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Background: Lactylation, a novel post-translational modification, has emerged

as a critical regulatory mechanism in various biological processes, including

tumor progression. However, its role and associated gene signatures in lung

adenocarcinoma (LUAD) remain unclear.

Methods: RNA sequencing data of LUAD patients were obtained from The

Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases.

Unsupervised clustering was used to identify lactylation-related genes. A risk

prognostic model was constructed using least absolute shrinkage and selection

operator regression analysis and subsequently validated. A nomogram was then

employed to optimize the clinical applicability of the risk score. Additionally,

various algorithms were used to explore the relationship between the risk score

and immune infiltration levels, with model genes analyzed based on single-cell

sequencing. The effects of RCCD1 knockdown on LUAD cell proliferation and

migration were evaluated through CCK8 and transwell assays.

Results: Higher risk scores were associated with poorer overall survival

prognosis. Immune analysis revealed that the risk score may play a role in

regulating the tumor microenvironment. Additionally, these risk scores were

found to be associated with chemotherapy drug sensitivity. A series of

experiments further demonstrated that RCCD1 promotes LUAD cell

proliferation and migration in vitro.

Conclusion: This study highlights the critical role of lactylation-related gene

signatures in LUAD and their association with immune cell infiltration, providing

insights into potential therapeutic targets and biomarkers for clinical application.
KEYWORDS

lactylation-related genes, lung adenocarcinoma, immune cell infiltration, single-cell
RNA sequencing, bulk RNA sequencing
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Introduction

Lung adenocarcinoma (LUAD) is the most common

histological subtype of non-small cell lung cancer (NSCLC) (1, 2).

Despite advancements in surgical techniques, targeted therapies,

and immunotherapies, LUAD remains a leading cause of cancer-

related mortality (3). Therefore, there is an urgent demand for the

discovery of new biomarkers to enhance early detection and

treatment outcomes in LUAD.

Post-translational modifications (PTM) are crucial regulators of

protein function, stability, and interactions, playing essential roles in

cellular processes and disease development (4–6). One such

modification, lactylation, is a recently discovered PTM involving the

addition of lactyl groups to lysine residues on histones and non-histone

proteins (7–9). This modification is primarily associated with

intracellular metabolic changes. Unlike acetylation and methylation,

which are commonly linked to the regulation of gene expression and

chromatin remodeling, lactylation is influenced by the cell’s metabolic

state, particularly under conditions such as hypoxia or altered

metabolic pathways. This modification regulates protein function by

altering protein-protein interactions, stability, and cellular localization,

thereby playing a crucial role in processes such as metabolic

reprogramming, immune responses, and tumor progression.

Although research on lactylation is still limited, as an emerging post-

translational modification, its potential role in disease mechanisms,

particularly in cancer and metabolic disorders, is receiving increasing

attention (10–12). Recent studies have revealed the significant roles

lactylation may play in these processes. For instance, lactylated

Apolipoprotein C-II has been shown to induce resistance to

immunotherapy by promoting extracellular lipolysis in NSCLC (13).

Additionally, LKB1 has been found to induce cellular senescence and

apoptosis in vitro and in vivo, with LKB1 inhibiting telomerase activity

and promoting cellular senescence via histone lactylation in lung

adenocarcinoma cells (14). Lactate-induced lactylation of IGF1R

protein has also been shown to promote lung cancer cell

proliferation and metabolic reprogramming (15). Furthermore,

lactate enhances the stability of the IGF1R oncogene protein, thereby

promoting glycolysis and lactate production, creating a positive

feedback loop. Despite these promising findings, the functional roles

and clinical significance of lactylation-related genes in LUAD remain

poorly understood, highlighting the need for further investigation into

their potential as therapeutic targets and prognostic markers in LUAD.

