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MRI-based radiomics for
predicting pathological complete
response after neoadjuvant
chemoradiotherapy in locally
advanced rectal cancer:
a systematic review and
meta-analysis
Zhongfan Liao, Dashuang Luo, Xiaoyan Tang,
Fasheng Huang and Xuhui Zhang*

Department of Oncology, Sichuan Provincial People’s Hospital, University of Electronic Science and
Technology of China, Chengdu, China
Purpose: To evaluate the value of MRI-based radiomics for predicting

pathological complete response (pCR) after neoadjuvant chemoradiotherapy

(NCRT) in patients with locally advanced rectal cancer (LARC) through a

systematic review and meta-analysis.

Methods: A systematic literature search was conducted in PubMed, Embase,

Proquest, Cochrane Library, and Web of Science databases, covering studies up to

July 1st, 2024, on the diagnostic accuracy of MRI radiomics for predicting pCR in

LARC patients following NCRT. Two researchers independently evaluated and

selected studies using the Quality Assessment of Diagnostic Accuracy Studies 2

(QUADAS-2) tool and the Radiomics Quality Score (RQS) tool. A random-effects

model was employed to calculate the pooled sensitivity, specificity, and diagnostic

odds ratio (DOR) for MRI radiomics in predicting pCR. Meta-regression and

subgroup analyses were performed to explore potential sources of heterogeneity.

Statistical analyses were performed using RevMan 5.4, Stata 17.0, and Meta-Disc 1.4.

Results: A total of 35 studies involving 9,696 LARC patients were included in this

meta-analysis. The average RQS score of the included studieswas 13.91 (range 9.00-

24.00), accounting for 38.64% of the total score. According to QUADAS-2, there

were risks of bias in patient selection and flow and timing domain, though the overall

quality of the studies was acceptable. MRI-based radiomics showed no significant

threshold effect in predicting pCR (Spearman correlation coefficient=0.119,

P=0.498) but exhibited high heterogeneity (I2≥50%). The pooled sensitivity,

specificity, positive likelihood ratio, negative likelihood ratio and DOR were 0.83,

0.82, 5.1, 0.23 and 27.22 respectively, with an area under the summary receiver

operating characteristic (sROC) curve of 0.91. According to joint model analysis,

publication year, country, multi-magnetic field strength, multi-MRI sequence, ROI

structure, contour consistency, feature extraction software, and feature quantity

after feature dimensionality reduction were potential sources of heterogeneity.

Deeks’ funnel plot suggested no significant publication bias (P=0.69).
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Conclusions: MRI-based radiomics demonstrates high efficacy for predicting

pCR in LARC patients following NCRT, holding significant promise for informing

clinical decision-making processes and advancing individualized treatment in

rectal cancer patients.

Systematic review registration: https://www.crd.york.ac.uk/prospero/,

identifier CRD42024611733.
KEYWORDS

magnetic resonance imaging, radiomics, rectal neoplasms, neoadjuvant
chemoradiotherapy, meta-analysis
Introduction

The standard treatment for locally advanced rectal cancer

(LARC) is neoadjuvant chemoradiotherapy (NCRT) combined

with total mesorectal excision (TME). Study reported that

approximately 15-27% of LARC patients exhibited no residual

viable tumor cells upon pathological examination after NCRT,

indicating a pathological complete response (pCR) (1). Some

studies suggested a “watch and wait” strategy for patients

achieving pCR, noting no significant differences in distant

metastasis rate, disease-free survival, or overall survival compared

to those who undergo surgery (2, 3). Therefore, some studies

recommended preoperative evaluation for LARC patients after

NCRT, allowing for a “watch and wait” approach for those who

achieve pCR. This strategy can help avoid permanent stoma

formation and postoperative complications, thereby improving

patients’ quality of life (4, 5). Consequently, accurate preoperative

prediction of pCR following NCRT can impact on clinical decision-

making and enhance quality of life.

Imaging modalities are the mainstay of preoperative prediction

of pCR. However, studies have shown that conventional imaging

methods did not achieve ideal predictive results (6, 7). Currently,

most studies focused on evaluating the efficacy of NCRT through

radiomics, a machine learning approach that enables high-

throughput extraction and quantitative analysis of numerous

imaging features from radiographic images. Compared with the

subjective analysis of conventional imaging, the advantage of

radiomics lies in the ability to quantitatively analyze, identify, and

reveal deep features within images that are difficult to discern with

the naked eye, effectively overcoming the limitations of subjectivity
; NCRT, neoadjuvant

esponse; TME, total

f Diagnostic Accuracy

under the curve; MRI,

d Reporting Items for

Test Accuracy; ROI,

02
in manual image recognition (8). The basic workflow of radiomics

can be divided into five main steps: image acquisition, image

segmentation, feature extraction and quantification, feature

dimensionality reduction and selection, and model construction.

