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Spatial genomics reveals
cholesterol metabolism as a key
factor in colorectal cancer
immunotherapy resistance
Andrew J. Kavran1, Yulong Bai2, Brian Rabe1, Anna Kreshock1,
Andrew Fisher2, Yelena Cheng1, Anne Lewin3, Chao Dai1,
Matthew J. Meyer1†, Konstantinos J. Mavrakis1†,
Anna Lyubetskaya1*† and Eugene Drokhlyansky1*†

1Mechanisms of Cancer Resistance Thematic Research Center (TRC), Bristol Myers Squibb,
Cambridge, MA, United States, 2Informatics and Predictive Sciences, Bristol Myers Squibb, Cambridge,
MA, United States, 3Translational Medicine, Bristol Myers Squibb, Cambridge, MA, United States
Immune checkpoint inhibitors (ICIs) have transformed the treatment landscape

across multiple cancer types achieving durable responses for a significant

number of patients. Despite their success, many patients still fail to respond to

ICIs or develop resistance soon after treatment. We sought to identify early

treatment features associated with ICI outcome. We leveraged the MC38

syngeneic tumor model because it has variable response to ICI therapy driven

by tumor intrinsic heterogeneity. ICI response was assessed based on the level of

immune cell infiltration into the tumor – a well-established clinical hallmark of

ICI response. We generated a spatial atlas of 48,636 transcriptome-wide spots

across 16 tumors using spatial transcriptomics; given the tumors were difficult to

profile, we developed an enhanced transcriptome capture protocol yielding high

quality spatial data. In total, we identified 8 tumor cell subsets (e.g., proliferative,

inflamed, and vascularized) and 4 stroma subsets (e.g., immune and fibroblast).

Each tumor had orthogonal histology and bulk-RNA sequencing data, which

served to validate and benchmark observations from the spatial data. Our spatial

atlas revealed that increased tumor cell cholesterol regulation, synthesis, and

transport were associated with a lack of ICI response. Conversely, inflammation

and T cell infiltration were associated with response. We further leveraged

spatially aware gene expression analysis, to demonstrate that high cholesterol

synthesis by tumor cells was associated with cytotoxic CD8 T cell exclusion.

Finally, we demonstrate that bulk RNA-sequencing was able to detect immune

correlates of response but lacked the sensitivity to detect cholesterol synthesis as

a feature of resistance.
KEYWORDS

spatial transcriptomics, cholesterol, MC38, colorectal cancer, Visium, PD-1,
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Introduction

Immune checkpoint inhibitors (ICIs) transformed the field of

immuno-oncology and the treatment landscape for multiple cancer

types, including melanoma (1), non-small cell lung cancer (2), renal

cell carcinoma (3), and microsatellite instability-high (MSI-H)

colorectal carcinoma (CRC) (4, 5). Antibodies targeting PD-1

(aPD-1), nivolumab and pembrolizumab, represent two of the

leading ICI therapies (6). Their efficacy is associated with the

presence of infiltrating CD8 T cells in the tumor, which drive

tumor cell clearance when the interaction between PD1 and its

ligand, PD-L1, is blocked (7–9).

Despite their success, many patients either do not respond to

ICI treatments or develop resistance following initial response due

to tumor cell intrinsic and extrinsic factors (10–12). This

complexity is well captured using single cell and spatial genomics,

(13–23) and studies to date have characterized both post-treatment

human (15, 24–26) and mouse tumors (27–30) suggesting there is a

progression to developing ICI therapy resistance. First, intrinsic

tumor variability determines the level of initial ICI response. For

example, the baseline levels of MSI status and PD-L1 expression are

well-established predictive biomarkers of response (31). Next,

intrinsically recalcitrant tumors develop further adaptations

leading to immune evasion and suppression. These adaptations

include resistance to immune surveillance through JAK/STAT

pathway mutations (32), reduced antigenicity (32, 33) and

metabolic changes (34–36). In complement, the recruitment and

action of immunosuppressive cells (e.g., myeloid-derived

suppressor cells, regulatory T cells, and stromal fibroblasts)

dampen immune responses by cytotoxic T cells (37–40). Here, we

sought to further understand how tumor intrinsic heterogeneity

shapes the initial phase of ICI response and resistance by

characterizing tumors early in their pharmacodynamic response.

Specifically, we leveraged spatial genomics and pathology

approaches to characterize the association of tumor intrinsic

heterogeneity with the level of cytotoxic T cell infiltration

stimulated by short term aPD-1 antibody administration in vivo.

We selected the MC38 syngeneic CRC model due to its variable

response to aPD-1 therapy, which enables the study of ICI response

and resistance based on intrinsic heterogeneity within a single

model (28, 30, 41–43). We reasoned that tumor cell intrinsic

signaling heterogeneity contributes to the variable aPD-1 response

phenotype making this an ideal reductionist model to dissect

differences in tumor cell intrinsic signaling associated with ICI

response. Additionally, we sought to evaluate the utility of spatial

transcriptomics (ST) to identify resistance mechanisms relative to

traditional bulk profiling methods (20, 21, 44–50).

