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Preliminary investigation of gut
microbiota and associated
metabolic pathways in the
pathogenesis of primary central
nervous system lymphoma
Zhuang Kang †, Rong Zhang †, Shenglan Li, Jiachen Wang,
Mengqian Huang and Wenbin Li*

Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University,
Beijing, China
Background: Primary central nervous system lymphoma (PCNSL) is a rare and

highly aggressive form of non-Hodgkin lymphoma, primarily confined to the

central nervous system. In recent years, growing evidence has indicated that

dysbiosis of the gut microbiota is closely associated with the development of

various malignancies. This study aims to systematically explore the potential role

of gut microbiota and their metabolic pathways in the pathogenesis of PCNSL by

integrating metagenomic and metabolomic approaches.

Materials and methods: A total of 33 PCNSL patients and 32 healthy controls

were enrolled in this study, and fecal samples were collected from each

participant. The fecal samples were analyzed using metagenomic and

metabolomic techniques, followed by KEGG pathway enrichment analysis to

investigate the biological pathways enriched by the differential gut microbiota

and metabolites.

Results: Significant differences were observed in the composition of gut

microbiota and metabolites between PCNSL patients and healthy controls. In

the gut microbiota of PCNSL patients, the abundance of the phylum

Proteobacteria was markedly increased, while the Firmicutes/Bacteroidetes (F/

B) ratio was significantly elevated. Metabolomic analysis revealed that the

abundance of oleamide was significantly reduced in the PCNSL group, while

the relative abundance of deoxycholic acid was significantly elevated. KEGG

pathway analysis indicated that the differential gut microbiota and metabolites

were primarily involved in key metabolic pathways such as nitrogen metabolism,

phenylalanine metabolism, purine metabolism, and pyrimidine metabolism, with

these pathways being more active in PCNSL patients.
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Conclusion: This study is the first to systematically investigate the differences in

gut microbiota and their metabolites between PCNSL patients and healthy

individuals, highlighting the potential role of gut microbiota alterations in the

pathogenesis of PCNSL.
KEYWORDS

gut microbiota, metabolomic analysis, metagenomics analysis, pathogenesis, primary
central nervous system lymphoma (PCNSL)
1 Introduction

Primary central nervous system lymphoma (PCNSL) is a rare and

aggressive subtype of peripheral non-Hodgkin lymphoma (NHL),

primarily affecting the brain, eyes, and spinal cord (1, 2). Treatment

strategies typically include chemotherapy, radiotherapy, and stem cell

transplantation (3). Although PCNSL represents a small proportion

of all brain tumors, it has gained significant attention due to its poor

prognosis, with a 5-year survival rate of only 30%-40% (1, 2). PCNSL

typically occurs in immunocompromised individuals, such as those

with HIV/AIDS or organ transplant recipients, though it can also

affect immunocompetent patients (4–7). Current research suggested

that the pathogenesis of PCNSL involved multiple factors, including

genetic mutations, immune dysregulation, and the tumor

microenvironment (5–7). Despite aggressive treatment, the survival

rate for PCNSL remains low, highlighting the need for a deeper

understanding of its molecular mechanisms and novel therapeutic

approaches. In recent years, the potential role of the gut microbiota in

modulating brain tumor development has garnered considerable

attention, offering new avenues for therapeutic intervention.

The microbial communities present in the gastrointestinal

ecosystem are referred to as gut microbiota, which play a crucial

role in maintaining the intestinal mucosal barrier, immune

homeostasis, and metabolic balance (8, 9). Humans share a

symbiotic relationship with their gut microbiota, and dysbiosis

has been recognized as a significant factor in the development of

various diseases, including tumors (10, 11). Studies have indicated

that gut microbiota dysbiosis may contribute to the occurrence of

solid tumors such as gastric cancer, colorectal cancer,

cholangiocarcinoma, hepatocellular carcinoma, and breast cancer

(12, 13). Several studies have also demonstrated gut microbiota

dysbiosis in lymphoma patients (14, 15). The gut-brain axis refers to

the direct and indirect interactions between the gut microbiota and

their metabolites with various cellular components of the central

nervous system through immune signaling, such as metabolite-

sensing receptors and the cannabinoid pathway (11, 16). With the

discovery of the gut-brain axis, gut microbes are also thought to

potentially play a role in the pathogenesis of brain tumors (11, 17).

