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A nomogram for predicting
the nature of thyroid
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ultrasound: a dual-center study
Sheng Cheng1†, Xian-Tao Zeng1†, Xia Liang1†, Zhi-Liang Hong1,
Jian-Chuan Yang1, Zi-Ling You2 and Song-Song Wu1*

1Department of Ultrasound, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital,
Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China, 2Department of
Ultrasound, First Affiliated Hospital of Fujian Medical University, National Regional Medical Center,
Fujian Medical University, Fuzhou, Fujian, China
Purpose: Thyroid Imaging Reporting and Data System (TIRADS) does not perform

well in thyroid adenomatoid nodules on ultrasound (TANU). Therefore, we aimed

to generate and validate a nomogram based on radiomics features and clinical

information to predict the nature of TANU.

Methods: A total of 200 TANU in 200 patients were enrolled. Firstly, radiomics

nomograms (R_Nomogram) and clinical nomograms (C_Nomogram) were

constructed using eight machine-learning algorithms. The best R_Nomogram

and C_Nomogram generated the Radiomics-clinical nomogram (R-

C_nomogram). We compared the Area under the receiver operating

characteristic curve (AUC), calibration curve, and decision curve analysis (DCA)

of different nomograms. The unnecessary intervention rates were compared

between nomograms and the 2017 ACR TI-RADS recommendations.

Results: The R-C_Nomogram had a higher AUC than other nomograms [training

cohort: R-C_Nomogram (AUC: 0.922) Vs. C_Nomogram (AUC: 0.825): p<0.001,

R-C_Nomogram Vs. R_ Nomogram (AUC:0.836), p=0.007); validation cohort: R-

C_Nomogram (AUC: 0.868) Vs. C_Nomogram (AUC: 0.850): p=0.778, R-

C_Nomogram Vs. R_Nomogram (AUC:0.684), p=0.005). The R-C_Nomogram

has the lowest unnecessary intervention rate among all approaches.

Conclusion: The R-C_Nomogram exhibited excellent diagnostic performances

for predicting the nature of TANU. By incorporating clinical and radiomics

features, the R-C Nomogram can reduce unnecessary biopsies and guide

treatment decisions such as ultrasound-guided thermal ablation, improving

patient management and reducing healthcare resource burden.
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1 Introduction

Follicular thyroid neoplasm (FTN) includes follicular thyroid

adenoma (FTA), follicular thyroid carcinoma (FTC), follicular

variant papillary thyroid carcinoma (FVPTC), borderline

follicular tumors, and so on (1). FTA’s typical ultrasound (US)

findings are homogeneous isoechoic or hypoechoic nodules parallel

to the skin surface with well-defined margins and peripheral halo

without calcifications and abnormal lymph node enlargement.

Those US findings occasionally also appear on FTC, papillary

thyroid carcinoma (PTC), medullary carcinoma (MC), and other

malignant thyroid tumors (2). Therefore, in this study, those US

findings referred to FTA were defined as thyroid adenomatoid

nodules on US (TANU). There has yet to be a consensus on the

recommendations about TANU in Thyroid Imaging Reporting and

Data Systems (TIRADS).

Most TANUs have long-term durations and big sizes since their

benign appearance; fine-needle aspiration (FNA) is often performed.

However, it may cause many unnecessary FNA because the

malignancy risk of TANU varies from 0% to 25.4% in different

TIRADS (3–6). In addition, most results of TANUs’ FNA are

Bethesda category IV, which is not determinative of malignancy or

benign, and most surgical pathology results of Bethesda category IV

are benign (7). Further methods, such as ultrasound elastography,

core needle biopsy (CNB), and molecular testing, need to be revised

to accurately determine the nature of TANU.

The American College of Radiology Thyroid Imaging Reporting

and Data System (ACR-TIRADS), introduced in 2017 (2017 ACR-

TIRADS), however, reveals critical shortcomings in the

recommendation of TANU. While TR3 nodules show robust

NPV (94.6% against cytology, 100% against histopathology),

higher-risk categories underperform. TR4 nodules exhibit a mere

6.1% PPV for malignancy histologically, rising to 66.7% for TR5.