We generated a spatial map comprising transcriptomics and

histology characterization of aPD-1 early responders and non-

responders. This map includes 48,636 spatially resolved,

transcriptome-wide, low-bulk spots from aPD-1 and control IgG

treated tumors, matched to complementary immunohistochemistry-

staining (i.e., CD4 and CD8) and histology (i.e., H&E) analysis. These

multi-modal data enabled orthogonal validation of aPD-1 response

and spatial gene-expression annotation, respectively (19). We also
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generated matched bulk gene expression profiles (i.e., RNA-seq) to

benchmark the utility of ST to identify features of aPD-1 resistance.

We uncovered the association of tumor-intrinsic cholesterol synthesis

with anti-PD1 therapy resistance – an association that was not readily

identified in our bulk profiling of matched tumor samples.

This observation aligns with recent studies linking cholesterol

metabolism to immune regulation in various cancers, including

melanoma, lung cancer, and breast cancer (51–54). However,

multiple factors influence tumor cholesterol levels (53, 55),

resulting in diverse immune phenotypes (51, 56–62). In this

study, we further sought to understand whether cholesterol

metabolism in tumor cells correlates with aPD-1 response, and

which T cell evasion mechanism is associated with resistance (e.g.,

recruitment vs. exclusion; activation vs. exhaustion). Our spatially

aware gene expression analysis highlighted that tumor-intrinsic

heterogeneity in cholesterol metabolism exists before aPD-1

treatment and is linked to therapy resistance, with T cell

exclusion underlying the resistance phenotype in MC38.
Results

MC38 aPD-1 responders have elevated
immune infiltration and activation

MC38 is an MSI-H CRC model that has a variable response to

aPD-1 therapy enabling the interrogation of response and resistance

within the same model (28, 30, 41–44). MC38 tumors also

recapitulate clinical disease features linked to therapeutic

resistance, including T cell exhaustion and dense stroma (63).

Here, we sought to understand tumor intrinsic determinants of

response to aPD-1 by collecting treated MC38 tumors at an early

pharmacodynamic time point (5 days post-treatment) to minimize

confounding signal from tumor death, which would obscure

transcriptional characterization of tumor cells (Figure 1A).

We first classified the aPD-1 treated tumors (n=8 IgG control

and n=8 aPD-1) into responders and non-responders. Tumors were

assessed by immunohistochemistry staining revealing a subset of

tumors with elevated levels of tumor infiltrating CD8 T cells in the

tumor compartments (Figure 1B, C, p-value = 0.034 - R vs NR

Welch’s T-test). We designated these tumors as responders (n=2)

(28). The other aPD-1 treated tumors had CD8 T cell levels

comparable to the IgG baseline (Figure 1C), which we designated

as non-responders (n=6; n=8 IgG).

We next assessed gene expression features of response and

resistance using bulk RNA-sequencing. At a high level, the aPD-1

responder tumors were outliers compared to the aPD-1 non-

responder and IgG tumors (Figure 1D). Consistent with the IHC,

these differences primarily arose from immune populations that

infiltrated the responder tumors, including increased expression of

T cell (e.g., Cd8a, Cd8b1, and Cd4) and immune activation markers

(e.g., Syk, Lat, Itk, Irf4) (Figures 1E, F, Supplementary Table S1). In

contrast, non-responders had fewer significant genes (1024 vs. 94,

respectively) and no significant enrichment of gene sets. Amongst

these genes, we identified Lgals1 as a differentially expressed (DE)
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gene with an established immunosuppressive role (64, 65)

(Figure 1E, Supplementary Table S1).

Overall, we were able to detect histology and expression-based

hallmarks of ICI response at an early time point following aPD-1

administration. The two aPD-1 responder tumors demonstrated

increased infiltration of activated cytotoxic T cells compared to

non-responder and control tumors. However, bulk gene expression

analysis did not provide substantial insights or associations

with resistance.
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Spatial transcriptomic map of ICI-treated
MC38 tumors

We sought to understand whether ST techniques could reveal

resistance associations in non-responders that were missed by bulk

profiling. To this end, we generated a transcriptome-wide spatial

atlas across IgG control, aPD-1 responder, and aPD-1 non-

responder tumors. ST was applied to the same tumors as profiled

by bulk RNA-seq and histology.
FIGURE 1

ICI responders have elevated immune infiltration and activation. (A) Experimental overview of ICI treatment and molecular characterizations. (B)
Example IHC images of CD8 (red) and CD4 (brown) T cell markers. The columns correspond to treatment and response status: IgG control, aPD-1
Non-Responder (NR), and aPD-1 Responder (R). The top row displays the full tumor section, and the bottom row is a high resolution inset. Inset
location is marked as a square in top row. (C) Quantification of CD8 positive cells in tissue compartments identified via digital pathology. IHC images
were co-registered to the Visium H&E section, and positive cells in each capture spot were counted and normalized by the total number of spots
per compartment and tumor section. (D) Principal components analysis (PCA) plot of bulk RNA-seq data for IgG control, aPD-1 non-responder (NR),
and aPD-1 responder (R). (E) Volcano plot of differential gene expression between aPD-1 non-responder and aPD-1 responder tumors. Significant
genes are marked in red and select immune related genes are labeled. (F) Gene set analysis (Fisher’s test) of the top significant genes upregulated in
responders using Gene Ontology Biological Processes gene sets (109). Point size is proportional to significant genes count for each gene set.
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Initially, the ST base protocol (Visium for FFPE) yielded poor