Previous research has indicated that gut microbiota is closely

associated with the growth of various brain tumors, such as
02
gliomas (11, 18) and meningiomas (18). Although some studies

have explored the diversity of gut microbiota in PCNSL patients

and healthy controls, to our knowledge, no studies have yet

integrated metagenomic and metabolomic analyses to investigate

the role of gut microbiota in the pathogenesis of PCNSL.

Compared to genomics and proteomics, metagenomics allows

for the direct extraction and analysis of the genomes of all

microorganisms from environmental samples, thereby capturing

metabolic changes in tumor cells more effectively (19). As an

effective tool for quantifying the composition of gut microbiota,

metagenomics has been widely applied to investigate the

relationships between gut microbiota and cancers, inflammatory

diseases, and metabolic disorders (20). Metabolomics, on the other

hand, reflects the metabolic state of an organism by characterizing

changes in metabolites, revealing metabolic features of diseases and

potential biomarkers. By integrating metagenomic and

metabolomic analyses, researchers can explore the interactions

between microbial communities and host metabolism in depth,

making it particularly suitable for studying complex diseases such as

cancer. This combined approach provides a holistic perspective

from both ecological and metabolic viewpoints, aiding in the

identification of novel biomarkers and therapeutic targets.

In this study, we performed a comprehensive analysis

combining metagenomic sequencing and metabolomics on fecal

samples to identify differences in gut microbiota and metabolites

between the patient group and the control group. Through pathway

enrichment analysis, we further elucidated the relevant metabolic

pathways to clarify the potential role of gut microbiota in the

pathogenesis of primary central nervous system lymphoma.
2 Materials and methods

2.1 Study population selection

This study included a total of 65 participants, comprising

33 patients with primary central nervous system lymphoma and

32 healthy controls. Participants with a history of severe

gastrointestinal diseases or long-term antibiotic use were excluded

from both groups. All PCNSL patient samples were collected after a
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definitive pathological diagnosis post-surgery, before the initiation

of any subsequent treatments. Detailed clinical information of the

PCNSL patient group and healthy control group was shown in

Supplementary Table S1. All participants provided informed

consent prior to enrollment. The PCNSL patients were recruited

from the Neuro-Oncology Comprehensive Treatment Unit of

Beijing Tiantan Hospital, Capital Medical University. All patients

were diagnosed through stereotactic biopsy prior to sampling and

had not received any chemotherapy or targeted therapy post-

surgery. Healthy controls were excluded if they had a history of

severe gastrointestinal diseases, long-term medication use, or

regular consumption of probiotic products.
2.2 Metagenomic analysis

2.2.1 DNA extraction of environmental
microorganisms using CTAB method

Add 1000 µL of CTAB lysis buffer to a 2.0 mL Eppendorf tube,

followed by an appropriate amount of lysozyme. Then, introduce

the sample into the lysis buffer. Place the tube in a water bath at 65°

C, gently inverting the tube several times to ensure thorough lysis of

the sample. After lysis, centrifuge the sample to collect the

supernatant. Add a mixture of phenol (pH 8.0): chloroform:

isoamyl alcohol (25:24:1) to the supernatant, invert the tube

thoroughly, and centrifuge at 12,000 rpm for 10 minutes.

Collect the upper aqueous phase, then add chloroform: isoamyl

alcohol (24:1), invert the tube again, and centrifuge at 12,000 rpm

for 10 minutes. Transfer the supernatant to a 1.5 mL centrifuge

tube, add an equal volume of isopropanol, gently invert to mix, and

incubate at -20°C for precipitation. Centrifuge at 12,000 rpm for 10

minutes, carefully discard the supernatant without disturbing the

pellet. Wash the pellet twice with 1 mL of 75% ethanol, retaining a

small amount of liquid for further centrifugation to collect the

pellet, and use a pipette to aspirate the residual liquid. Dry the pellet

in a biosafety cabinet or allow it to air dry at room temperature.