The tumor microenvironment (TME) plays a pivotal role in the

progression of LUAD, influencing tumor growth, metastasis, and

response to therapy (16, 17). Immune cell infiltration, particularly the

recruitment and activity of subsets such as T cells, macrophages, and

dendritic cells, is a critical determinant of antitumor immunity and
Abbreviations: LUAD, lung adenocarcinoma; TCGA, The Cancer Genome

Atlas; GEO, Gene Expression Omnibus; NSCLC, non-small cell lung cancer;

PTM, post-translational modifications; TME, tumor microenvironment; LRG,

lactylation-related gene; ROC, receiver operating characteristic; IC50, half-

maximal inhibitory concentration; ssGSEA, single-sample gene set enrichment

analysis; qRT-PCR, quantitative Reverse Transcription Polymerase Chain

Reaction; TMB, tumor mutation burden. DEG, differentially expressed gene.
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the efficacy of immunotherapies (18). Recent studies have highlighted

the impact of metabolic alterations in the TME, including lactate

accumulation, on immune cell function and polarization (19, 20). For

example, SLC2A1 has been identified as a prognostic biomarker in

lung squamous cell carcinoma (21). Cancer-associated fibroblasts

may reduce the effectiveness of PD-1/PD-L1 blockade in

immunotherapy through glycolysis-induced lactate accumulation

via LOX (22). However, the relationship between lactylation-related

genes and the immunemicroenvironment in LUAD remains unclear.

This warrants further investigation to explore how lactylation

modulates immune cell dynamics and influences the TME,

potentially offering new insights into LUAD treatment strategies.

In this study, we investigated the role of lactylation-related genes

in LUAD and established a lactylation-related gene (LRG) model. The

identification of lactylation-related gene signatures with prognostic

and immunological significance may provide new avenues for

personalized treatment in LUAD, ultimately improving patient

outcomes and deepening our understanding of this complex disease.
Materials and methods

Data collection and processing

The relevant transcriptomic data, mutation data, and clinical

data were sourced from platforms such as The Cancer Genome

Atlas (TCGA) and the Gene Expression Omnibus (GEO), including

datasets GSE31210 and GSE72094. Data preprocessing included

quality control and normalization, after which the three datasets

were merged. The clinical information of the patients is in

Supplementary Table S1.
Identification of lactylation-related genes

Lactylation-related genes (LRGs) refer to those genes whose

expression is either directly regulated by lactylation or involved in

the cellular processes modulated by lactylation, based on findings

from previous studies in the field. All LRGs in this study were

collected from previously published studies. After removing

duplicate genes, a total of 332 genes were identified, which are

listed in Supplementary Table S2.
Consensus lustering analysis

We used consensus clustering analysis to identify different

subgroups of LUAD patients based on the expression patterns of

LRGs. The k-means clustering algorithm was applied to the

expression matrix of lactylation-related genes.
Development of prognostic model

We performed a multivariate Cox regression analysis and split the

LUAD patient cohort into two equal groups: a training set (n = 553)
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and a test set (n = 553). Key genes and their corresponding regression

coefficients were selected using LASSO Cox regression. A risk score

was calculated by applying the standardized expression values of the

identified genes and their respective coefficients, following the

formula: Risk Score = ∑ (Gene Expression × Coefficient). Based on

the median risk score, patients were categorized into low-risk and

high-risk groups. The performance of the model was assessed using

receiver operating characteristic (ROC) curves.
Drug sensitivity analysis

The “pRRophetic” R package was employed to calculate the half-

maximal inhibitory concentration (IC50) values for drugs in LUAD (23).
Exploration of the tumor
immune microenvironment

The ESTIMATE scores were calculated using the “estimate” R

package. Single-sample gene set enrichment analysis (ssGSEA) was

conducted to quantify the proportion of immune cells within

each sample.
Establishment of prognostic
scoring system

Based on the model scores, we developed a LRGs prognostic

model, and combined it with clinical parameters (such as age, stage,

and gender) to create a nomogram scoring system. The predictive

accuracy of the scoring system was evaluated using calibration plots.
Single-cell RNA sequencing analysis

Single-cell RNA sequencing data from 11 LUAD samples were

obtained from the GSE131907 dataset. To analyze the cell

populations, we performed clustering using the Seurat R package.

Prior to clustering, batch effects were corrected to ensure reliable

results. Cells were filtered based on specific criteria: those with fewer

than 500 or more than 6000 unique feature counts, as well as cells

with more than 20% mitochondrial gene expression, were excluded.

After normalizing the data, we conducted non-linear dimensionality

reduction using t-SNE with the default settings. Subsequently,

cluster-specific biomarkers were identified.
Cell culture and transfection

The NSCLC cell lines A549 and PC9 were obtained from the

American Type Culture Collection (ATCC, Manassas, USA) and
Frontiers in Oncology 03
cultured in DMEM (Biological Industries, USA) supplemented with

10% FBS (Gibco, USA). Lipid-based transfection reagents were used

to transfect target genes or siRNA according to the manufacturer’s

instructions. Cells were collected for subsequent functional assays.