data quality (Figures 2A, B). The spots under the tissue exhibited a

low number of unique molecular identifiers (UMIs) and genes

detected with captured probes localized to spots outside of the tissue

boundary (~63%) indicating capture of ambient signal beyond the

tissue and suggesting inadequate tissue permeabilization. To

address this issue, we added an additional enzymatic digestion

step, which improved probe capture in spots under the tissue

(methods). This modification resulted in a ~26-fold increase in

median UMIs per spot and ~8-fold increase of median genes per

spot (Figures 2A, B). This protocol optimization not only enabled
Frontiers in Oncology 04
analysis of these tissues but also offers a potential improvement for

other challenging spatial transcriptomics indications.

Using the optimized protocol, we profiled 16 MC38 syngeneic

tumors with 1-3 sections each for a total of 21 different sections.

After stringent quality control filtering, our dataset consisted of

48,636 spots (55 µm diameter). Each spot captures low-bulk gene

expression from an admixture of ~20 cells, which is small enough to

enable the capture of dominant cell types in both mouse and human

tumors (19). Given the low-bulk resolution, we refer to groupings of

spots as subsets rather than single cells. Integrated clustering of the

cohort partitioned the tissue into 8 tumor cell subsets and 4 stroma
FIGURE 2

Spatial transcriptomic map of ICI-treated MC38 tumors. (A) Spatial distributions of unique molecular identifiers (UMIs) per spot with the base Visium
protocol (top) or optimized protocol with collagenase and dispase permeabilization step (bottom). (B) Gene expression capture metrics of the base
and optimized spatial transcriptomics protocols. (C) UMAP of unsupervised clusters from 48,636 ST spots across 21 tumor sections from 16 MC38
tumors. Clusters represent tumor and stroma subsets, named based on differentially expressed genes (Supplementary Table S2). (D) Spatial
distribution of unsupervised clusters from (C) for a single tissue section (right) and its corresponding hematoxylin & eosin (H&E) stain (left). (E) Dot
plot of differentially expressed biomarkers for each unsupervised cluster in the MC38 spatial atlas. Clusters are colored to match the legend above in
(C). Dot size is proportional to the number of spots that express the gene, and color matches the z-scaled gene expression. (F) Treatment and
response group composition based on unsupervised clusters present within each tumor. Proportions are first averaged across replicate sections, if
applicable, and then treatment group.
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subsets observed across all treatment groups (Figures 2C–E,

Supplementary Table S2). The tumor cell subsets stratified by

three main types: First, tumor-dominant cell subsets (Tumor 1

and 2 clusters) lacking clear enrichment of other cell types, with

Tumor 1 cluster characterized by greater expression of proliferation

genes (e.g., Ccnd1, Top2a, Myc). Second, tumor subsets enriched

for microenvironment features, including hypoxia markers (e.g.,

Slc2a1, Pdk1, Car9), extracellular matrix (ECM) genes (e.g., Matn2,

Fn1, Dcn, Col6a1), vasculature (e.g., Cdh5, Pecam1, Vwf), and

interferon response genes (e.g., Rsad2, Ifit3, Gbp3, Cxcl10, Cd274).

Third, tumor subsets enriched for immune markers, including

cytotoxic immune genes (e.g., Prf1, Gzmb, Gzmg) and mast cell

protease genes (e.g., Mcpt1, Cma1, Tpsb2). For stroma, we

identified subsets enriched for vasculature genes (e.g. Cdh5,

Pecam1, Vwf), fibroblast markers (e.g., Col1a1, Col1a2, Postn),

strong expression of secreted immune factors (e.g., Saa3, Cxcl12

and Cxcl14) and myeloid markers (e.g., Csf1r, Itgam, Cd163, Cd68).

All subsets are named for these major features, respectively

(Figures 2C–E, Supplementary Table S2).

The presence of tumor cell and stroma subsets across all tumors

enabled us to assess whether the composition of tumors changed

with treatment or response groups. Within the tumor cell

compartment, the hypoxic tumor subset comprised a higher

proportion of spots within aPD-1 non-responders compared to

aPD-1 responders (14.3% vs. 8.9%, respectively) (Figure 2F). This

observation is in line with hypoxic immune suppression reducing

aPD-1 efficacy (66–68). Within the stromal compartment, the

immune high-1 subset was more abundant in aPD-1 responders

than non-responders (5.8% vs. 0.5%, respectively) (Figure 2F),

which reflects an increased presence of immune cells following

treatment. Overall, these differences in composition fit with a model

where response to aPD-1 is associated with less hypoxia and more

immune inflamed stroma (41, 69, 70).
Cholesterol pathway associated with aPD-1
non-responders

Leveraging our spatial atlas, we sought to identify tumor

intrinsic gene expression associated with aPD-1 response and

resistance by performing differential expression analysis

(methods) (71, 72) within the same tumor cell and stroma subsets

across responder and non-responder tumors. Subsets enriched for

tumor cells had substantially greater average number of DE genes

than stroma subsets (520 vs 160 responders, 112 vs 32 non-

responders) (Figure 3A, Supplementary Table S3) supporting our

hypothesis that tumor cell intrinsic signaling underlies the variable

response to aPD-1 treatment. Furthermore, responder tumors had

more upregulated genes than non-responders, which is consistent

with our bulk RNA-seq data indicating that most gene expression

differences observed by bulk-RNA seq were driven by the

tumor compartment.