Resuspend the DNA pellet in an appropriate volume of ddH2O. If

necessary, incubate at 55-60°C for 10 minutes to facilitate

dissolution. Add 1 µL of RNase A and incubate at 37°C for 15

minutes to digest RNA present in the sample.

2.2.2 Sample detection
DNA samples were assessed using the following three methods:

(1) Agarose Gel Electrophoresis: This technique was employed to

analyze the purity and integrity of the DNA samples. (2) Nanodrop

Measurement: The OD 260/280 ratio was measured to evaluate the

purity of the DNA. (3) Qubit 2.0 Fluorometer: This instrument was

used for precise quantification of DNA concentration. Once the DNA

samples passed quality checks, a Covaris ultrasonic sonicator was

used to randomly fragment the DNA. Following fragmentation, the

samples underwent a series of steps including end repair, addition of

an A-tail, ligation of sequencing adapters, purification, and PCR

amplification to complete the library preparation. After constructing

the library, initial quantification was performed using Qubit 2.0, and

the library was diluted accordingly. Subsequently, the Agilent 2100
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was used to assess the size of the insert fragments, ensuring they met

the expected specifications. Finally, Q-PCR was utilized to accurately

determine the effective concentration of the library, confirming that

the library quality met the sequencing requirements.

2.2.3 Sequencing
After passing library quality control, libraries were pooled in

proportion to their effective concentration and the target output

data, and then loaded onto the flow cell. Cluster generation was

performed using cBOT, followed by high-throughput sequencing

on the Illumina PE150 platform (2x150 paired-end sequencing).

This process yielded metagenomic sequences from bacteria, fungi,

and viruses present in fecal samples. Raw data were subjected to

quality control using KneadData software (based on Trimmomatic)

for data filtering. Host sequences were removed with Bowtie2.

Species identification was performed using Kraken2, and species

annotation was done using a custom-built microbial database. The

Bracken software was used to predict the actual relative abundance

of species in the samples. For functional annotation, HUMAnN2

software (based on the DIAMOND algorithm) was used to map

reads from each sample to the UniRef90 database, generating

functional annotations and relative abundance tables for various

databases. Abundance clustering analysis, principal coordinate

analysis (PCoA), and non-metric multidimensional scaling

(NMDS, for species only) were performed based on the

abundance tables of species and functions, along with sample

clustering analysis. For data that included group information,

linear discriminant analysis effect size (LEfSe) biomarker analysis

and Dunn’s test were conducted to explore differences in species

and functional composition between samples, revealing potential

biological significance.
2.3 Metabolomics analysis

2.3.1 Metabolite extraction
2.3.1.1 Tissue samples

For tissue samples, 100 mg of each tissue was weighed and fully

ground in liquid nitrogen. The tissue was then resuspended in pre-

cooled 80% methanol, followed by vigorous vortex mixing. After

incubating the samples on ice for 5 minutes, they were centrifuged

at 15,000 g for 20 minutes at 4°C. A portion of the supernatant was

diluted with LC-MS-grade water to achieve a final concentration of

53% methanol. The samples were transferred to new Eppendorf

tubes and centrifuged again at 15,000 g for 20 minutes at 4°C.

Finally, the supernatant was collected and injected into the LC-MS/

MS system for analysis (21).

2.3.1.2 Liquid samples

For liquid samples, 100 mL of the sample was placed in an EP

tube, resuspended in pre-cooled 80% methanol, and thoroughly

vortexed. The sample was incubated on ice for 5 minutes and then

centrifuged at 15,000 g for 20 minutes at 4°C. A portion of the

supernatant was diluted with LC-MS-grade water to a final

concentration of 53% methanol. The sample was transferred to a
frontiersin.org
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new Eppendorf tube and centrifuged again at 15,000 g for 20

minutes at 4°C. Finally, the supernatant was collected and

injected into the LC-MS/MS system for analysis (22, 23).

2.3.1.3 Cell or bacterial samples

For cell or bacterial samples, they were placed in an EP tube,

resuspended in pre-cooled 80%methanol, and vortexed thoroughly.

