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Background: circHIPK3 role in cancer as oncogene or tumor suppressor is still

debated, therefore, this study aimed to understand the dual role of this circRNA in

different cancers. Furthermore, all available evidence of circHIPK3 interactions

with sponged-miRNA and RBPs in oncological diseases were systematically

gathered to better understand the its functional role in cancer.

Methods: PubMed, BioMedCentral, Web of Science, Embase and Scopus

databases were searched for articles published until October 2024, following

the PRISMA guideline. In computational analysis, miRNAs’ sponged target genes

and RBPs were used for gene enrichment in KEGG, REACTOME and Gene

Ontology, and TISSUES expression. miRTargetLink 2.0 was used to search for

target genes, and STRING v.12.0 for gene enrichment.

Results: circHIPK3 can regulate 33 miRNAs which regulate 399 target genes, and

that were mainly enriched in major biological pathways important for cancer

development and promoting. circHIPK3/miR-124-3p/miR-637/miR-338-3p are

the most well documented interactions in cancers that may control MAPK, Jak/

STAT3, Wnt/b-catenin, and PI3K/Akt signaling pathways. circHIPK3 regulates

miRNAs that modulate genes responsible for chemoresistance, such as ATP-

binding cassette and solute carrier transporters genes, and DNA repair genes.

circHIPK3 has binding sites for RBPs, which participate mainly of RNA processing

and control, and gene expression regulation. Finally, we believe that it has an

onco-circRNA role in most cancers, except in bladder cancer, where it has a TS-

circRNA function likely due to the microenvironment permeated by high

amounts of hydrogen peroxide.
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Conclusion: circHIPK3 dysregulation is an important mechanism for cancer

establishment, progression and chemoresistance making it an interesting

molecule with a potential therapeutic target.
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1 Introduction

Bladder, breast, cervix and corpus uteri, colorectum, leukemia,

liver, lung, esophagus, ovary, pancreas, prostate, stomach, and

thyroid cancers stand out among the types of tumors with the

highest incidence and mortality in the world population (1).

Integrative genomic studies and protein analysis have

characterized and identified a complex but not fully understood

interaction network involved in tumors’ molecular pathogenesis,

such as chromosomal instability, microsatellite instability,

hypermethylation phenotypes, gene mutation, non-coding RNA

(ncRNA), and protein aberrant expression (2).

A series of recent studies have reported in cancer the

dysregulation of a new class of ncRNA, called circular RNA

(circRNA) (3). CircRNAs are classified as long ncRNAs due to

their >200 nt length, and are derived from pre-mRNA that have

their 5’ and 3’ ends covalently joined in a closed loop structure

through backsplicing (4). Among the hundreds of dysregulated

circRNAs in cancer, circHIPK3 stands out as one of the most

reported in many types (3, 5–73). circHIPK3 or hsa_circ_0000284 is

derived from exon 2 (1,099 bp) of the Homeodomain Interacting

Protein Kinase 3 (HIPK3) gene, located on human chromosome 11

(chr11:33278868-33378568) (5).

This circRNA was described acting as both RNA-binding

proteins (RBP) and miRNA sponge (3, 5–73) in different types of

cancers, but the miRNA sponge function is the most explored and

understood one (3, 5, 8, 11–24, 26–28, 33–58, 60, 62, 64–73). For

instance, one of the first reports for circHIPK3 found its

overexpression in cancer cells and identified at least 18 binding

sites for 9 different miRNAs; it was also noticed that it acts as a

modulator of cancer cell growth by sponging miR-124-3p (5). In

addition, circHIPK3 was predicted to have binding sites for 50

different RBPs (3, 30).

Several studies on different types of cancers reported the

upregulation of circHIPK3 and its important role as a miRNAs’

sponge contributing to cancer onset and development. In blood

(6, 23), bone (60), breast (11–16), cerebral (38–42), gastrointestinal

(5, 19–22, 24–30, 32–36, 43–47, 64, 65), gynecological (17, 18, 61, 62),

head and neck (55–58), kidney (72, 73), lung (48–53), prostate (66–70),

and skin (54) cancers it is overexpressed, and is able to promote cell

proliferation, migration, invasion, apoptosis inhibition, metastasis, and

chemoresistance. For example, its overexpression can affect the axes

miR-193a-5p/HMGB1/PI3K/AKT in breast cancer (11), miR-338-3p/
02
HIF-1a in cervical (17), miR-637/STAT3/Bcl-2/beclin1 in colorectal

(19), miR-124/B4GALT1, NF-kB in chronic myeloid leukemia (23),

miR-124-3p/STAT3 in glioma (38), miR-124/SphK1/STAT3/CDK4 in

lung (48), miR-215–5p/YY1 in melanoma (54) and miR-7/VEGF in

ovarian (62), contributing to cancer cell growth, proliferation, invasion,

migration, epithelial-mesenchymal transitions, apoptosis inhibition,

and chemoresistance.

The under expression of circHIPK3 has also been reported in

some studies (31, 59, 63, 71), mainly for bladder cancer (7–10). For

example, its under expression can affect the miR-588/HPSE axis

favoring cell migration, invasion, and angiogenesis (8). Its reduced

expression is related to progression (7) and gemcitabine resistance

in bladder cancer (9), and it can negatively regulate autophagy (10).

The dysregulation of circHIPK3 is undoubtedly an important

mechanism for cancer development. However, its biological role as

oncogenic (onco-circ) and/or tumor suppressor (TS-circ) among

the different types of tumors is not clear yet and well established. In

most cancers, circHIPK3 is upregulated (5, 6, 11–30, 32–58, 60–62,

64–70, 72, 73), but it is known to be downregulated in bladder

cancer (7–10). Therefore, the careful searching for new pathways

that converge to different tumors may improve the understanding

of the mechanisms involved in the pathogenesis mediated by

this circRNA.