We first evaluated response-associated DE genes within the

tumor cell compartment that were upregulated in responders. The

dominant signal across tumor cell subsets was driven by immune

infiltration and inflammation (Supplementary Table S3). For
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example, in the Tumor 1 subset, upregulated genes included CD8

T cell (e.g., Gzma, Prf1, Klrg1, Trbv29, Pdcd1, Havcr2) and

macrophage/monocyte (e.g., Cd68, Aif1) biomarkers (Figure 3B)

(41). This subset also had upregulated interferon-gamma (73) and

tumor necrosis factor signaling (74) in responders (Figure 3B). The

concordance of these observations with established ICI biology (28,

41, 73, 74) supports the accuracy of our approach.

We next sought to identify potential tumor cell intrinsic

mechanisms of resistance in non-responder tumors. The dominant

signal in non-responders was higher expression of genes across the

cholesterol pathway including transcriptional regulation,

biosynthesis, and transport (Figures 3B, C). The upregulated DE

genes in the Tumor 1 subset of non-responders included Hmgcs1,

Nsdhl, Ch25h, Insig1, Fdps, Sqle, Fdft1, Cyp51, and Osbp (Figure 3B)

(75–78). Across all tumor cell subsets, a total of 16 genes directly

involved in cholesterol homeostasis were upregulated in non-

responder tumors (Figures 3C, D). These cholesterol genes were

more likely to be upregulated in tumor cell subsets than stromal ones

(Figures 3D, E). The subsets that had the greatest number of

upregulated cholesterol DE genes were Tumor 1 (9 genes), Tumor:

vasculature (16 genes) and Tumor: ECM (9 genes) compared with

lower abundance in Tumor: hypoxia (5 genes) and Tumor: IFN

response (5 genes) (Figure 3D). These subsets comprised a higher

proportion of the tumor clusters in responders and non-responders,

respectively (Figure 2F). Taken together, these data indicate that

cholesterol production was both upregulated in the tumor cells of

non-responders, and that these cells comprised a higher fraction of

the total in non-responder tumors.

We reasoned that if the level of cholesterol synthesis was due to

intrinsic tumor cell heterogeneity, then the IgG control tumors

should also have variable expression of cholesterol synthesis.

Indeed, an IgG control tumor stood out by its low level of

cholesterol gene expression comparable to responders (Figure 3F;

Supplementary Table S4). These data indicate that the level of

cholesterol synthesis is independent of aPD-1 treatment but is

associated with the failure of aPD-1 to elicit T cell infiltration.

Finally, we assessed why bulk RNA-seq could not identify the

association of cholesterol synthesis with non-responder tumors

(Figures 1A, E) by evaluating all 16 cholesterol genes identified

through ST (Figure 3C). Only 4 out of 16 genes (Ch25h, Ldlr, Sqle,

and Cyp51) passed an adjusted p-value significance threshold

(Figure 3G). However, these four genes had minor changes in

gene expression between responders and non-responders

(Figure 3G). Therefore, ST provided the necessary resolution and

sensitivity to uncover the cholesterol synthesis pathway and

revealed signals obscured in bulk profiling, providing novel

insights into mechanisms of resistance to aPD-1 therapy in non-

responder tumors.
Location of cholesterol synthesis
associated with dampened T cell response

We reasoned that the location of cytotoxic T cells and

cholesterol synthesis should be incongruous if they lead to

opposing ICI responses. To test this hypothesis, we leveraged the
frontiersin.org
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location of these two features independent of each other to

identify de novo distance-based gene expression associations

within aPD-1 responder and non-responder tumors. As a proof-

of-concept for our approach, we first tested the relationship of
Frontiers in Oncology 06
cytotoxic T cells to the surrounding tumor because the role of