This gradient fails to align with clinical urgency, as 10.9% of

resected TR4 nodules proved malignant despite lower scores.

Size-based exacerbate this issue: 30.7% of small (<1.5 cm) TR4

and 50% of TR5 nodules omitted from FNAC per guidelines

harbored malignancies (8). This suggests that the system may

overestimate the risk of malignancy in these nodules, leading to

unnecessary biopsies and patient anxiety, especially in resource-

limited countries like China and India. Preoperatively and

accurately diagnosing the nature of TANU will also facilitate the

use of ultrasound-guided thermal ablation, which has proven

effective for benign nodules (9, 10). Therefore, there is an urgent

clinical need for a more effective diagnostic method to determine

the nature of TANU preoperatively.

Radiomics, the extraction of quantitative features from medical

images, has emerged as a promising tool in evaluating and

managing thyroid carcinoma. Integrating radiomics with

advanced imaging techniques enhances the ability to differentiate

between benign and malignant thyroid nodules, predict treatment

outcomes, and assess disease progression. Integrating machine

learning (ML) algorithms with radiomic data enhances predictive

modeling capabilities. By analyzing large datasets of extracted
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features, ML models can identify patterns associated with

malignancy or treatment response that may not be apparent

through visual assessment alone (11–14).

Clinical information, such as age and gender, are also related to

the prognosis and risk of thyroid carcinoma. Younger patients

generally have better survival outcomes compared to older

individuals, reinforcing the importance of age as a critical factor

in both the diagnosis and prognosis of thyroid cancer (15). Thyroid

carcinoma is diagnosed approximately 2.9 to 4 times more often in

women than in men; this disparity is especially pronounced in the

case of PTC (16). However, the role of age and gender in predicting

the nature of TANU is still unknown.

To date, there is no study about whether integrating ML

algorithms, radiomics features, and clinical information can help

predict the nature of TANU and reduce unnecessary biopsies.

Therefore, this study aims to generate and validate a nomogram

that integrates radiomics features and clinical information using

ML algorithms to predict the nature of TANU and compare the

unnecessary biopsy rates between the nomogram and the 2017

ACR-TIRADS.
2 Materials and methods

2.1 Patients

Ethical approval was obtained for this retrospective study in our

institution, and the informed consent requirement was waived for

this retrospective study (K2025-02-182). From January 2017 to

October 2023, 852 consecutive patients with thyroid solid nodules

at Fuzhou University Affiliated Provincial Hospital (Hospital 1,

n=635) and First Affiliated Hospital of Fujian Medical University

(Hospital 2, n=217) were included. The patient recruitment

pathway is shown in Figure 1. Two radiologists with 3 and 10

years of experience, respectively, strictly performed the following

inclusion and exclusion criteria.

Inclusion criteria: (1) Solid or mainly solid (solid component

≥90%) nodules that are hyperechoic, isoechoic, or hypoechoic; (2)

Histopathology results of the surgical specimen or benign results of

FNA with follow-up periods longer than two years were available;

(3) Three images for each target nodule (one on the largest long-axis

cross-section, one on the largest transverse cross-section, and one

color-flow image on the most significant long-axis cross-section) in

the Picture Archiving and Communication Systems (PACS).

Exclusion criteria: (1) Distinctly hypoechoic Nodules. (2)

Patients who have received radiofrequency ablation, radiotherapy,

or chemotherapy before surgery; (3) Indistinct US images of

nodules caused by artifact. (4) Histopathology results were not

available or unclear (i.e., borderline follicular tumors); (5) The

target nodule was not completely visible in the image.

Finally, 160 TANU in 160 patients [49 males and 111 females;

45.77± 12.91 years; range, 15 to 74 years] from Hospital 1 were

enrolled as the training cohort. A total of 40 TANU in 40 patients

[13 males and 27 females; 49.25± 13.11 years; range, 17 to 81 years]
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from Hospital 2 were enrolled as the validation cohort.