Here, we gathered all available evidence associated with the

mRNA-miRNA-circHIPK3-RBPs axis in oncological diseases in

search of its functional role in cancer. The evidence demonstrates

that it has a wide onco-circRNA role in cancer, except in bladder

cancer, in which it likely has a H2O2-dependent TS-circRNA

function. Furthermore, the dysregulation of this molecule is an

important mechanism for resistance to a broad spectrum of

chemotherapy drugs. In this scenario, these data open new

perspectives towards its use as a potential therapeutic target

in cancers.
2 Methods

2.1 Protocols and registration

We followed the Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (PRISMA) guideline to perform this

study (74). This study is currently submitted to PROSPERO, under

submission number: 628708.
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2.2 Study design

This study is a systematic review with computational analysis

on the role of circHIPK3 in cancer. This study does not require

approval by Ethic Committee.
2.3 Searching strategy for circHIPK3
in cancer

2.3.1 Inclusion and exclusion criteria
We selected only original studies that conducted experimental

validation by “strong evidence” (e.g., RT-qPCR, western blot,

luciferase reporter and/or cell assay) of circHIPK3 in human

cancer. Papers based on computational prediction analysis

without experimental validation or retracted were excluded. No

language restriction was applied in the search.

2.3.2 Searching strategy for circHIPK3 in
human cancers

A literature search was performed for studies reporting

circHIPK3 in cancers in PubMed, BioMedCentral, Web of

science, Embase and Scopus databases. The search was conducted

until October 1, 2024, in which we used the following entries:

“circHIPK3 OR hsa_circ_0000284” and “cancer” combined with

boolean operators.

2.3.3 Selection process
For eligibility, two independent reviewers (M.M.C. and L.R-das-

M.) screened all records provided by the databases. Titles and

abstracts were reviewed, followed by full-text reviews of

potentially eligible studies. Review disagreements were resolved

through consensus among reviewers and/or consultation with a

third reviewer (A.L.P.).

2.3.4 Data collection process
Two reviewers (M.M.C. and L.R-das-M.) independently

extracted data from the included studies using a data extraction

form that was provided as Supplementary Material. Data were

collected on the cancer type, sample type and size, circHIPK3

expression profile, sponged miRNAs, experimental validation

methods, country of origin, biological function and/or clinical

significance, first author and year of publication. Extraction

disagreements were resolved through consensus among reviewers

and/or consultation with a third reviewer (A.L.P.).
2.4 Computational analysis

2.4.1 Searching for target genes of the sponged
miRNAs and circHIPK3/RBPs interactions

To understand the functional role of circHIPK3, its interactions

with miRNAs and RBPs was explored. At first, sponged miRNAs

were collected from the selected studies, and their target genes were

found through miRTargetLink 2.0 tool (https://ccb-compute.cs.uni-
Frontiers in Oncology 03
saarland.de/mirtargetlink2/) (75). This tool was chosen among

many others because it is directly connected to the miRTarBase

database (http://miRTarBase.cuhk.edu.cn/) (76), which provides

information on experimentally validated interaction between the

miRNA and its target genes.

In miRTargetLink 2.0, only target genes whose interaction with

their target miRNA was experimentally validated by “strong

evidence” (e.g., RT-qPCR, western blot, luciferase reporter and/or

cell assay) were included in the analyses. The RBPs that were used in

functional enrichment, were obtained from previous studies that

predicted the circHIPK3-RBPs interactions (3, 30).

2.4.2 RBPs and target gene enrichment analysis
miRNAs-target genes and RBPs were used to perform functional

analyses in Kyoto Encyclopedia of Genes and Genomes – KEGG

(https://www.genome.jp/kegg/), Reactome (https://reactome.org/)

pathways, Gene Ontology – GO (http://geneontology.org/), and

TISSUES expression database 2.0 (https://tissues.jensenlab.org)

through STRING: functional protein association networks v.12.0

tool (https://string-db.org/) (77). For the statistical significance of

gene enrichment, STRING v.12.0 default was applied for p-value

adjustment to false discovery rate (FDRadj), using Benjamini-

Hochberg correction method, and FDRadj<0.05.
3 Results

3.1 Study search strategy

Systematic search in the five literature databases allowed the

selection of 69 eligible studies, which were considered during the

analyses (Figure 1).
3.2 circHIPK3 in cancer

circHIPK3 dysregulation was reported by 69 studies (8

downregulated and 61 upregulated study report) in 21 different

cancers, being able to sponge 33 different miRNAs experimentally

validated (Table 1 and Supplementary Table S1). Details of the

studies included in the analyses are contained in Table 1 and

Supplementary Table S1.

Eight studies found this circRNA downregulated (7–10, 31, 59,

63, 71). However, some of them used paraffin preserved tissue (31),

samples from patients receiving chemotherapy (59), controls

samples from patients with another type of tumor (63), and

normal samples collected very close to the tumor (e.g., normal

tissues ≥ 1cm far away to tumor) (71). These factors may cause

biases for the evaluation of gene expression. For instance, studies

demonstrated that long RNAs are more susceptible to degradation

than small RNAs ones in paraffin preserved samples (78, 79). In

addition, samples collected adjacent to the tumor (and used as

normal tissue) can be influenced by the tumor microenvironment

and have their gene expression profile altered when compared to a

truly healthy tissue (field cancerization phenomenon) (79, 80).
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The interaction of circHIPK3 and six sponged miRNAs have

been reported in more than one cancer type, for example,

circHIPK3/miR-124-3p was reported in 13 different studies,

circHIPK3/miR-637 in eight studies, circHIPK3/miR-338-3p in

four studies, and circHIPK3/miR-326, circHIPK3/miR-485-3p

circHIPK3/miR-508-3p and circHIPK3/miR-582-3p in two

studies each (Table 1; Supplementary Table S1).
Frontiers in Oncology 04
The prognostic and diagnosis value of circHIPK3 in different

cancers has been investigated. For example, low expression levels

are correlated with high pathological grade, risk of progression,

lymph node metastasis and gemcitabine resistance in bladder

cancer (7, 9). On the other hand, high expression levels are

correlated with a worse prognosis (11), as well as paclitaxel (14)

and trastuzumab (16) resistance in breast cancer. In colorectal
TABLE 1 circHIPK3 sponging miRNA in cancer.