After thawing the sample on ice and vortexing for 30 seconds, it was

subjected to 6 minutes of ultrasonication. The sample was then

centrifuged at 5,000 rpm for 1 minute at 4°C. The supernatant was

collected and freeze-dried, followed by resuspension in 10%

methanol. Finally, the solution was injected into the LC-MS/MS

system for analysis (24, 25).

2.3.1.4 Cell or bacterial culture medium samples

For culture medium samples, 1 mL of the medium was freeze-

dried and resuspended in pre-cooled 80% methanol, followed by

thorough vortexing. The sample was incubated on ice for 5 minutes

and centrifuged at 15,000 g for 15 minutes at 4°C. A portion of the

supernatant was diluted with LC-MS-grade water to a final

concentration of 53% methanol. The sample was transferred to a

new Eppendorf tube and centrifuged again at 15,000 g for 15

minutes at 4°C. The supernatant was then collected and injected

into the LC-MS/MS system for analysis. This completes the

extraction procedure for different sample types prior to LC-MS/

MS analysis.

2.3.2 UHPLC-MS/MS analysis
Ultra-high-performance liquid chromatography-tandem mass

spectrometry (UHPLC-MS/MS) analysis was performed using a

Vanquish UHPLC system (Thermo Fisher, Germany) coupled with

an Orbitrap Q Exactive™ HF mass spectrometer. Samples were

separated over a 17-minute linear gradient on a Hypesil Gold column

(100×2.1 mm, 1.9 mm) at a flow rate of 0.2 mL/min. In positive ion

mode, the mobile phase A consisted of 0.1% formic acid in water, and

mobile phase B was methanol. In negative ion mode, mobile phase A

was 5 mM ammonium acetate (pH 9.0), and mobile phase B was

methanol. The solvent gradient was programmed as follows: initial

2% B for 1.5 minutes; gradient ramp from 2% to 100% B over 3

minutes; holding at 100% B for 10 minutes; then returning rapidly to

2% B at 10.1 minutes and maintaining it until 12 minutes.

Mass spectrometry was operated in both positive and negative

ionization modes with a spray voltage of 3.5 kV, a capillary

temperature of 320°C, sheath gas flow at 35 psi, auxiliary gas flow

at 10 L/min, an S-lens RF level set to 60, and an auxiliary gas heater

temperature of 350°C. This method ensured high sensitivity and

accuracy, making it suitable for quantitative analysis in

metabolomics and other biomarker studies.

2.3.3 Data processing and metabolite
identification

The raw data files generated by UHPLC-MS/MS were processed

using Compound Discoverer 3.1 (CD3.1, ThermoFisher) software,
Frontiers in Oncology 04
which includes peak alignment, peak extraction, and metabolite

quantification. The main parameters were set as follows: retention

time tolerance of 0.2 minutes, mass accuracy tolerance of 5 ppm,

signal intensity tolerance of 30%, signal-to-noise ratio set to 3, and

minimum intensity threshold. Peak intensities were normalized to

the total ion current, and the normalized data were used to deduce

molecular formulas through the analysis of adduct ions, molecular

ions, and fragment ions.

Metabolite identification was performed by matching the data

with the mzCloud (https://www.mzcloud.org/), mzVault, and

MassList databases, ensuring precise qualitative and relative

quantitative results. This data processing workflow guarantees

high-resolution metabolite identification, making it suitable for

biomarker discovery and biochemical pathway analysis in

metabolomics research.
2.3.4 Data analysis
Metabolite annotation was performed using the Kyoto Encyclopedia