Supplementary Figure 1 shows different kinds of TANU and their

corresponding surgical pathological outcomes. All surgeries were

performed for curative intent. Baseline clinicopathologic data,

including age and gender, were derived from medical records,

and dates of ultrasound examination were also recorded.
2.2 Ultrasound image acquisition

US examinations used the Philips iU22 system and linear array

transducer (L12-5; Philips Ultrasound, Bothell, Washington). The

radiologist who performed the US examination adjusted the

imaging parameters and acquired the images. Three images were

routinely recorded for each target nodule (one on the largest

transverse cross-section, one on the largest long-axis cross-

section, and one color-flow image on the largest long-axis cross-

section). The radiologist also acquired more images containing

important features (calcification, halo, extrathyroidal extension,

etc.). All images were stored in the PACS. A radiologist with over

three years of experience in thyroid ultrasound using ITK-SNAP

3.8.0 (http://www.itksnap.org) to draw an outline of the region of

interest (ROI), which was the target region for radiomics feature

extraction (Supplementary Figure 2).
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2.3 Extraction of radiomics features

The feature extraction task was completed using Python 3.11.5

in the training cohort. The handcrafted features can be divided into

three groups: (I) geometry, (II) intensity, and (III) texture. The

geometry features describe the three-dimensional shape

characteristics of the tumor. The intensity features describe the

first-order statistical distribution of the voxel intensities within the

tumor. The texture features describe the patterns or the intensities’

second and high-order spatial distributions. Here, the texture

features are extracted using several different methods, including

the gray-level co-occurrence matrix (GLCM), gray-level run length

matrix (GLRLM), gray-level size zone matrix (GLSZM), and

neighborhood gray-tone difference matrix (NGTDM) methods.

Wavelet filtering and Laplacian of Gaussian spatial band-pass

filter were used to derive image features at different spatial scales

by tuning the filter parameter between 1.0 and 3.0 (1.0, 2.0, 3.0).
2.4 Feature selection

Statistics: We also conducted the Mann-Whitney U statistical

test and feature screening for all radiomics features. Only the p<0.05

of the radiomics feature was kept.
FIGURE 1

Flowchart of the study population.
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Correlation: For features with high repeatability, Spearman’s

rank correlation coefficient was also used to calculate the

correlation between features, and one of the features with a

correlation coefficient greater than 0.9 between any two features

is retained. We use a greedy recursive deletion strategy for feature

filtering to maintain the ability to depict features to the greatest

extent. That is, the feature with the most excellent redundancy in

the current set is deleted each time. After this, 23 features were

finally kept.

LASSO: The least absolute shrinkage and selection operator

(LASSO) regression model was used on the training data set for

signature construction. To find an optimal l, 10-fold cross-

validation with minimum criteria was employed, where the

final value of l yielded minimum cross-validation error.

Depending on the regulation weight l, LASSO shrinks all

regression coefficients towards zero and sets the coefficients

of many irrelevant features precisely to zero. The retained

features with nonzero coefficients were used for regression

model fitting and combined into a radiomics signature.

Subsequently, we obtained a radiomics score for each patient by a

linear combination of retained features weighed by their model

coefficients. The Python scikit-learn package was used for LASSO

regression modeling.
2.5 Radiomics nomogram

After Lasso feature screening, we input the final features into the

ML models like logistic regression (LR), support vector machine

(SVM), K-nearest Neighbors (KNN), Extra Trees (ET), Random

Forests (RF), eXtreme Gradient (XGboost), Light Gradient Boosting

Machine (LightGBM), multi-layer perceptron (MLP) for risk model

construction. Here, we adopted 5-fold cross-verification to obtain

the final radiomics signature. The radiomics signature of the highest

AUC of the ML algorithm in the validation cohort was used to

construct the radiomics nomogram (R_Nomogram).
2.6 Clinical nomogram

The building process of the clinical nomogram (C_Nomogram)

was almost the same as the radiomics signature. First, univariable

and multivariable analyses selected the features used to build the

C_nomogram. We also used the same ML models in the

R_Nomogram building process. 5-fold cross-validation and

validation cohort were set to be fixed for fair comparison.
2.7 Radiomics-clinical nomogram