Cancer Expression
Esponged
miRNA

Affected pathway or gene
Biological funtion and/or

clinical significance
Ref.

Acute
lymphoblastic
leukemia

Up Not reported Not reported Leukemic cells growth (6)

Bladder

Down Not reported Not reported Prognostic biomarker (7)

Down miR-588 HPSE
Cell migration, invasion and angiogenesis, and

clinicopathological features association (8)

Down Not reported Not reported Gemcitabine resistance, and prognostic biomarker (9)

Down Not reported VCP/Beclin 1 Cell proliferation and inhibition autophagy (10)

Breast

Up miR-193a-5p
HMGB1/PI3K/AKT

Cell proliferation, migration, invasion and
metastasis, and poor prognosis predictor (11)

Up miR-326
Not reported

Cell proliferation, migration, invasion, apoptosis
resistance, and tumor growth (12)

Up miR-326 Not reported Cell proliferation, migration and invasion (13)

Up miR-1286 HK2 Tumor growth and chemosensitivity (Paclitaxel) (14)

Up miR-124-3p MTDH Cell proliferation, and angiogenesis (15)

Up miR-582-3p RNF11 Trastuzumab chemoresistance (16)

(Continued)
frontier
FIGURE 1

Diagram showing the search strategy and selection of eligible studies.
sin.org

https://doi.org/10.3389/fonc.2025.1547889
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Campelo et al. 10.3389/fonc.2025.1547889
TABLE 1 Continued

Cancer Expression
Esponged
miRNA

Affected pathway or gene
Biological funtion and/or

clinical significance
Ref.

Cervical

Up miR-338-3p HIF-1a
Cell growth, clone formation, migration, invasion

and EMT, and metastasis (17)

Up miR-485-3p FGF2 Cell proliferation, migration and invasion (18)

Colorectal

Up miR-637 STAT3/Bcl-2/beclin1

Oxaliplatin resistance, autophagy inhibition, and
prognostic predictor for oxaliplatin-

based chemotherapy (19)

Up miR-1207-5p FMNL2
Cells migration, invasion, proliferation,

and metastasis (20)

Cholangiocarcinoma

Up miR-637 LY6E
Cell proliferation, migration, invasion and

apoptosis inibition (21)

Up miR-152-3p PDK1 Cell growth, metastasis and glycolysis (22)

Chronic
myeloid leukemia Up miR-124 B4GALT1, NF-kB

Cell proliferation and apoptosis, and
poor prognosis (23)

Esophageal

Up miR-599 c-MYC Cell proliferation and invasion, and metastasis (24)

Up Not reported p53-Akt-Mdm2 Cell proliferation, migration and invasion (25)

Up miR-124 Akt3
Cell proliferation, migration, epithelial-
mesenchymal transition, and growth (26)

Up miR-637 FASN
Cell proliferation, colony formation, migration and

invasion, and tumor growth (27)

Gallbladder Up miR-124-3p ROCK1-CDK6 Cell survival and proliferation (28)

Gastric

Up Not reported Not reported Field effect biomarker (29)

Up Not reported Not reported Biomarker (30)

Down Not reported Not reported Prognostic biomarker (31)

Up Not reported Wnt/b-catenin
Cell proliferation and migration, and

poor prognosis (32)

Up
miR-124;
miR-29b

COL1A1/COL4A1/CDK6
Cell proliferation, T stage association, and

biomarker of Ming’s histological classifcation
(33)

Up
miR-653-5p;
miR-338-3p NRP1

Cell invasion and migration, long-term hypoxic
microenvironment and prognostic biomarker (34)

Up miR-876-5p PIK3R1
Cell proliferation, migration, invasion and

glutaminolysis capacities (35)

Up miR-637 AKT1 Cell viability, proliferation, migration, and invasion (36)

Up miR-508-3p Bcl2/beclin1/SLC7A11
Inibition of autophagy and ferroptosis, and

cisplatin resistance (37)

Glioma

Up miR-124-3p STAT3 Cell proliferation, invasion and migration (38)

Up miR-654 IGF2BP3
Cell proliferation and invasion, tumor propagation,

and poor prognosis (39)

Up miR-124 CCND2
Cell proliferation, migration and invasion, and

poor prognosis (40)

Up miR-524-5p KIF2A-PI3K/AKT
Cell proliferation and metastasis, and
chemosensitivity (Temozolomide) (41)

Up miR-421 ZIC5
Cell progression and

chemoresistance (Temozolomide) (42)

Hepatocellular
carcinoma

Up Not reported Not reported Cell proliferation (5)

Up miR-124 AQP3 Cell proliferation and migration (43)

(Continued)
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TABLE 1 Continued

Cancer Expression
Esponged
miRNA

Affected pathway or gene
Biological funtion and/or

clinical significance
Ref.