T cells is well-established in the response of MC38 tumors to aPD-1

treatment (79). Then we tested the relationships of cholesterol

synthesis to the broader tumor.
FIGURE 3

Cholesterol pathway associated with aPD-1 non-responders. (A) Transcriptome changes as assessed by number of differentially expressed genes across
tumor and stroma subsets for the aPD-1 responders and non-responders. Double slash indicates a scale break used for data visualization. (B) Volcano
plot of genes that are differentially expressed between aPD-1 responders and non-responders in the Tumor 1 subset. Selected genes are labeled with
color indicating direction of expression change, consistent with (A). (C) Pathway schematic of cholesterol regulation, synthesis, and transport. Genes
identified via our spatial atlas as associated with non-responders are indicated (blue ovals). (D) Summary of cholesterol pathway genes that have
significant expression changes associated with aPD-1 therapy resistance. Spatial atlas cell subsets are shown along the vertical axis. A dot is present if the
gene is significantly upregulated in non-responders versus responders in that given subset. (E) Dot plot of cholesterol gene expression by subset. Dot
size indicates the percent of spots in a subset that have expression of the given gene. Color represents the z-scaled average gene expression across the
subset. The vertical axis labels from (D) extend to this figure. (F) Spatial gene expression plots of cholesterol pathway genes upregulated in non-
responders depicted as a signature of 16 genes in (C-E) and calculated using UCell. Top row is H&E-stained section. Bottom row is the corresponding
signature values. The two IgG samples show tumors with either high or low expression of the cholesterol gene signature. (G) Volcano plot of bulk RNA-
seq data (from Figure 1E) depicting only cholesterol signature genes. Dashed lines indicate the significance cut-offs for log fold change and adjusted p-
values. Blue dots indicate the genes that pass the threshold for significance by adjusted p-value.
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We developed a framework to identify gene expression changes

that depend on their spatial proximity to a given feature – in this

case, high gene signature score of either CD8 T cells or cholesterol

synthesis in spots. This model quantifies the association between

gene expression and the distance to the nearest given feature (i.e.,

signature-high spot) for all spots that do not have that feature (i.e.,

signature-low spots). We focused our analysis on tumor signaling,

excluding spots from the stroma. We performed the modeling on a

gene-by-gene basis, resulting in a coefficient for each gene that

describes if the gene is expressed higher in tumor spots proximal to

a feature (e.g., T cells) yielding a negative coefficient, or distal from a

feature yielding a positive coefficient (Figure 4A) (methods). We

applied this framework separately to aPD-1 responder and non-

responder tumors to understand the impact of response status on

feature-based spatial expression patterns.

We first assessed the distance relationship of gene-expression

relative to CD8 T cells. Antigen presentation genes spanning MHC-

I and MHC-II (e.g., H2-Ab1, H2-T23, H2-Aa, Cd74) and

chemokines (e.g., Ccl5, Ccl8, Cxcl9) were expressed closer to CD8

T cells in aPD-1 responder tumors than non-responder tumors

(Figure 4B, Supplementary Table S5). Conversely, genes with

positive coefficients that are expressed further away from CD8 T

cells include hypoxia induced genes (e.g., Eno1, Pkm, Ddit4) (80,

81), and cholesterol genes (i.e., Sqle, Fdps) that were associated with

ICI resistance identified in our prior analysis.

These distance associations between gene expression and CD8

T cells fits with well-established ICI biology. For example, the

processing and presentation of antigens is a requirement to drive

ICI efficacy through T cell activation (82–84). Likewise, among the

chemokines, Cxcl9 is involved in recruiting and activating CD8 T

cells, and its expression correlates with response to aPD-1 (85, 86).

Conversely, hypoxia facilitates T cell exclusion and ICI resistance

(87). These results support the validity of our approach.

Finally, we applied our distance framework to understand the

impact of cholesterol-high regions on surrounding gene expression.

Genes nearest the cholesterol-high regions in both responders and

non-responders include the signaling ligand Tgfb3, which is

associated with immunosuppression and drug resistance (88), and

Ccr2, which is a myeloid marker associated with immune

suppression (89, 90) and is upregulated by cholesterol (91)

(Figure 4C, Supplementary Table S6). Interestingly, markers of

cytotoxic T cell activity (i.e., Prf1, Gzmf, Gzmg, Gzmc) (92–96)

and inflammatory cytokines (i.e., Cxcl10, Cxcl9) (85, 86, 97) were

expressed further from cholesterol high regions in non-responders

than in responders. The two spatial models support that high

cholesterol in proximity to CD8 T cells dampens cytotoxic

activity in MC38 non-responders.
Discussion

In this study, we explored the features of response and

resistance to aPD-1 therapy in MC38 tumors using spatial

genomics. Our spatial atlas, validated through bulk RNA-seq and

histology, identified tumors that either responded to immune
Frontiers in Oncology 07
checkpoint inhibitors with increased CD8 T cell infiltration and

activation or failed to elicit an immune response. While all three

datasets – ST, bulk RNA-seq, and histology – highlighted immune

features of response, only the high-resolution ST atlas revealed

strong associations with resistance. We found that non-responder

tumor cells exhibited high expression of cholesterol synthesis genes

compared to aPD-1 responders. Additionally, we demonstrated that

cytotoxic T cells were excluded from cholesterol-rich regions in

non-responders, suggesting that cholesterol or its derivatives play

an immunosuppressive role that dampens tumor immunity. Of

note, non-responders not only showed differential expression of

cholesterol-related genes but also more distal expression of T cell

activation markers from cholesterol-rich regions. Overall, these

findings support that cholesterol metabolism is a tumor-intrinsic

mechanism of resistance that impairs T cell activity and

recruitment. Furthermore, we observe cholesterol metabolism

heterogeneity in IgG control tumors indicating that this, at least

in part, is an intrinsic resistance mechanism rather than an adaptive

response to aPD-1 treatment.