Transfection was performed with siRNA targeting RCCD1 or

control siRNA (Ribobio, China) and Lipofectamine 2000

(Invitrogen, USA).
Quantitative reverse transcription
polymerase chain reaction

Quantitative real-time PCR (qRT-PCR) was employed to assess

the expression of RCCD1 in LUAD cell lines. qRT-PCR was carried

out using SYBR Green PCR Master Mix, with GAPDH serving as

the internal control for normalization of gene expression. Fold

changes in gene expression were determined using the 2^−DDCT
method. The mRNA primer sequences used are shown as below: 5′-
AGGGCCTAGTCATGGCTGAG -3′ and 5′-GGCTTCCCTTG
CGACAGTC-3′ for RCCD1.
CCK8 cell viability assay, colony formation
assay, and transwell migration assay

The CCK8 assay was used to evaluate cell viability. Cells were

seeded in 96-well plates and treated with si-RCCD1 or si-control,

with absorbance measured at 450 nm after 24, 48, and 72 hours.

Colony formation assay, cells were seeded in 6-well plates and

cultured for 14 days, followed by crystal violet staining and

counting. The transwell experiment was performed without a

matrigel coating, and cells were stained with crystal violet after

48 hours.
Results

Analysis of molecular subtypes related
to LRGs

To investigate the molecular subtypes associated with LRGs, we

conducted unsupervised clustering analysis using RNA-seq data from

the TCGA and GEO databases. This approach enabled the

identification of three distinct molecular subtypes in LUAD, with

the optimal number of clusters determined as k = 3 based on the

consensus cumulative distribution function curve (Figure 1A). These

subtypes were labeled as clusters A, B, and C, reflecting differences in

their underlying gene expression profiles. Principal component

analysis was subsequently performed, highlighting the distinct

molecular signatures driven by the expression of LRGs (Figure 1B).

Notably, patients in cluster B exhibited significantly shorter overall

survival (OS), (Figure 1C). In addition, we examined the expression
frontiersin.org
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levels of these LRGs in relation to the distribution of each molecular

subtype and clinicopathological features, which are visually

represented in Figure 1D. We found that some genes were

significantly reduced in cluster C, which underscores the

heterogeneous nature of LUAD and suggests that these molecular

subtypes may reflect distinct tumor biological behaviors and patient

outcomes. These findings provide important insights into how LRG

expression may influence tumor progression and prognosis in LUAD.
Tumor immune microenvironment analysis
in different molecular subtype groups

The analysis of the tumor immune microenvironment across

the molecular subtypes revealed significant differences in immune

cell composition, which further highlights the complexity of LUAD.
Frontiers in Oncology 04
Notably, cluster C exhibited significantly highest levels of activated

B cells, activated CD8+ T cells, and macrophages et al, which are

often associated with an active immune response (Figure 2A).

Additionally, patients in cluster C demonstrated markedly highest

ESTIMATE scores, immune scores, and stromal scores, all of which

are indicative of a more immunologically active tumor

microenvironment and highest levels of stromal and immune cell

infiltration (Figures 2B–D). These factors were positively correlated

with a longest survival time, further supporting the notion that a

more robust immune presence may enhance tumor control and

improve prognosis. In contrast, the reduced immune infiltration

and lowest ESTIMATE scores in cluster B were associated with the

poorest survival outcomes, suggesting that immune evasion and

lack of immune response may be key drivers of the aggressive

nature of this subtype. These findings indicate that LRGs may play a

pivotal role in shaping the immune landscape of LUAD.
FIGURE 1

Unsupervised clustering was performed to identify lactylation-related genes. (A) LUAD patients were classified into three molecular clusters using a k
= 3 approach. (B) Principal Component Analysis (PCA) revealed notable expression differences of lactylation-related genes across the three subtypes.
(C) Kaplan-Meier survival curve demonstrated significant overall survival differences between the three clusters. (D) A heatmap displayed differences
in lactylation-related genes expression and corresponding clinicopathological features across the three molecular clusters.
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Establishment and verification of risk
model based on differentially
expressed genes