Up miR-338-3p ZEB2 Cell migration, invasion, and metastasis (44)

Up miR-582-3p DLX2
Cell proliferation, migration and invasion and

apoptosis inibition (45)

Up
miR-124-3p;
miR-4524-5p MRP4 Cell proliferation (46)

Up
miR-124; miR-

506-5p PDK2
Cell migration and invasion, and clinical

characteristics association (47)

Lung

Up miR-124 SphK1, STAT3, CDK4 Cell survival and proliferation (48)

Up miR-124-3p STAT3-PRKAA/AMPKa Autophagy regulation, and prognostic factor (49)

Up miR-107 BDNF Cell proliferation and metastasis (50)

Up miR-149 FOXM1
Cell proliferation and invasion, and tumorigenesis

and metastasis (51)

Up miR-377-3p PD-L1 Tumor progression and predict poor prognosis (52)

Up miR-637 Not reported Biomarker for lung cancer (53)

Melanoma Up miR-215-5p YY1 Cell proliferation, and apoptosis inhibition (54)

Nasopharyngeal
carcinoma Up miR-4288 ELF3

Cell proliferation, migration and invasion, and
prognostic marker (55)

Oral squamous
cell carcinoma

Up miR-124 Not reported Cell proliferation, and prognostic marker (56)

Up miR-381-3p YAP1
Cell proliferation, invasion, migration and
apoptosis inibition, and tumor growth (57)

Up miR-637 NUPR1/PI3K/AKT Cell proliferation, metastasis, and EMT (58)

Osteosarcoma

Down Not reported Not reported
Cell proliferation, migration and invasion, poor

prognosis, and diagnosis biomarker (59)

Up miR-637 HDAC4
Cell proliferation, migration and invasion,
prognostic marker, and diagnosis biomarker (60)

Ovarian

Up Not reported Not reported Poor prognosis (61)

Up miR-7 VEGF Cell proliferation and apoptosis (62)

Down Not reported Not reported Cell proliferation, migration and invasion (63)

Pancreatic cancer

Up miR-330-5p RASSF1

Cell proliferation, invasion, migration, apoptosis,
EMT, and gemcitabine resistance and

poor prognosis (64)

Up miR-1179 RHPN2
Cell proliferation, migration, invasion,

and angiogenesis (65)

Prostate

Up miR-338-3p ADAM17 Cell proliferation, and invasion (66)

Up miR-193a-3p MCL1
Cell proliferation, migration, and invasion, and

poor prognosis (67)

Up miR-338-3p Cdc25B; Cdc2 Cell viability, proliferation and apoptosis inibition (68)

Up miR-448 MTDH
Cell migration, proliferation and invasion, and

tumor growth (69)

Up miR-212 BMI1 Cell proliferation, metastasis and tumorigenesis (70)

Renal carcinoma

Down miR-637 Not reported Cell proliferation, migration and invasion (71)

Up miR-485-3p EMT
Cell proliferation, apoptosis inhibition and

metastasis, and prognostic marker (72)

Up miR-508-3p CXCL13
Cell proliferation and metastasis, and poor

clinicopathological features (73)
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cancer, its upregulation is correlated with tumor size, lymph node

metastasis, distant metastasis, recurrence, poor survival and

oxaliplatin resistance (19). It is correlated to poor overall survival

rate in cholangiocarcinoma (23), chronic myeloid leukemia (24)

and ovarian cancer (62). In osteosarcoma, it is correlated to shorter

overall survival times and poor prognosis, serving as a biomarker

(AUC = 0.783; 0.875) (60, 61). In lung cancer, it has been suggested

as a biomarker (AUC = 0.897) (54). In gastric cancer, it is correlated

to poor overall survival rate (33), T stage, Ming’s classification and

infiltrative type (34), and cisplatin resistance (37). In glioma, it is

correlated with unfavorable prognosis (40) and temozolomide

resistance (42, 43). In nasopharyngeal carcinoma, it is correlated

to lower overall survival and distant metastasis‐free survival rate

(56). In oral cancer, it is correlated to distant metastasis, higher

tumor staging and shorter survival (59). In pancreatic cancer, it is

correlated to gemcitabine resistance (65). In renal cancer, it is

correlated to lymph node metastasis and shorter survival rates

(73, 74). Therefore, circHIPK3 appears to be potentially useful as

a prognostic and diagnostic marker.

Considering ethnic populations, the dysregulation of this

circRNA in cancer has been reported mainly in the Asian

population, however, it was found in the European population

and in the mixed Brazilian population, in South America

(Supplementary Table S1).
3.3 Enrichment analysis

Except for miR-4524-5p, the other 33 miRNAs can regulate a

total of 399 genes experimentally validated by strong evidences

(Supplementary Table S2). Enrichment analysis of the 399 target

genes in Gene Ontology showed that many of them were enriched in

biological processes, cellular structural composition and molecular

functions related to cell differentiation, fate, adhesion, motility,
Frontiers in Oncology 07
migration, growth and death. Furthermore, many have been related

to epithelial to mesenchymal transition, inflammation, immunity,

gene expression, RNA processing and interaction to messenger and

non-coding RNAs (Figure 2; Supplementary Table S3).

In KEGG pathways, gene enrichment was organized into four

distinct classes, such as 1) major cancer-related biological pathways,

2) cancer pathways, 3) risk factors-related pathways for cancer

development, and 4) chemoresistance-related pathways in cancer

(Figure 3). For example, of the 25 highlighted pathways from the

“major cancer-related biological pathways” class, we highlight the

PI3K-Akt signaling pathway [hsa04151] which has 64 enriched

target genes (Supplementary Table S4). Many target genes were also

enriched in 18 different cancer pathways, 15 pathways associated to

risk factors for the development of different types of cancer, and at

least four pathways directly associated to chemoresistance (Figure 3;

Supplementary Table S4).