Modulating cholesterol metabolism has been explored as a

strategy to increase ICI efficacy. Pre-clinical studies have

demonstrated that ICI combination with cholesterol modulating

drugs improves response (59, 98–101). When combined with aPD-1

therapy, statins (e.g., lovastatin) increase T cell infiltration in

syngeneic lung cancer tumors resulting in reduced tumor growth

(101). Likewise, in ARID1A mutant ovarian cancer models,

simvastatin and atorvastatin elicit pyroptosis and synergize with

anti-PD-L1 therapy (98). More generally, modulating lipid

metabolism (e.g., Wee1 inhibition) also improves ICI response

(102); albeit we do not see association of other lipid pathways

with aPD-1 response in MC38 tumors.

Cholesterol, its precursors, and its derivates are important

mediators of immune cell function, supporting both activation and

suppression. For example, cholesterol-enriched lipid rafts at the

plasma membrane promotes T cell receptor (TCR) clustering for

antigen recognition and subsequent cytotoxic function (56, 103).

Then, within activated CD8 T cells, cholesterol biosynthesis and

expression of its low-density lipoprotein receptor (LDLR) are

necessary for proliferation (57, 58). Other cholesterol precursors

are also essential for T cell activation (59) with their deficiency

leading to an exhausted CD8 T cell phenotype (100, 104). Conversely,

excess cholesterol can disrupt membrane lipid rafts precluding pro-

inflammatory signal transduction (105, 106). Also, excess cholesterol

can trigger cell stress resulting in T cell exhaustion (51, 60–62). This

duality underscores the necessity for future studies to gain a deeper

understanding of cholesterol’s role in immune regulation.

Overall, our study demonstrates an intriguing connection

between tumor cell intrinsic cholesterol and T cell infiltration in

the context of PD-1 therapy resistance. We identify a core set of

cholesterol genes associated with this phenotype. Given the cellular

complexity present within tumors, our study motivates further

dissection of the interplay between cholesterol homeostasis and

ICI response. More broadly, our study provides a proof-of-concept

for the utility of spatial -omics technologies to identify putative

therapy resistance mechanisms missed by bulk profiling.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1549237
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kavran et al. 10.3389/fonc.2025.1549237
Methods

MC38 cell culture

MC38 colon adenocarcinoma mouse cells were acquired from Dr.

James Allison, MD Anderson Cancer Center, TX (RRID: CVCL_B288).

The cells were tested for mycoplasma and STR profiling. MC38 cells
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were cultured in DMEM (ThermoFisher Scientific Cat# 11965092)

Supplemented with 10% FBS (ThermoFisher Scientific Cat#

16000044), 10 mM HEPES (ThermoFisher Scientific Cat# 15630080),

1mM sodium pyruvate (ThermoFisher Scientific Cat# 1360070), 2 mM

L-glutamine (Gibco), 1xMEMnon-essential amino acids (ThermoFisher

Scientific Cat# 11140050), and 1% pen/strep (ThermoFisher Scientific

Cat# 15140122).
FIGURE 4

Location of cholesterol synthesis associated with dampened T cell response. (A) Framework to identify location-based changes in spatial gene
expression that occur as a consequence of distance from a given feature of interest. Left panels: First, spots expressing high levels of the genes for a
feature of interest are identified (indicated by star; Sighigh). Next, spots with low expression of genes for the feature of interest are identified (Siglow).
Non-tumor spots and spots with mid-signature expression are excluded from analysis to reduce confounding variables (grey spots). Distance from
each Sighigh spot to the nearest Siglow spot is calculated. Right panels: Representation of linear model used to identify gene expression of Siglow

spots as a function of distance from Sighigh spots. A coefficient is calculated for every gene to quantify the strength of the trend between expression
and distance from a Sighigh spot. A positive coefficient indicates the expression increases with distance from a Sighigh spot, while a negative
coefficient means the expression increases with proximity to a Sighigh spot. (B) Scatterplot of tumor spatial gene expression coefficients anchored on
CD8 T cell Sighigh spots. Points are colored red if the difference between the coefficient in responders and non-responders is significant, and gray if
it is not significant. The dotted lines indicate significance thresholds. (C) Scatterplot of tumor spatial gene expression coefficients anchored on
cholesterol pathway Sighigh spots. Points are colored red if the difference between the coefficient in responders and non-responders is significant,
and gray if it is not significant. The dotted lines indicate significance thresholds.
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Syngeneic tumor growth and treatment

Syngeneic tumors were grown by injecting 1 million MC38 cells

subcutaneously in the right flank of 6–8-week-old female C57BL/6

mice (Charles River RRID: IMSR_JAX:000,664). Sixteen mice were

enrolled for study if their tumor reached 150-250 mm3 on day 16.

Mice were randomly assigned to control IgG or aPD-1 treatments

(n=8 per treatment) and were dosed with 200ug, on days 16 and 20

(Q4Dx2). Mice were euthanized by CO2, and tumors were

harvested on day 21 and stored in ice cold PBS before processing.

Each tumor was cut in half and processed by either FFPE or

fresh-frozen tissue embedding. For fresh frozen blocks, the tumors

were placed in cryomolds with ice-cold TissueTek O.C.T. Compound

(VWR, 25608-930) on a pre-cooled aluminum block that was placed

in a dry ice and ethanol mixture. Additional O.C.T. was added to

ensure the entire tissue was covered. Blocks were stored sealed at -80°

C. For FFPE blocks, the tumors were placed in 10% Neutral Buffered

Formalin for 24-h fixation. The tumors were then processed for

paraffin embedding in a Sakura VIP automated system with vacuum/

pressure cycles, dehydrating in graded alcohols to xylene and then

paraffin, and embedded into blocks for sectioning.