Radiomics-Clinical Nomogram (R-C_Nomogram) was

es tab l i shed in combina t ion wi th R_Nomogram and

C_Nomogram. The diagnostic efficacy of nomograms was tested

in training and validation cohorts; ROC curves were drawn to
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evaluate the diagnostic efficacy of nomograms. The calibration

efficiency of nomograms was assessed by drawing calibration

curves, and the Hosmer-Lemeshow analytical fit was also used to

evaluate the calibration ability of nomograms. Mapping decision

curve analysis (DCA) to assess the clinical utility of nomograms.
2.8 Recommendations of 2017 ACR TI-
RADS

Images analyses were based on the cross-sectional static images

of nodules in the PACS rather than real-time US. Two radiologists

with ten years of experience assessed all 200 nodules according to

the 2017 ACR TI-RADS. Each nodule was scored using five lexicon

categories: composition, echogenicity, shape, margin, and

echogenic foci. The scores were recorded for each nodule

according to these five lexicon categories. The corresponding

sums of scores reflect the ACR scores of the nodules. The two

radiologists were blinded to the other evaluations and outcomes.

Different scores were agreed upon through negotiation between the

two radiologists for clarity and analysis. FNA recommendations

were according to the criteria of the 2017 ACR TI-RADS and the

malignancy prediction of R_C_Nomogram. The unnecessary

intervention rates were compared between the R_C_Nomogram

and 2017 ACR TI-RADS.
2.9 Statistical analysis

The statistical analysis and plots were performed using Python

(3.12.4) and R (version 4.2.1). Mean ± standard deviation and

median (interquartile range) were used to describe continuous data

where appropriate. Categorical variables were reported as number

of cases and percentages. Accuracy (ACC), AUC, Sensitivity (SEN),

specificity (SPE), positive prediction value (PPV), negative

prediction value (NPV), Precision, Recall, and F1 score were used

to evaluate different ML models. AUC was used to compare the

diagnostic performance between different ML models using the

Delong method. A P-value less than 0.05 was considered

statistically significant.
3 Results

3.1 Histopathological results and clinical
characteristics

Among the 200 TANUs that finally enrolled in this study, 95

TANUs had pre-operative FNA; among them, 35 TANUs without

malignant appearances during the two years of follow-up were

considered benign. A total of 165 TANUs had surgeries without

FNA. Supplementary Figure 3 illustrates the pathological or follow-

up results of all TANUs. The baseline characteristics of patients in

cohorts are shown in Table 1.
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3.2 Signature building

Features Statistics: 6 categories and 1555 handcrafted features

are extracted, including 305 first-order features, 14 shape features,

and the last are texture features. All handcrafted features are

extracted with an in-house feature analysis program implemented

in Pyradiomics (http://pyradiomics.readthedocs.io). Supplementary

Figure 4 shows all features and corresponding p-value results.
3.3 LASSO feature selection

Nonzero coefficients were selected to establish the Rad-score

with a least absolute shrinkage and selection operator (LASSO)

logistic regression model. Coefficients and MSE (mean standard

error) of 10-fold validation are shown in Figure 2. The formula for

the Rad-score is shown in Supplementary Table 1. The coefficient

value in the final selected non-zero features is shown in

Supplementary Figure 5.
3.4 Radiomics nomogram

Supplementary Table 2 shows the metrics of radiomics models

we used to predict the nature of TANU. The KNN achieved the best

value of AUC in the training and validation cohort, reaching 0.858

and 0.838, respectively. Supplementary Figure 6A shows each

radiomics model’s AUC on the validation cohort. Therefore, the

KNN model was selected as the base model in building

the R_Nomogram.
3.5 Clinical nomogram

Univariable and multivariable analyses of clinical features were

demonstrated in supplementary Figure 7. Finally, gender (male)

and ACR TI-RADS scores were selected to generate the clinical

models. In this study, age is not related to malignancy.
Frontiers in Oncology 05
Supplementary Figure 6B shows each clinical model’s AUC on

the validation cohort. The LR model performed the best in the

validation cohort (AUC: 0.925). LR model was therefore selected as

the base model in the building of the C_Nomogram.
3.6 Radiomics-clinical nomogram