Considering pathways associated to anti-cancer agent resistance

treatments, some target genes were enrichment in antifolate

resistance (8 target genes), platinum drug resistance (18 target

genes), PD-L1 expression and PD-1 checkpoint (26 target genes),

and EGFR tyrosine kinase inhibitor resistance (34 target genes)

pathways (Supplementary Table S4). The target genes such as

ABCC1 (regulated by miR-7-5p) and ABCC4 (target of miR-124-

3p), ABCG2 (target of miR-212-3p) and GJA1 (target of miR-381-

3p) are involved in “efflux transmembrane transporter activity”

(GO:0015562; four target genes) (Supplementary Table S3) and

platinum drug resistance (hsa01524; 26 target genes;

(Supplementary Table S4). In addition, some of these miRNAs

also regulate solute transport genes, such as SLC7A5 (target of miR-

7-5p), SLC16A1 (target of miR-124-3p), and SLC40A1 (target of

miR-485-3p) (Supplementary Table S2). These genes are involved

in transmembrane transport activity and chemoresistance (81–83).

We observed that RAD51 (recombinase) and MGMT (O-6-

methylguanine-DNA methyltransferase) genes, responsible for
FIGURE 2

Target genes enrichment in Gene Ontology.
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repairing DNA damage caused by chemotherapeutic alkylating and

platinum derivatives, can be regulated by miR-107 and miR-124-3p,

respectively (Supplementary Table S2).

In REACTOME pathways, gene target enrichment was

organized into three classes, such as 1) cell cycle-related

pathways, 2) “other” – pathways related to immune system, TP53

modulation and extracellular matrix remodeling (important to

support cancer invasion and metastasis), and 3) cell death-related

pathways (Figure 4; Supplementary Table S5).
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Seventy-six target genes can be regulated by at least two

different miRNAs, of which we highlighted oncogenes and tumor

suppressors that can be regulated by at least three (BCL2, CDH2,

CCND1, CD274, DNMT3B, DNMT1, GRN, MYC, MMP9, SP1,

PI3KR3, KLF4 and IGF1R), and four (CDK6, CD151 and PTEN)

different sponged miRNAs (Supplementary Table S6).

To better understand the importance of these 76 target genes,

we performed their gene enrichment and selected biological

processes from Gene Ontology that presented a number ≥40
FIGURE 3

Target genes enrichment in KEGG pathways.
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enriched target genes, and in KEGG and REACTOME pathways

with a number ≥10 enriched target genes (Figure 5; Supplementary

Table S7). These target genes were enriched in functions related to

cell control (e.g., differentiation, adhesion, motility, migration,

growth and death), to epithelial to mesenchymal transition,

inflammation, immunity, and oncogenic viral infection (Figure 5).
3.4 RBPs enrichment

Gene enrichment (molecular process) of the 50 RBPs that have

binding sites in circHIPK3 (3, 30), showed that these proteins

participate of biological processes, cellular structural composition

and molecular functions related mainly to RNA metabolism and

regulation of gene expression (Figure 6A). We highlight the

DDX54, EIF4A3, FMR1, IGF2BP1, IGF2BP2, LIN28B and

MOV10, since they have more than 10 circHIPK3 binding sites

(Supplementary Table S8).

We highlight the molecular function of six RBPs (HNRNPA2B1,

IGF2BP1, IGF2BP2, IGF2BP3, YTHDF1, and YTHDC1) related to

N6-methyladenosine-(m6A)-containing RNA binding [GO:1990247]

(Figure 6A; Supplementary Table S8). The m6A markers are

important degradation signals for several classes of RNA, which are

recognized by m6A-binding proteins (“readers”), such as

HNRNPA2B1, IGF2BP1/2/3, YTHDF1/2/3 and YTHDC1/2 (84).
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Some RBPs compose the Cajal body (DKC1, FBL, FMR1,

HNRNPA2B1, NOP58, and SMNDC1) and P-body (CAPRIN1,

ELAVL1, IGF2BP1, IGF2BP2, IGF2BP3, LIN28A, MOV10, UPF1,

and YTHDF1) organelle-like structures (Figure 6A; Supplementary

Table S8). These non-membrane organelle-like structures are

associated to RNA storage and decomposition, and cancer (85, 86).

Additionally, we found that many of these RBPs are abundantly

expressed in cancer cells and in human tissues (Figure 6B).
4 Discussion

In recent years, studies have demonstrated and reinforced the

importance of circRNAs in cancer pathogenesis, and the clinical

impact of mRNA-target-miRNA/circHIPK3/RBP interaction

network in cell biological processes (3).

Sixty-seven studies in cancer report the dysregulation of

circHIPK3 in cancer, and that it may interfere in 33 miRNAs

activity by sponging them (5, 8, 11–24, 26–28, 33–58, 60, 62, 64–73).

These studies show that the homeostasis break of circHIPK3/33-

miRNAs/mRNA-targets results in disturbance of pathways that

lead to the loss of cellular control, causing proliferation,

migration, invasion, evasion of apoptosis and autophagy, EMT,

metastasis and chemoresistance, and its overexpression was

associated to poor prognosis (5–73).
FIGURE 4

Target genes enrichment in REACTOME pathways.
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Indeed, our functional analyses show that many of the target

genes of sponged miRNAs can modulate pathways that control

these biological and cellular processes. For example, in our analyses

PI3K-Akt signaling pathway was highlighted due to the

involvement of the large number of target genes identified, of

which we highlight the AKT1, AKT3, BDNF, CCND2, CDK4,

CDK6, COL4A1 and PIK3R1. These genes are directly affected by

circHIPK3 in gastric cancer [miR-124/miR-29b/COL4A1/CDK6

(33), miR-876-5p/PIK3R1 (35) and miR-637/AKT1 (36)],

gallbladder cancer [miR-124/CDK6 (28)], breast cancer

[circHIPK3/AKT (11)], glioma [miR-124/CCND2 (40)], lung

cancer [miR-124/CDK4 (48) and miR-107/BDNF (50)] and oral

squamous cell carcinoma [miR-637/AKT (58)]. PI3K-Akt is a
Frontiers in Oncology 10
highly conserved and extremely important pathway for cellular

homeostasis, as it is responsible for promotes cell proliferation,

survival, metabolism, growth, apoptosis and angiogenesis in

response to extracellular signals (87).

