
The controversial abscopal effect. Cancer Treat Rev. (2005) 31:159–72. doi: 10.1016/
j.ctrv.2005.03.004

16. Kaur P, Asea A. Radiation-induced effects and the immune system in cancer.
Front Oncol. (2012) 2:191. doi: 10.3389/fonc.2012.00191
17. Ganss R, Ryschich E, Klar E, Arnold B, Hämmerling GJ. Combination of T-cell
therapy and trigger of inflammation induces remodeling of the vasculature and tumor
eradication. Cancer Res. (2002) 62:1462–70.

18. Desai S, Kumar A, Laskar S, Pandey BN. Cytokine profile of conditioned
medium from human tumor cell lines after acute and fractionated doses of gamma
radiation and its effect on survival of bystander tumor cells. Cytokine. (2013) 61:54–62.
doi: 10.1016/j.cyto.2012.08.022

19. Beatty G, Paterson Y. IFN-gamma-dependent inhibition of tumor angiogenesis by
tumor-infiltrating CD4+ T cells requires tumor responsiveness to IFN-gamma. J Immunol
(Baltimore Md: 1950). (2001) 166:2276–82. doi: 10.4049/jimmunol.166.4.2276

20. Zeng J, Harris TJ, Lim M, Drake CG, Tran PT. Immune modulation and
stereotactic radiation: improving local and abscopal responses. BioMed Res Int. (2013)
2013:658126. doi: 10.1155/2013/658126
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