All mouse work was performed in accordance with Institutional

Animal Care and Use Committees (IACUC) relevant guidelines at

Charles River Laboratories and Bristol Myers Squibb under

protocol number CR-0067.
Bulk RNA-seq library preparation,
sequencing, and analysis

Two sections measuring 100 microns of each fresh frozen tumor

block were collected in microcentrifuge tubes. The tubes were kept

on dry ice and shipped to Azenta Life Sciences (South Plainfield,

New Jersey, USA) for downstream RNA sequencing. Total RNA

was extracted from fresh frozen tissue samples using Qiagen

RNeasy Plus Universal mini kit (Qiagen cat# 73404), followed by

poly(A) enrichment using NEBNext Poly(A) mRNA Magnetic

Isolation Module (New England Biolabs cat# E7490). Then

strand-specific RNA sequencing library was prepared by using

NEBNext Ultra II Directional RNA Library Prep Kit for Illumina

(New England Biolabs cat# E7760S) following manufacturer’s

instructions. Libraries were loaded on Illumina NovaSeq 6000

sequencer for a 2x150bp paired end reads.

Reads were aligned to the GRCm38 Mus musculus genome

using STAR v2.6 and then quantified using RSEM v1.3.0. on

Ensembl 91 annotated genes. Differential expression analysis

between responders and non-responders was performed using

DESeq2 (72). Genes were considered significant if the FDR

adjusted p-value was less than 0.05 and the magnitude of the log2

fold-change was greater than 1 (Supplementary Table S1). Gene set

analysis by Fisher’s test was performed using the 200 most

significant genes higher in responders, and all 94 significant genes

in non-responders by adjusted p-value (107, 108). Signatures from

Gene Ontology: biological process set were used (109), and we

report the top 10 most significant by FDR adjusted p-value.
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Spatial transcriptomics tissue staining,
library preparation, and sequencing

The FFPE tumor blocks were sectioned 5 micron thin and placed

on Visium gene expression slides (10X Genomics, 2000233). The

tissues were dried, deparaffinized, stained by Hematoxylin and Eosin,

and decrosslinked according to the manufacturer’s protocol

(CG000409|Rev C), omitting the 85% ethanol deparaffinization step

(Step 1.2.l). The H&E-stained slides were imaged on a Leica AT2 slide

scanner using a 40x objective. Spatial transcriptomics libraries were

generated with Visium for FFPE Gene Expression mouse reagents

(10X Genomics #1000337) according to the manufacturer’s protocol

(10x Genomics, CG000407|Rev D) with an added permeabilization

step during RNA Digestion. A blend of collagenase B and dispase

enzymes (EMD Millipore Sigma #SCR140) resuspended in Hank’s

Buffered Salt Solution (ThermoFisher Scientific cat# 14175095) was

added to the RNase buffer and enzyme mix to a concentration of 0.4

CDU/uL in step 3.1 to improve the permeabilization of the tissue.

Additionally, after permeabilization at step 3.1.n, the slide was

washed with 2X saline-sodium citrate buffer (Millipore Sigma

S6639) with 0.1% sodium dodecyl sulfate (Millipore Sigma 71736).

Spatial transcriptomics libraries were sequenced according to

manufacturer protocols (10x Genomics, CG000407 | Rev D) on an

Illumina NovaSeq6000 using an S4 or S2 v1.5 flow cell or on a

NextSeq2000 with a P3 flow cell with a read 2 length of 50 cycles.
Digital pathology H&E image analysis

Deep learning neural networks (DenseNet V2) were trained to

perform high-resolution semantic segmentation across the

hematoxylin and eosin (H&E) images. Multiple models were

organized in a class hierarchy to compartmentalize each model’s

task to both improve segmentation performance and to simplify

model training. These included five models to classify: staining

artifacts, adipose tissue, necrosis, blood vessels, and TME (tumor

stroma, non-cancer). Model training and deployment was done

using HALO-AI v3.4 (Indica Labs). All model trainings used a

transfer learning approach, leveraging models pretrained on large-

scale natural image datasets (e.g., ImageNet). Performance of the

models was evaluated qualitatively via manual review of prediction

overlays on top of images.
Immunohistochemistry T cell phenotyping

A sequential 5 um section of the FFPE tumor blocks were cut for

T cell dual immunohistochemistry. All steps were performed on a

Lecia BOND RX stainer. Sections were stained first with Cd4 (Cell

Signaling Technologies, 25229) and detected with Polymer Refine

Detection (Lecia, DS9800). Sections were incubated in ER2 for 20

minutes. Then sections were stained with Cd8 (Cell Signaling

Technologies, 98941) and detected with Polymer Refine Red

Detection (Leica, DS9390). Finally, the slides were counterstained
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with hematoxylin and cover slipped for imaging on a Leica AT2

with a 40x objective.