Dysregulation of circHIPK3/miR-124-3p has been reported in

breast (15), chronic myeloid leukemia (23), esophageal (26),

gallbladder (28), gastric (33), glioma (38, 40), hepatocellular

carcinoma (43, 46, 47), lung (48, 49), and oral squamous cell

carcinoma (56) cancers, demonstrating it to be an important

interaction for cancer development. Indeed, miR-124-3p is a

tumor suppressor miRNA in cancers and is able to control PI3K-

Akt signaling pathway (88). circHIPK3/miR-637 has been reported

in colorectal (19), cholangiocarcinoma (21), esophageal (27), gastric
FIGURE 5

Seventy-six target genes enrichment.
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(36), lung (53), oral squamous cell carcinoma (58), osteosarcoma

(60), and renal carcinoma (71) cancers. miR-637 is able to

modulating the Jak/STAT3, Wnt/b-catenin, and PI3K/Akt

signaling pathways; it is downregulated in cancer and is

associated to larger tumors and later tumor node metastasis

staging in cancer patients (89). circHIPK3/miR-338-3p has been

reported in cervical (17), gastric (34), hepatocellular carcinoma

(44), and prostate (66, 68) cancers. miR-338-3p is downregulated in

cancer and has an important role during tumor progression by

modulation of Wnt, MAPK, and PI3K/Akt signaling pathways (90).

Interestingly, MAPK, Jak/STAT3, Wnt/b-catenin, and PI3K/Akt

signaling pathways were abundantly enriched by the target genes

analyzed (Figure 2). Therefore, these evidence together suggest that

circHIPK3 acts in the functional silencing of these tumor

suppressor miRNAs, acting as an onco-cirRNA and favoring

cancer development.

circHIPK3 functional role and expression in cancer remains

dubious, for example, a massive number of studies demonstrate

that circHIPK3 is upregulated (5, 6, 11–30, 32–58, 60–62, 64–70,

72, 73), while few studies it is downregulated (7–10, 31, 59, 63, 71).

This circRNA was found downregulated in bladder cancer (7–10),

and its expression is even lower in muscle invasive bladder cancer

(e.g., tumor invades the lamina propria and detrusor muscle) when

compared with non-muscle invasive bladder cancer (e.g., tumor

limited to the urothelium) (91). An interesting aspect associated to

the normal bladder physiology is the existence of a urinary

microenvironment permeated by the presence of considerable

amounts of hydrogen peroxide (H2O2), a reactive oxygen species

(ROS) (92). It was also identified that in cancer patients (e.g., breast,

cervical, esophagus and laryngeal carcinoma) the urine concentration

of H2O2 is two- to three-fold higher than in healthy people (92). In

human bladder cancer (urothelial carcinoma), was showed that
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elevated levels of ROS induced by Nox4 enzyme (a H2O2-generator

enzyme) are required for tumor initiation and progression (93). It

was also observed that H2O2 can induce a metastatic phenotype in

bladder cancer cells (94). In mouse model, was observed that healthy

urothelial cell produce H2O2 in response to calcium signaling (95).

Curiously, H2O2 is able to put down circHIPK3 expression in

osteoblast (96), cardiomyocyte (97) and lens epithelial (98) cell

human. Therefore, the circHIPK3 downregulation observed in

bladder cancer may be a consequence of the normal and tumoral

H2O2-elevated milieu characteristic of this organ.

Many target genes were enriched in pathways related to risk

factors associated to the cancer, such as type II diabetes mellitus,

inflammatory bowel disease and tuberculosis (Figure 2). Indeed,

circHIPK3 contributes to hyperglycemia and insulin resistance by

disturbing the miR-192-5p/FOXO1 axis homeostasis (99) and is

upregulated in type II diabetes patients (100), and it was found

upregulated in acute pancreatitis (101), an important risk factor for

the pancreatic cancer development (102).

This circRNAwas observed to be downregulated in Crohn’s disease

and ulcerative colitis (103), conditions that lead to atrophy of the

intestinal epithelium (104) and favors the onset of colorectal cancer

(105). However, its expression increases the proliferation of intestinal

cells by sponging miR-29b, contributing to the renewal of the intestinal

mucosa after injury caused by these diseases (103). Therefore,

circHIPK3 acts on the proliferation of intestinal mucosa cells,

maintaining their renewal and homeostasis (103), however, when

dysregulated (e.g., upregulated) it can lead to colorectal cancer (19,

20). In addition, circHIPK3 can sponge miR-29b-3p and abolish its

function in gastric cancer (33), so this interaction may be an important

mechanism for epithelial mucosal proliferation in gastrointestinal

cancers. Interestingly, the circHIPK3 downregulation observed in

Crohn’s disease and ulcerative colitis (91), may be a consequence of
FIGURE 6

RBPs enrichment. (A) RBPs enrichment in Gene Ontology. (B) RBPs enrichment in TISSUE expression database.
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the high levels of H2O2 produced during the development of these

diseases (106, 107).