of Genes and Genomes (KEGG) database (https://www.genome.jp/

kegg/), HMDB database (https://hmdb.ca/metabolites), and

LIPIDMaps database (http://www.lipidmaps.org/). Functional

pathway enrichment analysis was performed to reveal the

differential functional pathways between the two groups. Data

normalization, principal component analysis (PCA), partial

least squares discriminant analysis (PLS-DA), orthogonal PLS-

DA (OPLS-DA), random forest analysis (RF), and support

vector machine (SVM) analysis were all carried out using the

MetaboAnalystR package in R software (26). To ensure the data

conformed to a normal distribution, normalization was performed

using the Normalization function in MetaboAnalystR, with

parameters such as MedianNorm, LogNorm, and AutoNorm

selected accordingly. Univariate analysis (t-test) was used to

calculate statistical significance (P-value). After normalizing the

data to z-scores, clustering heatmaps were generated using the

Pheatmap package in R. Additionally, volcano plots were

constructed using the ggplot2 package in R, plotting log2 (Fold

Change) against -log10 (P-value) to identify significantly altered

metabolites. This comprehensive data analysis pipeline provides

robust support for the identification of key metabolites and the

evaluation of statistical significance in metabolomics research.
2.4 Statistical analysis

All bioinformatics data analyses were performed using R

software (version 4.1.1) in combination with Bioconductor

packages. Laboratory data analyses were conducted using

GraphPad Prism software. Statistical significance was defined by

the following criteria: Spearman correlation coefficient |R| > 0.3,

variable importance in projection (VIP) score > 1, log2 (Fold

Change) > 1, and P-value < 0.05. Results meeting these thresholds

were considered statistically significant, indicating potential

biological relevance of the observed correlations or differences.
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3 Results

3.1 Composition, species diversity, and
phylum-level differences in gut microbiota

Firstly, the differences in gut microbiota composition between

PCNSL patients and healthy controls were analyzed. A Venn diagram

revealed that 2,369 gut microbial species were shared between the two

groups (Figure 1A). In addition, 1,045 species were unique to the PCNSL

group, while 814 species were unique to the control group, indicating a

potential significant difference in gut microbiota composition between

the two groups. PCoA further validated this difference, showing a

significant variation in microbial composition between the two groups

(p = 0.002, F = 3.235) (Figure 1B). Moreover, NMDS analysis also

confirmed the significant divergence in gut microbiota between the

groups (p = 0.002, F = 3.235, Stress = 0.177) (Figure 1C). These findings

suggest notable differences in gut microbial diversity and composition

between PCNSL patients and healthy controls.

Pie charts were used to further illustrate the major gut microbiota

composition and their relative abundance at the phylum level

between the patient and control groups (Figures 1D, E) In the

PCNSL patient group, the dominant phyla were Bacteroidetes

(35.06%), Firmicutes (34.04%), Uroviricota (9.97%), Proteobacteria

(7.59%), Actinobacteria (6.26%), Ascomycota (2.18%),
Frontiers in Oncology 05
Verrucomicrobia (0.66%), Fusobacteria (0.24%), and Hofneiviricota

(0.08%) (Figure 1D). In contrast, the main phyla in the healthy

control group included Bacteroidetes (45.57%), Firmicutes (33.24%),

Uroviricota (6.82%), Actinobacteria (6.0%), Proteobacteria (3.72%),

Verrucomicrobia (0.27%), Fusobacteria (0.23%), Hofneiviricota

(0.14%), and Ascomycota (0.06%) (Figure 1E).

These findings indicate significant differences in the phylum-

level microbiota composition between the two groups. To further

explore these differences, linear discriminant analysis effect size

(LEfSe) was applied (Figure 1F). The analysis revealed that

Basidiomycota (p=0.0025), Proteobacteria (p=0.04995), and

Tenericutes (p=0.0116) were significantly more abundant in the

PCNSL patient group compared to the control group. On the other

hand, Hofneiviricota (p=0.0296) and Bacteroidetes (p=0.0454) were

more prevalent in the healthy controls. These results suggest

distinct microbial profiles at the phylum level between PCNSL

patients and healthy individuals.
3.2 Functional pathway enrichment
analysis of differential gut microbiota