Cell phenotyping was performed using HALO’s Multiplex IHC

module v3.1.4 (Indica Labs). First, cells were segmented using the

hematoxylin nuclear stain, and the stain intensity was quantified from

the two chromogens. Next, a HALO AI Object Phenotyper model was

trained to classify cells as expressing Cd4 or Cd8 in a supervised

fashion by selecting several positive cells as well as hematoxylin-only

stained cells. T cell density was quantified by summing the number of

T cells that overlapped with co-registered Visium spots of each TME

pathology class, then normalizing by sample by dividing the sum by the

number of Visium spots per TME class.
Tissue co-registration

The IHC and H&E images were co-registered to create a

common coordinate system to transfer annotations between

Visium spots, H&E class annotations, and T cell phenotypes.

Tissue registration was performed using HALO v3.4 (Indica Labs)

co-registration tool. The co-registration tool optimizes a B-spline

transformation to optimally match whole-slide images. Image

rotations and flips were applied to achieve rough alignment of IHC

images to Visium images prior to co-registration. Co-registrations

were performed first in an unsupervised manner. For co-registrations

requiring improvement, multiple landmarks were annotated onto

each image, manually identifying distinct tissue features conserved

between the histological sections. Then the co-registration algorithm

was redeployed in a semi-supervised manner where preference is

given to transformation parameters that align landmark coordinates

in addition to aligning image features. Finalized co-registrations were

used to transform the spatial transcriptomic spots from the ST

coordinate domain to the coordinate domain of the IHC image.

Transformation was to the position of the spots including the

individual spots’ height and width dimensions.
Visium data QC, and unspecific probes

Sequencing data was processed using the 10X Space Ranger for

alignment, and barcode and UMI counting. We applied SpotClean

(110) to correct for mRNA diffusion where mRNA captured at a

tissue spot originated from adjacent spots.

To assess probe specificity, we compared mean normalized

pseudo-bulk gene expression levels between polyA-captured and

probe-captured ST data derived from the same cohort. Linear

regression was fit between two groups of expression values to

identify outlier genes whose probe-based expression value deviated

from fitted line by more than 3 standard deviations. These genes,

considered to be captured by unspecific probes (Supplementary Table

S7), were removed from downstream analysis.

Additionally, spots that located in too-light-to-be-tissue areas,

with color values more than 1 standard deviation from the mean of

all spots, were removed. Spots with less than 100 genes detected

were removed. Finally, spots that were contiguous with at least 200
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spots were retained for downstream analysis, ensuring that small,

isolated tissue debris away from main tissue were excluded from

downstream analysis.
Cohort integration and clustering

Samples were first merged and normalized using SCTransform

v2 (111). Spots with less than 2000 detected genes were filtered out

before integration. Then, the integration was performed using the

canonical correlation analysis implemented in Seurat R package

(112) with number of anchor features set to 7000. Spots were

clustered by the graph-based clustering approach of the same

package. An optimal clustering resolution of 0.4 was selected

manually with clustree-0.4.3 (113) library assisting in visualization.
Marker gene identification and DEA

For each cluster, marker genes were identified using SCT assay

through the FindAllMarkers function of Seurat (comparing each

cluster to the rest of the spots). Resulting biomarkers were reported

in Supplementary Table S2 if they satisfied the following thresholds:

1) the percentage of cells where the gene is detected in was at least

10%, 2) absolute value of the log2 fold change was at least 0.25, 3)

the negative log10 adjusted p-value was at least 2.

We conducted differential expression analysis between

responders and non-responders for each cluster using a pseudobulk

framework in DESeq2 (71, 72). Replicate sections were collapsed

using the function AggregateExpression, and we considered genes

significant if the adjusted p-value was less than 0.05 and absolute

fold-change greater than 1.5.
Modeling spatial gene expression trends
around gene signatures

In this analysis, we first calculated signature scores of The

CD8_EarlyActiv gene signature (114) and the cholesterol gene

signature described in Figure 3C using the AddModuleScore_UCell

(115) function from the UCell package. To determine whether each

Visium spot is positive for a transcriptional signature, we used the

distribution of the signature across the whole tissue section. A spot

was considered positive for a signature if its score was greater than or

equal to the median plus 1.5 standard deviations of the signature

distribution. A spot was considered negative for a signature if its score

was less than or equal to the median. Other spots between these cut

offs were excluded from analysis.

We employed linear models to identify genes associated with

proximity to signature high regions in responders and non-

responders separately. The analysis was restricted to tumor spots

located within ten spot lengths from a signature high spot. Stroma

and non-cancer spots called by digital pathology annotations were

excluded. In our models, both the sample ID and the signature score

were included as covariates. Signature scores were adjusted to
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account for transcripts of signature genes that diffused from the

signature high region. We considered a gene to be significant if the

Bonferroni adjusted P-value was less than 0.05, and the estimated

coefficient was greater than the mean of the coefficients plus three

standard deviations. To identify outliers in gene expression

estimates between responders and non-responders, we first

calculated the difference in estimates between two groups for each

gene. We then calculated the mean and standard deviation of these

differences. Genes with differences greater than two standard

deviations from the mean were considered outliers and

called significant.
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