In lung cancer, circHIPK3 is overexpressed (48–52). Its

overexpression also induces pulmonary fibrosis by interfering

with the circHIPK3/miR-30a-3p/FOXK2 axis (108) and by

inducing fibroblast-to-myofibroblast transition via regulation of

circHIPK3/miR-338-3p/SOX4/COLA1A1 (109), this condition is a

factor in risk for lung cancer (110). Furthermore, its overexpression

is related to pulmonary arterial hypertension development (111),

whose prevalence is higher in patients with lung cancer (112).

circHIPK3 is upregulated in acute kidney injury and affects the

activity of miR-93-5p (113), miR-124-3p (114), miR-148b-3b (114,

115) and miR-338-3p (116). Upregulation of circHIPK3 is also

associated to chronic tubulointerstitial nephritis and renal

tubulointerstitial fibrosis by regulating miR-30a/profibrotic-

proteins axis (117). In renal tubular epithelial cell, its

upregulation induces cell proliferation and inhibition of the

apoptosis by miR-326 and miR-487a-3p modulation (118). It was

also found overexpressed in podocytes subjected to injury caused by

high-glucose concentrations (119), this injury is a common

condition in diabetes mellitus. These conditions are an important

risk factor for the development of kidney cancer (120), since it is

also overexpressed in this type of cancer (72, 73). Interestingly,

circHIPK3 regulates the miR-124-3p (15, 23, 26, 28, 33, 38, 40, 43,

46–49, 56), miR-326 (12, 13) and miR-338-3p (17, 34, 44, 66, 68)

activity in cancer.

circHIPK3 plays an important role in resistance to many anti-

cancer agents. For example, its overexpression favors oxaplatin

resistance, apoptosis and autophagy inhibition in colorectal

cancer by abolishing the regulatory function of miR-637 on

STAT3/Bcl-2/beclin1 signaling pathway (19). In gastric cancer, it

promotes cisplatin resistance as a consequence of apoptosis,

autophagy, and ferroptosis inhibition by abolishing the regulatory

power of miR-508-3p on the ↑Bcl-2/beclin1/SLC7A11 axis (37).

The effect of circHIPK3 on gemcitabine resistance is attributed to its

negative regulatory role on miR-330-5p which enables RASSF1

activity, favoring proliferation, invasiveness, migration, EMT, and

apoptosis inhibition in pancreatic cancer (64). In breast cancer,

paclitaxel resistance occurs due to circHIPK3/miR-1286/HK2

modulation and consequent cell cycle progression and apoptosis

inhibition (14); and trastuzumab resistance occurs through the

transmission of circHIPK3 via exosomes and miR-582-3p/RNF11

axis regulation, which promotes cell proliferation, invasion, and

apoptosis inhibition (16). Temozolomide resistance arises as a

consequence of the modulation of the cell concentration (IC50) of

temozolomide and apoptosis inhibition by circHIPK3/miR-524-5p/

KIF2A (41) and exosomal-circHIPK3/miR-421/ZIC5 (42) axis

regulation in glioblastoma. Therefore, although the details of the

molecular mechanisms leading to circHIPK3-mediated

chemoresistance are not fully understood, interference by this

circRNA in distinct and complex pathways resulting in the

inhibition of cell death may be a key mechanism in this process.

In bladder cancer, it has been observed that circHIPK3

downregulation favors gemcitabine resistance (9), although the

underlying mechanism remains unknown. NXPH4 overexpression
Frontiers in Oncology 12
has been shown to induce gemcitabine resistance in bladder cancer

by increasing ROS and glycolysis levels (121). Since ROS is a known

factor that can downregulate circHIPK3 (96–98), this suggests a

potential link. Furthermore, low expression levels of LOXL4 and

SRSF2 – genes regulated by miR-29b-3p and miR-193a-3p (see

Supplementary Table S2) – have been associated with inhibited

apoptosis and enhanced multi-drug resistance in bladder cancer

(122). Therefore, the ROS-inducedNXPH4/↓circHIPK3/↑miR-29b-

3p/↑miR-193a-3p/↓LOXL4/↓SRSF2 axis may represent a potential

mechanism through which circHIPK3 downregulation contributes

to gemcitabine resistance in bladder cancer.

Several target genes were enriched in the platinum drug

resistance pathway (hsa01524), including the BCL2 oncogene,

which can be regulated by at least three miRNAs sponged by

circHIPK3 (miR-7-5p, miR-29b-3p, and miR-448). In fact,

circHIPK3 overexpression can affect the activity this gene and

induce resistance to oxaliplatin in colorectal cancer (19) and to

cisplatin in gastric cancer (37). Genes belonging to ATP-binding

cassette (ABC) transportes, such as ABCC1 (regulated by miR-7-

5p), ABCC4 (regulated by miR-124-3p), ABCG2 (regulated by miR-

212-3p), and GJA1 (regulated by miR-381-3p) were enriched in

efflux transmembrane transporter activity (GO:0015562). In cancer

cells that have multidrug resistance generally upregulate these

genes, which are associated with the efflux of chemotherapeutics

out of cells and, therefore, decrease chemosensitivity to anticancer

drugs (82, 83). In addition, SLC7A5 (regulated by miR-7-5p),

SLC16A1 (regulated by miR-124-3p), and SLC40A1 (regulated by

miR-485-3p) genes, belong to the transmembrane solute transport

(SLC) and are involved in chemoresistance in many of the cancers

studied here (81). Interestingly, circHIPK3/miR508-3p interaction

can modulate SLC7A11 activity and induce cisplatin resistance in

gastric cancer (37). Therefore, the modulation of these genes by

sponging these miRNAs could be another important mechanism

associated to chemoresistance involving circHIPK3.

miR-124-3p can regulate theMGMT gene, responsible for repairing

DNA damage caused by chemotherapeutic alkylating and alkylating-

like agents (e.g., gemcitabine, temozolomide and platinum-based drugs).