In the training cohort, both R_Nomogram and C_Nomogram get

the perfect fitting. In the validation cohort, the R_Nmogram seems

overfitting, but the C_Nomogram still fits well. The R-C_Nomogram

using the Logistic Regression algorithm was performed to combine

the R_Nomogram and C_Nomogram (Figure 3).
3.7 Comparison of different nomograms

The metrics of the R_Nomogram, C_Nomogram, and R-

C_nomogram are demonstrated in Table 2. The nomograms’

AUCs are shown in Figure 4. The AUC of the R-C Nomogram

(0.931 in the validation cohort) demonstrates excellent predictive

accuracy, with high sensitivity (80.0%) and specificity (94.4%),

which indicates its potential to guide accurate clinical decisions,

such as reducing unnecessary biopsies while identifying high-risk

cases for malignancy.

Delong test was used to compare the AUCs of different

nomograms [training cohort: R-C_nomogram vs. C_Nomogram

(p<0.001), R-C_Nomogram vs. R_Nomogram (P=0.007); validation

cohort: R-C_nomogram vs . C_Nomogram (p=0.78), R-

C_Nomogram vs. R_Nomogram (p=0.005).
3.8 Calibration curves

All nomograms’ calibration curves show good agreement between

TANU’s predicted and observed nature in training and validation

cohorts (Figure 5). The Hosmer-Lemeshow tests [C_Nomogram

(p=0.181, 0565 for training and validation cohorts, respectively),
TABLE 1 Baseline characteristics of patients.

Index
Training
(benign)

Training
(malignancy)

P value
Validation
(benign)

Validation
(malignancy)

P value

Age 42.67 ± 11.92 48.95 ± 13.18 <0.001 46.40 ± 14.84 52.10 ± 10.74 0.172

Size 32.98 ± 9.92 37.72 ± 13.57 0.013 31.07 ± 11.73 36.00 ± 14.24 0.239

Gender 0.004 0.007

Female 65(80.25) 46(58.23) 18(90.00) 9(45.00)

Male 16(19.75) 33(41.77) 2(10.00) 11(55.00)

ACR-
TIRADS Scores

3.43 ± 1.04 5.19 ± 1.81 <0.001 3.40 ± 0.75 6.15 ± 1.63 <0.001
fro
ACR-TIRADS, Thyroid Imaging Reporting and Data System of American College of Radiology.
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FIGURE 2

(A) Coefficients and MSE (mean standard error) of 10-fold validation; (B) LASSO analysis of indicators. LASSO, the least absolute shrinkage and
selection operator.
FIGURE 3

The R-C Nomogram. R_Nomogram, radiomics nomogram; C_Nomogram, clinical nomogram; R-C_Nomogram, radiomics-clinical_Nomogram.
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FIGURE 4

The nomograms’ AUCs. (A) The nomograms’s AUCs in the training cohort. (B) The nomograms’s AUCs in the validation cohort. R_Nomogram:
radiomics nomogram; C_Nomogram: clinical nomogram; R-C_Nomogram: radiomics-clinical_Nomogram.
TABLE 2 Metrics of different nomograms for predicting the nature of TANU.