To investigate the potential biological behaviors of the LRG

subtypes, we first identified subtype-specific differentially expressed

genes (DEGs) using the limma package in R. Based on the DEGs

identified across clusters A, B, and C, a risk prognostic model was

developed. The patient cohort was randomly split into two groups

at a 1:1 ratio, creating a training set and a validation set. The LASSO

regression method was applied to build the model (Figures 3A, B).

we developed a risk model in the training set, which demonstrated

significant prognostic value. This model consists of 25 genes, with

Figure 3C illustrating the expression levels of these 25 genes in the
Frontiers in Oncology 05
high- and low-risk groups. Higher risk scores were associated with

poorer OS in LUAD patients (Figures 3D–F). Moreover, ROC curve

analysis further confirmed the strong prognostic value of the model,

highlighting its potential utility for clinical prognostic prediction

(Figure 3G). To further validate the robustness of our model, we

performed validation using the validation set, which yielded

consistent and promising results (Supplementary Figure S1A-E).

The model’s ability to stratify patients into distinct prognostic

groups remained effective, with higher risk scores still correlating

with poorer OS. Moreover, we extended the validation to the entire

dataset, including both the training and validation sets combined.

The results from the entire dataset were similarly consistent with

those observed in the training and validation sets (Supplementary

Figure S1F-J), demonstrating that the model performs well across
FIGURE 2

Comparison of tumor microenvironment properties across subgroups. (A) The proportion of immune infiltrating cell components across the three
clusters. (B-D) Boxplots illustrating the differences in ESTIMATE score, immune score, and stromal score among the three clusters. ***P < 0.001, nsP
≥ 0.05 compared to the control group.
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different subsets of LUAD patients. Patients with higher risk scores

exhibited poorer prognoses across various subgroups, including age,

gender, and T grade (Supplementary Figure S2A-F). Notably,

significant differences in risk scores were observed between these

subgroups, with males and patients in stages T3–4 showing

markedly higher risk scores (Supplementary Figure S2G-I).
Assessing immune infiltration

We further investigated the relationship between LRGs score

and TME features. Our analysis showed that the low LRGs score

group had significantly higher immune cell infiltration compared to

the high score group, except for Th2 cells, where no substantial

difference was observed (Figure 4A). The increased immune cell

infiltration in the low LRGs score group suggests a more active

immune environment, potentially indicating a stronger anti-tumor

immune response. Moreover, immune-related pathways were
Frontiers in Oncology 06
notably enriched in the low LRGs score group, although no

significant differences were found in pathways such as APC co-

inhibition, MHC class I, and Parainflammation (Figure 4B),

pointing to a more complex involvement of these immune

mechanisms in LUAD progression. Additionally, patients in the

low LRGs score group showed significantly elevated ESTIMATE

scores, immune scores, and stromal scores (Figures 4C–E).

Together, these results suggest a strong association between the

LRGs score and the TME in LUAD.
Independent prognostic value of the LRGs
score and development of a nomogram

To assess the independent prognostic value of the LRGs score in

LUAD, we performed univariate and multivariate Cox regression

analyses. The univariate analysis revealed that the LRGs score, along

with other clinicopathological factors such as age and tumor stage
FIGURE 3

Construction of a lactylation-related prognostic model. (A, B) Determining the optimal number of factors using LASSO regression analysis. (C)
Heatmap illustrating the 25 genes included in the model alongside clinical features. (D, E) Distribution of the risk score based on survival status and
survival time in training cohort. (F) Kaplan-Meier survival curves showing overall survival for patients categorized into different risk groups. (G) ROC
curves assessing the sensitivity and specificity for 1-, 2-, and 3-year survival predictions in the training cohort.
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involvement, were significantly associated with OS in the training

set (Figure 5A). Further, multivariate Cox regression analysis

confirmed that the LRGs score remained an independent

prognostic factor, even after adjusting for other clinical variables

in the training set (Figure 5B). Importantly, these results were

consistent across the validation set and the entire dataset

(Figures 5C–F). To enhance the clinical applicability of the LRGs

score, we constructed a prognostic nomogram by integrating the

LRGs score with other significant prognostic factors identified in

the multivariate analysis. It is important to note that we also

assessed the association between these clinical characteristics and

patient prognosis to ensure that the LRGs in the model are

independently associated with the outcome. Integrating these

factors together allows for a more accurate prediction of patient

prognosis (Figure 5G). The nomogram provides a quantitative tool

for estimating the 1-, 3-, and 5-year OS of LUAD patients. The

calibration curves for the nomogram demonstrated good agreement

between the predicted and actual survival outcomes (Figure 5H).