Indeed,MGMT overexpression can lead to apoptosis escape induced by

alkylating agents (123). For example, MGMT overexpression induces

resistance to gemcitabine in pancreatic cancer (124), to cisplatin in

colorectal cancer (125) and to temozolomide in glioma (126, 127) and

estrogen receptor positive breast cancer (128). Thus, circHIPK3/miR-

124-3p/MGMT may modulate resistance to multi-drugs in these

cancers. On the other hand, the RAD51 recombinase gene (which

encodes a protein that is essential for repairing damaged DNA) is

regulated by miR-107. Interestingly, overexpression of this protein is

associated with gemcitabine resistance in lung (129) and contributes to

chemotherapy-induced damage and the destabilization of genetic

material in cancer cells (130). Therefore, the circHIPK3/miR-107/

RAD51 axis may be another mechanism that induces chemotherapy

resistance in cancer.

N6-methyladenosine (m6A) is a modification that occurs

internally in long RNAs (e.g., circRNA) that are recognized by

“readers” (e.g., IGF2BPs), and when deregulated they can lead to

cancer (83). Interestingly, circHIPK3 appears to be a peculiar
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molecule, because despite not having any m6A modification in its

structure that signals for the binding of readers such as IGF2BPs (131),

it surprisinglymaintainsmanybinding sites forRNA-bindingproteins

(RBPs), including for IGF2BPs group (Supplementary Table S8).

IGF2BP1, IGF2BP2 and IGF2BP3 are dysregulated in many tumor

types (84), being associated with chemoresistance in glioblastoma

(132), ovarian (133) and colorectal (134) cancer. In fact, circHIPK3

sequesters IGF2BP2 allowing the target gene of this RBP, STAT3

oncogene (responsible for controlling cell proliferation and survival),

to be expressed. Therefore, circHIPK3 would act as competing

endogenous RNA (ceRNA) for IGF2BP2 (92). It has also been

reported that this circRNA can act as a scaffold for E3 ubequitin

ligase (135). Interestingly, the existence of m6A and recognition by

YTHDF2 “readers” is a pathwaybywhich circRNAaredegraded (136),

so the absence ofm6A in circHIPK3may have conferredmore stability

to this complex molecule.

FMR1 is an interesting RBP, since it is associated with cancer

cell growth, metastasis, EMT, apoptosis, and angiogenesis (137),

and has 35 binding sites in circHIPK3 (Supplementary Table S8).

Recent evidence demonstrates that circHIPK3 binds to BRCA1

messenger RNA, conferring stability and protection against FRM1

protein (a negative regulator of BRCA1), allowing the effective

expression of this oncogene. Therefore, circHIPK3 acts as ceRNA

by binding to BRCA1 messenger RNA using the same binding site

used by FRM1, and this interaction causes chemoresistance to

DNA-damaging drugs (138).

Other RBPs such as DDXR54, EIF4A, LIN28B and MOV10

have multiple binding sites for circHIPK3. These RBPs are

important for stability and functional role of circRNAs in several

types of cancers. For example, DDXR54 binding to long non-coding

RNAs and confers stability to genes that contribute to cell growth

in gastric cancer (139) and that facilitate stemness and EMT of

osteosarcoma cells (140). EIF4A modulates the expression of some

circRNAs by flanking specific sequences of pre-mRNA of its target

gene, contributing to cisplatin resistance in bladder cancer (141).

circHIPK3/miR-107/LIN28B axis may be a mechanism of

chemoresistance in gastric (3) and ovarian (133) cancers. MOV10

can bind to circ-DICER1 and modulate the cell viability, migration,

and angiogenesis in glioma (142). Therefore, the interaction of

circHIPK3 with these RBPs may participate in important

mechanisms for the development of cancer and chemoresistance.

Our strategy of combining experimentally validated public data

and robust bioinformatics tools for functional analysismade it possible

to identify alternative routes that explain the diversity of functions

exerted by circHIPK3 and its implication in multidrug resistance. A

limitation of this study is that we did not experimentally test the axes

modulated by this circRNA suggested here, therefore, future

experimental validations of these pathways are necessary. We

highlight the need for more studies on gallbladder cancer, leukemia,

melanoma, nasopharyngeal carcinoma and thyroid cancer to

strengthen the amount of evidence, as well as expanding the

representation of other ethical populations not yet studied regarding

the expression of this circRNA. Finally, our results undoubtedly open

new perspectives towards understanding how circHIPK3 can exert a

modulating role onestablishment, progressionandchemoresistance in

different cancers.
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In this study, we observed that circHIPK3 is dysregulated and

that it can regulate 33 miRNAs in different types of cancer, whose

target genes control important processes and biological pathways

for the cancer establishment and maintenance. circHIPK3/miR-

124-3p/miR-637/miR-338-3p are the most well documented

interactions in various cancers types, and can control MAPK,

Jak/STAT3, Wnt/b-catenin, and PI3K/Akt signaling pathways,

and may be important for support the initiation and

establishment of the cancer. miR-7-5p/ABCC1/SLC7A5, miR-

107/RAD51, miR-124-3p/ABCC4/SLC16A1/MGMT, miR-212-

3p/ABCG2, miR-381-3p/GJA1 and miR-485-3p/SLC40A1 may

modulate pathways that confer chemoresistance to cancer cells.

circHIPK3 contains multiple sites for the same RBPs (e.g.,

DDX54, EIF4A3, FMR1, IGF2BP1, IGF2BP2, LIN28B and

MOV10), many of which are involved in chemoresistance and

organelle-like structures, such as Cajal body and P-body which are

associated with cancer. Additionally, circHIPK3 is upregulated in

cancer in general acting as an onco-circRNA, except in bladder

cancer, which has a likely TS-circRNA function due to the

microenvironment with large amounts of H2O2 present in this

organ. Therefore, circHIPK3 is a complex and multifunctional

molecule that favors the establishment, progression and

chemoresistance of cancers, making it an interesting molecule

with a potential therapeutic target.
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95. Donkó A, Ruisanchez E, Orient A, Enyedi B, Kapui R, Péterfi Z, et al. Urothelial
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