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Editorial on the Research Topic

Artificial intelligence and imaging for oncology
Introduction

Recent advancements in artificial intelligence (AI) and imaging technologies have

significantly transformed the diagnostic and therapeutic landscapes of oncology (1–3).

Cutting-edge imaging modalities, such as CT, PET, US, and MRI, are being increasingly

utilized for tumor imaging (4–7), with emerging interdisciplinary fields like MR-LINAC

gaining considerable traction (8, 9). This accelerating convergence of imaging and therapy

in oncology highlights the urgent need to further explore the role of AI and imaging across

various oncology specialties, including radiation therapy, to enhance cancer care. In

response to this need, the topic titled “Artificial Intelligence and Imaging in Oncology”

has been proposed, bringing together 19 contributions from 149 authors/experts in the

field. These contributions delve into the potential of AI and imaging in tumor diagnosis and

treatment, explore emerging AI-driven models for oncology diagnosis and prediction, and

highlight the extraction of quantitative features from medical images to predict tumor

behavior, therapy response, and patient prognosis.
AI and imaging in tumor diagnosis and treatment

AI is revolutionizing cancer diagnosis and treatment by enhancing the accuracy and

efficiency of medical image analysis. By analyzing medical images like CT scans, MRIs, and

X-rays, AI algorithms can detect tumors earlier, differentiate between benign and

malignant growths, and assist in treatment planning and monitoring.

Shao et al. demonstrated the potential of radiomics-based nomograms in enhancing the

diagnostic capabilities of CT imaging. By extracting quantitative features from CT images,

these nomograms can more accurately differentiate between conditions like intravenous

leiomyomatosis and uterine leiomyoma, offering a significant clinical advantage over

traditional CT image interpretation.

Zeng et al. explored the potential of fusing multimodal imaging with ultrasound to

enhance the accuracy of interventional diagnostic procedures. By integrating machine
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learning techniques, they demonstrated the clinical utility of this

approach in guiding percutaneous biopsies of liver and adjacent

organs, leading to improved diagnostic success rates.

Yu et al. showed that UNet based deep learning models when

applied to positional CT and CBCT images and extracted radiomics

features show clinical significance of CBCT images. The work

showed that dice coefficient results of CBCT are within 85% of

the results of pCT for rectal cancer imaging. CBCT images are

frequently utilized on radiation treatment modalities.

Yang et al. explored the potential of combining ultrasound

imaging with radiomics analysis to differentiate small clear cell renal

cell carcinoma (ccRCC) from renal angiomyolipoma (RAML). By

developing and validating models that incorporate both clinical and

radiomic features, the study seeks to enhance diagnostic accuracy

and support more precise treatment decisions for patients with

small renal tumors. The findings suggest that this innovative

approach could significantly improve the clinical utility of

ultrasound in managing renal neoplasms.

Wen et al. explored an innovative approach to differentiate

benign from malignant head and neck tumors using synthetic MRI

in conjunction with FSE-PROPELLER DWI. In their study, the

authors employed both synthetic MRI and FSE-PROPELLER

diffusion-weighted imaging (DWI) to investigate the characteristics

of malignant and benign head and neck tumors. The study involved

48 subjects, who were retrospectively classified into malignant and

benign groups. The results were promising, demonstrating that both

synthetic MRI and FSE-PROPELLER DWI can quantitatively

distinguish malignant from benign tumors based on T2 and ADC

values. Notably, combining T2 and ADC values provided improved

accuracy in tumor differentiation.

Liu et al. focused on the differential diagnosis of two common

adrenal tumors that are often misdiagnosed in clinical practice.

Their research utilized radiomics techniques, enhancing diagnostic

accuracy without the need for enhanced CT scans.

Haghshomar et al. reviewed recent advancements in

the application of artificial intelligence (AI) in liver oncology

imaging. They specifically highlighted the evolution of

manual radiomic techniques and the increasing use of deep

learning-based representations for more accurate assessments. They

demonstrated radiomics, a framework that complements

conventional radiological interpretation, has emerged as a powerful

tool for extracting and quantifying texture characteristics derived

from tumor heterogeneity.
Emerging AI-driven models for
oncology diagnosis and prediction

Emerging AI-driven models are revolutionizing oncology by

enabling earlier and more accurate cancer diagnosis. By analyzing

vast amounts of medical data, these models can identify subtle

patterns and predict disease progression, leading to more

personalized and effective treatment plans.

Xie et. al., conducted a study to establish this deep learning

(DL) driven Artificial intelligence (AI) system for predicting
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malignant STTs based on US images and clinical indexes of the

patients. The AI system could extract more morphological features

of the system and heatmaps of images for classifying malignant

soft tissue tumors. The system utilized a ResNet based architect on

both grey scale and color ultrasound images for tumor feature

extraction. The model can assist clinicians in diagnosing soft

tissue tumors.

Ullah et al. studied brain tumor on MRI images diligently

incorporating linear stretching in contrast enhancement and data

augmented images fed to variants of efficient Net and Inception

ResNet. The study utilized bayesian optimization on their deep

learning process and showed an accuracy improvement over limited

clinical dataset for brain tumor classification. The study showed

that cubic SVM can increase accuracy by 0.5% over a bilayered

neural network.

Wang et al. studied performance of MAMIL Net by histologic

features in predicting breast cancer in sentinel lymph node,

differentiating lung adenocarcinoma from squamous cell

carcinoma, and predicting therapeutic response of high-grade

ovarian serous carcinoma by retrospective case series. They found

that MAMILNet performed excellent for lung cancer, good for

breast cancer and fair for ovarian cancer based on AUC and

accuracy values, suggesting that this learning framework has the

potential in disease diagnosis and prognosis.