These findings underscore the value of the LRGs score as an

independent prognostic factor and highlight the potential of the
Frontiers in Oncology 07
nomogram as a practical clinical tool for personalized patient

management in LUAD.
Mutation analysis of risk model and its
predictive effect on chemotherapy
drug sensitivity

The mutation analysis of the risk model revealed distinct

mutational landscapes between high- and low-risk LUAD

patients. The high-risk group exhibited a higher mutation burden,

as shown in Figure 6A. However, we found an interesting decrease

in OS in patients with low tumor mutation burden (TMB)

(Figure 6B). Survival analysis combining risk scores and TMB

scores indicated that the high TMB and low-risk group had the

best survival outcomes (Figure 6C). Next, we compared the

genomic mutations between the two groups. The top five

mutations in both the high- and low-risk score subgroups were

similar; however, the mutation rates were generally higher in the

high-risk group (Figures 6D, E).
FIGURE 4

Analysis of TME and immune scores. (A) Distribution of infiltration of 16 immune cell types between two risk groups. (B) Distribution of 13 immune-
related pathways between two risk groups. (C-E) Box plots showing the differences in Estimate score, Immune score, and Stromal score between
the risk groups. *P < 0.05, ***P < 0.001, nsP ≥ 0.05 compared to the control group.
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FIGURE 5

The clinical value of a nomogram for LUAD patients. (A, B) Forest plots presenting univariate and multivariable Cox regression analyses of clinical
characteristics and risk score in the training cohort. (C, D) Forest plots presenting univariate and multivariable Cox regression analyses of clinical
characteristics and risk score in the test cohort. (E, F) Forest plots presenting univariate and multivariable Cox regression analyses of clinical
characteristics and risk score in the entire cohort. (G) Nomogram for predicting overall survival of patients based on risk score and
clinicopathological factors. (H) Calibration plot of the nomogram showing the survival probability over time.
FIGURE 6

Differences in tumor mutational burden. (A) Distribution of TMB between the two groups. (B) Kaplan-Meier curves illustrating OS for patients in the
high and low TMB groups. (C) Kaplan-Meier curves comparing OS between patients in the combined risk group and TMB groups. (D, E) Waterfall
plot showing the top 20 mutated genes and their distribution variance between the two risk groups.
Frontiers in Oncology frontiersin.org08
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IC50 analysis results showed a significant correlation between

risk scores and drug sensitivity (Figure 7A). Specifically, patients in

the low-risk group exhibited higher IC50 values for BI.2536,

MK8776, and 5-Fluorouracil. By contrast, the high-risk group

showed higher IC50 values for Doramapimod, Ribociclib, and

SB216763 (Figure 7B). These findings suggest that this signature

may provide valuable insights into personalized treatment regimens

for LUAD patients based on their molecular subtype.
RCCD1 promotes proliferation and
migration of LUAD cells

To further investigate the role of lactylation-related genes in

LUAD progression, we performed differential expression analysis of
Frontiers in Oncology 09
25 core genes in both tumor and adjacent normal tissues, which was

visualized through a volcano plot (Figure 8A). Following univariate

prognostic analysis of the selected genes, RCCD1 and RGS13 were

identified as potential prognostic genes (Figure 8B). We then

obtained single-cell sequencing data for 11 samples from

GSE131907. We identified 18 distinct cell clusters (Figure 8C).

Cell subsets were annotated using specific tools (Figure 8D). To

investigate the expression of RCCD1 and RGS13 in different cell

types, we visualized their expression using t-SNE and violin plots.

RGS13 is predominantly expressed in macrophages, while RCCD1

is expressed at low levels in various cell types within the tumor

microenvironment (Figures 8E–H).