Functional pathway enrichment analysis was conducted on the

significantly different gut microbiota between the PCNSL patient
FIGURE 1

Composition and species diversity of the gut microbiota in the patient and control groups. (A) The Venn diagram illustrates the compositional
features of the gut microbiota in the patient and control groups (B) PCoA analysis shows significant differences in the gut microbiota composition
between the patient and control groups (C) NMDS analysis confirms the significant differences in the gut microbiota composition between the
patient and control groups (D) The relative abundance distribution of the gut microbiota at the phylum level in the patient group (E) The relative
abundance distribution of the gut microbiota at the phylum level in the control group (F) The differences of gut microbiota at the phylum level
between the patient and control groups.
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group and the healthy control group using LEfSe and KEGG

analysis. This aimed to further explore metabolic pathway

differences between the two groups. KEGG analysis further

revealed higher activity in the metabolism of other amino acids

and xenobiotics biodegradation and metabolism in the PCNSL

group. In contrast, pathways associated with amino acid

metabolism, biosynthesis of other secondary metabolites, global

and overview maps, and energy metabolism were more prominently

expressed in the healthy control group (Figure 2A).

Figure 2B showed that pathways related to chemical structure

transformation maps (p=0.0018), neurodegenerative diseases

(p=0.0041), xenobiotics biodegradation and metabolism (p=0.0175),

cancer-specific types (p=0.0181), and aging (p=0.0426) were

significantly more active in the PCNSL group (Figure 2B).

Further analysis of these functional pathways showed that the

metabolic activity of the D-alanine metabolism pathway was

significantly higher in the PCNSL group compared to controls.

On the other hand, pathways such as valine, leucine, and isoleucine
Frontiers in Oncology 06
biosynthesis, biosynthesis of amino acids, thiamine metabolism,

biotin metabolism, and 2-oxocarboxylic acid metabolism exhibited

higher metabolic activity in the control group (Supplementary

Figure S1). These findings suggest that gut microbiota may

contribute to the onset and progression of PCNSL by influencing

these metabolic pathways.
3.3 Analysis of metabolite composition,
differences, correlations, and characteristic
metabolites

Metabolomic analysis was performed to further investigate the

differences in fecal metabolite composition between the PCNSL

patient group and the healthy control group. Principal component

analysis (PCA) revealed significant differences in the composition of

positive ion metabolites between the two groups (Figure 3A). Pie

chart analysis demonstrated that the dominant positive ion
FIGURE 2

Functional pathway analysis related to differential microbes in the patient and control groups. (A) KEGG pathway analysis reveals significant
differences in functional pathways between the patient and control groups (B) Comparison of dominant metabolic pathways between the patient
and control groups. NS means no statistical significance. *P < 0.05, **P < 0.01.
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metabolites differed markedly between the groups, with the relative

abundance of oleamide significantly lower in the PCNSL group

compared to the control group (Figures 3B, C). Similarly, negative

ion metabolites were analyzed, showing significant differences

between the groups, particularly with a higher proportion of

deoxycholic acid in the PCNSL group (Figures 3D–F).

In addition, a combination of machine learning techniques,

support vector machine (SVM) analysis, and univariate analysis was

applied to further investigate the differences in both positive and

negative ion metabolites between the two groups. The results

consistently indicated significant differences in metabolite

composition, suggesting that these metabolites may serve as

potential biomarkers for PCNSL (Supplementary Figure S2).
3.4 Pathway enrichment analysis of
differential metabolites

Lastly, a pathway enrichment analysis was conducted on the

differential metabolites between the PCNSL patient group and the

healthy control group to explore the metabolic pathways these

metabolites might affect. The results revealed that the differential

positive ion metabolites were mainly associated with the following
Frontiers in Oncology 07
metabolic pathways (Figure 4A): nitrogen metabolism,

phenylalanine metabolism, purine metabolism, histidine

metabolism, alanine, aspartate, and glutamate metabolism,

pantothenate and CoA biosynthesis, beta-alanine metabolism,

arginine and proline metabolism, D-glutamine and D-glutamate

metabolism, and tryptophan metabolism.

For the differential negative ion metabolites, enrichment

analysis indicated their involvement in pyrimidine metabolism,

tyrosine metabolism, and purine metabolism (Figure 4B). These

findings suggest that the differential metabolites may contribute to

the pathogenesis and progression of PCNSL by regulating these

metabolic pathways.
4 Discussion

Primary central nervous system lymphoma is a rare form of

lymphoma primarily confined to the central nervous system. Due to

its low incidence, current knowledge regarding PCNSL remains

fragmented, and its pathogenesis has not been fully elucidated (27).