Li et al. developed PI-YOLO, a novel deep learning model

designed for automated blood vessel detection in pathology images.

This model effectively addresses the challenges posed by complex

backgrounds, small targets, and dense distributions in these images.

By incorporating the BiFormer attention mechanism, PI-YOLO

efficiently captures long-range dependencies and reduces

computational costs. Additionally, the use of GSConv convolution

further enhances the model’s performance by reducing parameters

and improving inference speed. The results demonstrate that PI-

YOLO achieves a significant mAP of 87.48%, outperforming

existing methods. This advancement in automated blood vessel

detection holds significant medical value, particularly in the field of

anti-tumor vascular therapy research. Figure 1 showed a typical

network framework including four main components: Input,

Backbone, Neck, and Prediction.

Krishnapriya and Karuna performed a study to show that deep

learning-based YOLO architecture can predict bounding boxes for

prediction and have added enhancements compared to its peers for

analogous inference tasks. The grab cut algorithm assisted

segmentation is likely to improve dice coefficients by 0.1 in the

presented dataset and is worth exploring in brain tumor

detection pipelines.

Awais et al. presented a novel decision support system for

identifying acute lymphoblastic leukemia (ALL). By combining

techniques like neighborhood pixel transformation, transfer

learning from deep neural networks, and a customized binary

Grey Wolf Algorithm for feature optimization, the system

achieves outstanding accuracy in both binary and subtype

classification of ALL. This approach holds great promise in aiding

medical professionals in the early and precise diagnosis of this

aggressive leukemia, leading to better patient outcomes.
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Houssein et al. investigated a new and efficient deep learning

technique for classifying white blood cells (WBCs) in blood smear

images, crucial for diagnosing leukemia. Leveraging DenseNet-161

and optimizing the training process with cyclical learning rates, the

method achieves exceptional accuracy in classifying various WBC

types, surpassing current state-of-the-art techniques. This

innovative approach has great potential to aid medical

professionals in the early and accurate diagnosis of leukemia,

ultimately improving patient outcomes.

Radiomics and radiogenomics for
predicting tumor behavior, treatment
response, and patient outcomes

Radiomics and radiogenomics are emerging fields that extract

quantitative features from medical images to predict tumor

behavior, treatment response, and patient outcomes. By analyzing

these features, clinicians can make more informed decisions about

treatment strategies and monitor disease progression.

Lan et. al., Radiomics has shown promising applicability in

cancer prediction, especially in recurrence. Lan et al. utilized ROIs

delineated on CT images for extracting over 1100 radiomic features.

To incorporate post-surgical data they used ten features based on

relevance. This work shows employing clinical data over imaging

parameters can be effectively used for predicting stage 1 lung

adenocarcinoma prediction.

Mao et al. explored a novel radiomic nomogram that effectively

differentiates parotid pleomorphic adenoma (PA) from

adenolymphoma (AL) using grayscale ultrasonography. By

combining advanced image analysis techniques with machine

learning algorithms, this non-invasive nomogram provides a
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highly accurate method for distinguishing between these two

common parotid gland tumors. This innovative approach has the

potential to greatly enhance diagnostic precision and guide more

effective treatment planning for patients with parotid gland lesions.

Liu et al., demonstrated the potential of radiomics-based

machine learning models using 18F-FDG PET/CT imaging data

to distinguish between adenocarcinoma and squamous cell

carcinoma in cervical cancer. By extracting and analyzing

numerous quantitative features from medical images, these

models offer valuable insights into tumor biology and assist in

personalized treatment planning. The study highlights the

promising role of radiomics in improving the diagnosis and

management of cervical cancer.

Hu et al. introduced an innovative approach for predicting

microvascular invasion (MVI) in hepatocellular carcinoma (HCC),

a critical factor influencing the disease’s aggressiveness. By

integrating MRI imaging data with microRNA analysis, the

researchers developed a radiogenomics nomogram that

significantly outperforms existing models. This tool offers a

promising path for more accurate risk assessment and

personalized treatment strategies for HCC patients. With its high

sensitivity and specificity, the nomogram shows great potential in

improv ing c l in i ca l dec i s ion-mak ing and enhanc ing

patient outcomes.

Hu et al., explored a novel approach to testicular tumor

diagnosis using computed tomography (CT) texture analysis

(CTTA). This technique involves analyzing the texture patterns

within CT images to identify subtle differences between benign and

malignant tumors. By extracting specific texture features,

researchers were able to develop machine learning models that

can accurately classify tumors with high precision. One of the most

promising findings of this study is the ability of CTTA to
FIGURE 1

PI-YOLO Network architecture, including Input, Backbone, Neck, and Prediction. C in the Prediction module is the number of categories in
the dataset.
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differentiate between primary testicular lymphoma and other

malignant tumors. This distinction is particularly important as it

can influence treatment strategies. Additionally, CTTA can help

identify seminoma, the most common type of testicular germ cell

tumor, from other types of germ cell tumors.
Summary

This Research Topic explores the transformative role of artificial

intelligence (AI) and imaging advancements in oncology, focusing on

how these technologies are reshaping the field. The articles highlight

the growing integration of AI and imaging across various oncology

specialties, demonstrating their potential to revolutionize cancer

diagnosis, treatment planning, and prognostication. By leveraging

cutting-edge imaging modalities, such as CT, PET, US, and MRI,

along with AI-driven models, these innovations are improving the

accuracy of tumor detection, enabling personalized treatment

strategies, and predicting patient outcomes with greater precision.

The Research Topic emphasizes the need for continued research and

development in these areas, with the promise of enhancing patient

care and outcomes across diverse cancer types.
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