Cohort Nomogram ACC AUC 95% CI SEN SPE PPV NPV Precision Recall F1 Threshold

Training C_Nomogram 0.825 0.843 0.778-0.909 0.797 0.852 0.840 0.812 0.840 0.797 0.818 0.481

Training R_Nomogram 0.730 0.858
0.803-
0.914

0.568 0.897 0.852 0.667 0.852 0.568 0.681 0.600

Training R-C_Nomogram 0.836 0.922 0.883-0.962 0.914 0.756 0.796 0.894 0.796 0.914 0.851 0.446

Validation C_Nomogram 0.850 0.925 0.842-1.000 0.800 0.900 0.889 0.818 0.889 0.800 0.842 0.588

Validation R_Nomogram 0.684 0.694 0.518-0.871 0.800 0.556 0.667 0.714 0.667 0.800 0.727 0.341

Validation R-C_Nomogram 0.868 0.931 0.851-1.000 0.800 0.944 0.941 0.810 0.941 0.800 0.865 0.629
F
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TANU, Thyroid adenomatoid nodules on ultrasound; ACC, accuracy; AUC, Area under the receiver operating characteristic curve; CI, Confidence Interval; SEN, sensitivity; SPE, specificity;
PPV, positive prediction value; NPV, negative prediction value; C_Nomogram, clinical nomogram; R_Nomogram, radiomics nomogram; R-C_Nomogram, radiomics-clinical nomogram.
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R_Nomogram (p=0.998, 0.050 for training and validation cohorts,

respectively), and R-C_nomogram (p=0.272, 0.108 for training and

validation cohorts, respectively)] indicated that all nomograms fit well

in both the training and validation cohorts.
3.9 Decision curve analysis

The DCA of all nomograms is presented in Figure 6. Compared

with scenarios where no prediction model would be used (i.e., treat-

all or treat-none scheme), the R-C_Nomogram showed
Frontiers in Oncology 08
more benefits for intervention in patients with a prediction

probability than other nomograms. Preoperative prediction of

TANU using R-C_nomogram has been shown to have better

clinical benefit.
3.10 Unnecessary intervention rates

The unnecessary intervention rates of all nomograms are shown

in Table 3. R-C _nomogram’s unnecessary intervention rate is lower

than other nomograms and the 2017 ACR-TIRADS.
FIGURE 5

The nomograms’ calibration curves. (A) The nomograms’s calibration curves in the training cohort. (B) The nomograms’s calibration curves in the
validation cohort. R_Nomogram: radiomics nomogram; C_Nomogram: clinical nomogram; R-C_Nomogram: radiomics-clinical_Nomogram.
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FIGURE 6

The nomograms’ DCAs. (A) The nomograms’s DCAs in the training cohort. (B) The nomograms’s DCAs in the validation cohort. R_Nomogram:
radiomics nomogram; C_Nomogram: clinical nomogram; R-C_Nomogram: radiomics-clinical_Nomogram.
TABLE 3 Unnecessary intervention rates of different approaches in validation cohort.

Approaches
Recommend
intervention

Malignant Benign
Unnecessary intervention

rates

ACR_TIRADS 35 22 13 37.10%

C_Nomogram 21 17 4 19.1%

R_Nomogram 23 17 6 26.1%

R-C_Nomogram 20 17 3 15.0%
F
rontiers in Oncology
 09
ACR, American College of Radiology; TI-RADS, Thyroid Imaging Reporting and Data System; C_Nomogram, clinical nomogram; R_Nomogram, radiomics nomogram; R-C_Nomogram,
radiomics combined with clinical nomogram.
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4 Discussion

The main results of this study are as follows: 1) The R-

C_Nomogram performed best in the preoperative prediction of

TANU compared to the C_Nomogram, R_Nomogram; 2) The R-

C_Nomogram has the lowest unnecessary intervention rate

compared to the C_Nomogram, R_Nomogram, and the 2017

ACR-TIRADS.

Prior studies have reported some ML models incorporate US

and clinical characteristics to predict thyroid malignancy. Liang

et al. developed six ML models incorporating gender, US, strain

elastography, and contrast-enhanced US to predict the nature of

thyroid nodules. Their results indicated that the LR model had the

best diagnostic performance with an AUC of 0.93 (17). Similarly,

Luong et al. utilized commonly used ML models to access thyroid

nodules with indeterminate diagnoses on FNA and revealed that the

RF model performed the best with an AUC of 0.86 (18). Maia et al.

developed an LR model based on age, border irregularity,

microcalcifications, and nodule size with an accuracy of 81.7% in

discriminating malignant from benign thyroid nodules (19).