Alterations in the gut microbiota may significantly influence host

metabolism, inflammatory responses, and immune function (28).

The gut microbiota communicates bidirectionally with the central
FIGURE 3

Composition and differences in positive and negative ion metabolites between the patient and control groups. (A) Analysis of differences in positive
ion metabolites between the patient and control groups (B) Relative composition of positive ion metabolites in the patient group (C) Relative
composition of positive ion metabolites in the control group (D) Analysis of differences in negative ion metabolites between the patient and control
groups (E) Relative composition of negative ion metabolites in the patient group (F) Relative composition of negative ion metabolites in the
control group.
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nervous system through the gut-brain axis, and its dysregulation

may contribute to the development of central nervous system

diseases (29, 30). Therefore, our study focuses on the potential

role of gut microbiota in the pathogenesis of PCNSL. Through a

multi-level analysis of gut microbiota and metabolites, we identified

significant differences between PCNSL patients and healthy

controls in terms of microbial composition and metabolite

profiles. This study provides novel insights into the potential

involvement of gut microbiota in PCNSL, highlighting the role of

microbiota and metabolites in the disease’s pathophysiology.

In terms of gut microbiota composition, Venn diagrams, PCoA,

and NMDS analysis consistently demonstrated significant

differences in microbial communities and species diversity

between PCNSL patients and healthy controls. This finding is

consistent with previous studies, such as the research by Louha

et al., which demonstrated significant changes in microbial diversity

in PCNSL patients (31). Notably, our study showed that the relative

abundance of Proteobacteria was higher in the patient group.

Previous studies have shown that an increase in Proteobacteria

can promote cancer development through multiple mechanisms.

Overgrowth of Proteobacteria impairs intestinal barrier function,

increases gut permeability, and allows bacterial metabolites and

inflammatory mediators to enter the bloodstream, triggering

systemic inflammation. This creates a favorable environment for

tumorigenesis (32, 33). Additionally, the upregulation of

Proteobacteria may alter the tumor microenvironment through

immune suppression and angiogenesis, enhancing tumor immune

evasion and thus promoting tumor development and progression

(34–37). Some Proteobacteria pathogens can also produce

carcinogenic toxins directly linked to cancer promotion (35, 38).

Our findings also revealed a significantly higher Firmicutes/

Bacteroidetes (F/B) ratio in the PCNSL patient group compared to

the control group. The F/B ratio is widely recognized as a marker of
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gut dysbiosis, and changes in Proteobacteria are thought to be a

major cause of this dysbiosis (39). Other bacterial phyla’s

imbalances may not significantly impact the F/B ratio (39, 40).

Previous studies have demonstrated a positive correlation between

the F/B ratio, tumor burden, cell proliferation, and inflammatory

cytokines, with an elevated F/B ratio being confirmed as a risk factor

for colorectal cancer (39, 41). In this study, the significantly higher

F/B ratio in PCNSL patients, along with increased Proteobacteria

abundance, suggests that these patients experience pronounced gut

dysbiosis. This dysbiosis may be closely related to the development

of PCNSL, with gut microbiota potentially influencing the disease’s

pathogenesis through metabolic and immune regulatory pathways.

In the metabolomic differential analysis, we found significant

differences in both positive and negative ion metabolites between

PCNSL patients and healthy controls, suggesting that these

metabolites may play a crucial role in disease development.

Among the positive ion metabolites, oleamide showed a

significant decrease in abundance in the patient group, while

deoxycholic acid was significantly elevated among the negative

ion metabolites. Oleamide is a bioactive lipid that can be derived

from endogenous synthesis (42) or produced by gut microbiota

(43). After entering systemic circulation, it is excreted primarily

through the hepatobiliary pathway (44, 45). Oleamide is believed to

regulate processes such as cell proliferation, differentiation, and

apoptosis through pathways related to the endocannabinoid system

and G-protein-coupled receptors, thus influencing tumor growth

(46–50). Furthermore, oleamide possesses anti-inflammatory

properties, and studies have shown that it may reduce cancer risk

by mitigating inflammation, thus inhibiting tumor progression.