The effectiveness of knockdown was confirmed by RT-qPCR

(Figure 9A). Further experiments showed that knockdown of

RCCD1 in LUAD cell lines (A549 and PC9) led to a significant
FIGURE 7

The role of prognostic models in predicting gene-drug associations and drug sensitivity. (A) The association between risk score, model genes, and
drug sensitivity. (B) The boxplots illustrate the comparison of IC50 values between the two risk groups; *p < 0.05, **p < 0.01, ***p < 0.001.
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reduction in cell proliferation and migration, as confirmed by CCK-

8 assays (Figures 9B, C), colony formation assays (Figures 9D, E),

and Transwell migration assays (Figures 9F, G). These findings

suggest that RCCD1 promotes LUAD cell proliferation and

migration, potentially through the modulation of lactylation-

related pathways. Our results indicate that RCCD1 plays a crucial

role in LUAD progression by enhancing cell proliferation

and migration.
Frontiers in Oncology 10
Discussion

This study provides an integrative analysis of lactylation-

related gene signatures in LUAD and their association with

immune cell infiltration. By combining scRNA-seq and bulk

RNA sequencing datasets, we identified key lactylation-related

genes with significant dysregulation in LUAD and demonstrated

their potential roles in tumor progression and immune
FIGURE 8

Verification of keys genes through sc-RNA seq. (A) The volcano plot illustrates the differential expression analysis of the core genes between tumor
and adjacent normal tissue. (B) The forest plot demonstrates the genes that are prognostically significant for LUAD patients. (C, D) tSNE plots of cells
generated from LUAD tissue. The plots are colored by cell cluster, and the cells are clustered into 7 sub-clusters. (E, F) The expression of signature
genes in LUAD visualized in tSNE. (G, H) Violin plots depicting the expression of signature genes in clusters of LUAD. The y axis shows the
normalized read count.
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modulation. Notably, we found that lactylation-related genes are

closely associated with immune cell infiltration, suggesting that

these genes may play important roles in the TME and immune

responses. Additionally, survival analysis revealed that lactylation-

related gene signatures serve as independent prognostic

biomarkers for LUAD, with high expression levels correlating

with poor OS, indicating their potential application in predicting

clinical outcomes in LUAD patients. However, further

experimental studies are needed to elucidate the precise

molecular mechanisms underlying these observations, especially

the immune regulatory roles and regulatory networks of

lactylation-related genes in LUAD.

In our analysis, RCCD1 emerged as a core gene identified as a

potential oncogene and closely associated with LUAD progression.

RCCD1 participates in cellular stress responses and metabolic

regulation, is highly expressed in LUAD tissues, and correlates

with poor prognosis (24, 25). Functional studies revealed that

knocking down RCCD1 in LUAD cell lines (A549 and PC9)

significantly reduced cell proliferation and migration. These

findings suggest that RCCD1 may promote LUAD cell

proliferation by modulating lactylation-related pathways and
Frontiers in Oncology 11
metabolic reprogramming. Regarding immune regulation, the role

of RCCD1 in immune cell infiltration and polarization warrants

further investigation. Given involvement of RCCD1 in metabolic

processes and its potential in regulating immune responses, it may

serve as a promising therapeutic target for future interventions

aimed at reprogramming the TME and enhancing antitumor

immunity. Although this study relies on publicly available data

and primarily focuses on correlation analysis, it provides critical

insights into the potential of lactylation-related genes as novel

diagnostic and therapeutic targets. Targeting these pathways

could disrupt the metabolic and immunosuppressive mechanisms

in the TME, and combining lactylation-targeted therapies with

immune checkpoint inhibitors or metabolic modulators may

enhance antitumor immunity and improve clinical outcomes for

LUAD patients.

In conclusion, this study emphasizes the importance of

lactylation-related genes, especially RCCD1, in LUAD

progression. These findings lay the foundation for future research

into the clinical and therapeutic applications of lactylation-related

genes, advancing the development of personalized cancer

treatment strategies.
FIGURE 9

Functional analysis of RCCD1 in LUAD cells. (A) RCCD1 knockdown efficiency in A549 and PC9 cells measured by qRT-PCR. (B, C) Impact of RCCD1
knockdown on LUAD cell viability assessed by CCK-8 assays. (D, E) Effect of RCCD1 knockdown on colony formation in LUAD cells assessed by
colony-forming assay. (F, G) Effect of RCCD1 knockdown on cell migration in LUAD cells measured by transwell assay. **P < 0.01, ****P < 0.0001
compared to the control group.
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