Ouyang et al. observed conventional US features of 1,179 thyroid

nodules and found that the RF model achieved the highest AUC of

0.95 (20). Zhang et al. analyzed 2064 thyroid nodules and revealed

that ML models, particularly the RF model, diagnose malignant

thyroid nodules better than radiologists (21). However, radiomics

features are not included in their study.

To date, there is no study about combining ML algorithms,

radiomics features, and clinical information to predict the nature of

TANU. In terms of radiomics features of the US, Agyekum et al.

demonstrated that ML models based on US elastography radiomics

features are capable of predicting the likelihood of BRAFV600E

mutation in PTC patients with the highest AUC of 0.98 in the

SVM_RBF model (22). Li et al. observed extrathyroidal extension

(ETE) in children and adolescents with PTC using four ML models

based on ultrasound radiomics features. The LightGBM model

performed best with an AUC of 0.83 (23).

Regarding clinical factors, some previous studies found that age

is not associated with the incidence of thyroid cancer but is related

to prognosis (24, 25). Similar to these studies, our data showed that

age is not a significant factor in the prediction of TANU. On the

other hand, thyroid cancer is predominantly diagnosed in women

(26). In contrast, this does not agree with our results that the male

was related to malignancy of TANU, although the result was not

significant in the multivariable analysis. A prospective study with a

larger sample size is needed to validate our results.

Unlike previous ML methodologies that rely solely on radiomic

or clinical features, our approach integrates both, leveraging the

strengths of each to provide a more accurate, robust prediction of

the nature of TANU. This innovative combination improves model

performance and helps overcome limitations inherent in using

single-source data. In addition, DCA results implied that there

would be more benefits to using the R-C_Nomogram for

preoperatively predicting the nature of TANU. The disparity was

not so significant in the validation cohort, which may be due to the

small sample size.
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ACR TI-RADS is one of the most used systems. It effectively

reduces unnecessary biopsies compared to other TIRADS, which

have a 17% to 25% unnecessary intervention rate (27). However, it

could perform better for the recommendation of TANU, which is

familiar with our data. In contrast, the R-C_Nomogram showed a

significantly lower unnecessary intervention rate than the 2017

ACR-TIRADS. This implies that the R-C_Nomogram based on

radiomics features and clinical information may be conducive to

pre-treatment decision-making in patients with TANU. It can be

applied to triage patients requiring FNA in a resource-constrained

setting, subsequently guiding appropriate therapy, such as

ultrasound-guided thermal ablation.

In a word, the R-C Nomogram offers a promising tool for the

preoperative risk stratification of TANU. It could be incorporated

into clinical practice through integration into ultrasound reporting

software or decision-support systems, assisting clinicians in

determining the necessity of biopsy and helping to guide non-

invasive management options, such as thermal ablation.

This study has several limitations. First, there is selection bias

with a small sample size for the retrospective nature. Second, except

for ACR-TIRADS, the diagnostic performances between the ML

models and other TIRADS were not analyzed. Despite these

limitations, our study has several strengths. It is a dual-center

study that includes an external validation cohort, enhancing the

generalizability of our results. Furthermore, a comprehensive range

of ML models was constructed. Future developments in AI,

particularly deep learning models and integrating multi-modal

data (e.g., molecular data, histopathological images), hold

significant potential to enhance the predictive accuracy of models

like the R-C Nomogram, leading to even more personalized

treatment recommendations.
5 Conclusion

In summary, the R-C_Nomogram exhibited excellent

diagnostic performances for predicting the nature of TANU.

Using the R-C_nomogram may reduce unnecessary biopsy and

facilitate the utility of ultrasound-guided thermal ablation.
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