Oleamide also plays an immunomodulatory role in the tumor

microenvironment, affecting tumor cell survival and migration. It

has been reported that oleamide plays a critical role in the

development of liver and breast cancers (51–55). On the other
FIGURE 4

Metabolic pathway analysis related to differential metabolites. (A) Metabolic pathways associated with differential positive ion metabolites in the
patient and control groups (B) Metabolic pathways associated with differential negative ion metabolites in the patient and control groups.
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hand, deoxycholic acid, a secondary bile acid, is closely linked to

changes in gut microbiota and inflammatory responses, potentially

promoting cancer through pro-inflammatory and carcinogenic

effects on the intestinal mucosa. Increased deoxycholic acid levels

have been strongly associated with colorectal cancer development

(56–58). Therefore, we speculate that the downregulation of

oleamide and the upregulation of deoxycholic acid may similarly

contribute to the pathogenesis of PCNSL. These metabolic

alterations likely play roles in modulating tumor-promoting

inflammation and immune responses, suggesting potential

mechanisms through which gut microbiota and metabolites

influence PCNSL progression.

In the pathway enrichment analysis, we found that the

differential metabolites between PCNSL patients and healthy

controls were mainly involved in key metabolic pathways such as

nitrogen metabolism, phenylalanine metabolism, purine

metabolism, and pyrimidine metabolism. Previous studies have

shown that metabolic dysregulation supports tumor cell growth

while enabling immune evasion, playing a crucial role in lymphoma

development and progression (5). Interestingly, these pathways

were notably more active in the PCNSL patient group, suggesting

that they may influence the pathogenesis of PCNSL by regulating

energy metabolism, amino acid metabolism, and immune function.

Interestingly, while there is no current literature linking alanine

metabolism specifically to PCNSL, our findings suggest a potential

mechanism where increased alanine metabolism may provide more

pyruvate for gluconeogenesis, producing large amounts of glucose

to support the rapid proliferation of tumor cells (59, 60). Alanine is

also involved in the tricarboxylic acid (TCA) cycle, which is crucial

for energy production. Previous studies have shown that in

pancreatic ductal adenocarcinoma, alanine contributes carbon to

the TCA cycle, allowing glucose to be used for nucleic acid

synthesis, thereby promoting tumor growth (61, 62). Elevated

levels of alanine metabolism have also been confirmed in

melanoma and prostate cancer (60, 63). Thus, our study is the

first to report changes in alanine metabolism in PCNSL patients.

However, the precise role of these metabolic pathways in PCNSL

requires further investigation. These findings provide a foundation

for exploring how alanine metabolism and related pathways

contribute to tumorigenesis in PCNSL, potentially revealing new

therapeutic targets.

This study also has several limitations. First, the findings are

based on the analysis of clinical fecal samples. While we have

provided preliminary evidence suggesting that the gut microbiota

may be involved in the pathogenesis of PCNSL, this research is still

in the exploratory phase. We have not yet performed an in-depth

interactive analysis of gut microbiota and metabolites, and therefore

not yet comprehensively and systematically validated the specific

mechanisms by which the gut microbiota may influence PCNSL.

Future large-scale clinical studies and experimental validation are

required to better understand its potential role in PCNSL. Secondly,

although we have made efforts to control for various variables in the
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study, eliminating all potential bias related to the gut microbiota

remains a challenge. The composition and function of the gut

microbiota are influenced by various factors such as diet, antibiotic

use, and the host immune status, which can differ significantly

between individuals. Therefore, it is crucial to consider these

potential confounders, and future research should further refine

experimental designs to minimize bias and enhance the robustness

of the findings.
5 Conclusion

In summary, this study demonstrates significant alterations in both

the gut microbiota and metabolome of PCNSL patients, suggesting

that these changes may contribute to the pathogenesis and progression

of PCNSL through their involvement in multiple metabolic pathways.

Future research should focus on further investigating these

characteristic metabolites and microbial species, as well as their

interactions with metabolic pathways. This will help to elucidate the

underlying mechanisms of PCNSL development and provide a

theoretical basis for the development of novel therapeutic strategies.
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