Magnetic resonance imaging (MRI) offers high-resolution

imaging of soft tissues, enabling clear visualization of structures

such as cancer nests and fibrosis in rectal cancer following NCRT.

Numerous studies have employed MRI-based radiomics to predict

whether LARC patients achieve pCR following NCRT. However,

discrepancies remained among study outcomes, and there is a lack

of latest research providing a comprehensive systematic review and

meta-analysis of MRI-based radiomics for the prediction of pCR

(9). This study aims to explore the predictive value of MRI-based

radiomics for pCR by screening and evaluating relevant studies,

thereby providing evidence-based guidance for clinical decision-

making and prognostic management.
Materials and methods

Study design

The Preferred Reporting Items for Systematic Reviews and

Meta-Analyses of Diagnostic Test Accuracy Studies (PRISMA-

DTA) guidelines were followed for conducting this systematic

review (10). There was no systematic review relevant to the topic

of this study that was identified in the Cochrane library.
Population, intervention,
comparison, outcome
• Population: LARC patients undergoing preoperative MRI

examination, either before or after NCRT, with TRG

confirmed by histopathology after TME.

• Intervention: Radiomics analysis was performed with

preoperative MRI images of tumors, classifying NCRT

response as pCR versus non-pCR.
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• Comparison: The predictive performance of MRI-based

radiomics in comparison to the pathological gold

standard was evaluated.

• Outcome: The efficacy of MRI-based radiomics to predict

pCR after NCRT in patients with LARC was evaluated

through a diagnostic accuracy study design (e.g., ROC

curve analysis).
Search strategy

A combination of MeSH terms and free text words was used for

an online search in the PubMed, Embase, Proquest, Cochrane

Library, and Web of Science databases, covering the period from

database inception to July 1, 2024. Detailed search terms and

strategies are provided in Supplementary Table S1. To avoid

duplication and prevent omissions, the retrieved documents were

cross-checked, and citation tracking was conducted.
Inclusion and exclusion criteria

Inclusion criteria: (1) studies involving diagnostic accuracy MRI

radiomics; (2) all subjects were required to undergo preoperative

rectal MRI; (3) the experimental group consisted of LARC patients

achieving pCR after NCRT, while the control group included LARC

patients with non-pCR after NCRT; (4) the gold standard for the

diagnosis of pCR is postoperative histopathological biopsy; (5)

sufficient data to directly extract or indirectly calculate the

numbers of true positives (TP), false positives (FP), true negatives

(TN), and false negatives (FN) cases.

Exclusion criteria: (1) non-diagnostic studies, including reviews,

case reports, experimental studies, or conference abstracts; (2)

duplicate publications; (3) studies with inaccessible full text or

incomplete data; (4) studies with a sample size of 20 or fewer

cases; (5) studies with a RQS score below 5.
Literature screening and data extraction

Initially, two researchers (each with over three years of

experience in radiomics analysis) independently screened the

titles and abstracts of the retrieved articles, excluding irrelevant

studies. Each excluded study was re-evaluated by the different

researcher. Subsequently, relevant studies were included in this

systematic review after a careful and thorough full-text review.

Data extraction was conducted for the included studies,

including general data and detailed radiomics data. General data

included: (1) first author, (2) publication year, (3) publication

country, (4) study type, (5) sample size, (6) average age, (7)

chemoradiotherapy regimen, (8) imaging acquisition timing, (9)

MRI field strength, sequence, and slice thickness, and (10) 2x2 table

(TP, FP, TN, FN). Detailed radiomics data included: (1) ROI

delineation software, method, and structure, (2) ROI contour
tiers in Oncology 03
consistency assessment, (3) feature extraction software, (4) feature

types, (5) feature quantity after feature dimensionality reduction,

(6) normalization methods, (7) feature dimensionality reduction

and selection methods, (8) modeling algorithms, (9) model

validations, and (10) optimal predictive model with AUC. In case

of discrepancies, the decision will be referred to a senior researcher

(with over ten years of experience in systematic review) for

adjudicating, or consensus will be reached through consultation.

When multiple modeling algorithms were applied to the same

sample in a study, the model with the best classification

performance was considered the optimal predictive model. If the

optimal predictive model in a study was developed using data

beyond MRI alone (such as PET-CT, ultrasound, pathological

features, or clinical features), only data based on MRI and clinical

features were extracted.
Methodological quality assessment

QUADAS-2
The quality of the included studies was evaluated using the

Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2)

tool, specifically including patient selection, index test, reference

standard, and flow and timing (11). If any item within a section was

answered as “No”, it was rated as “high risk of bias”, which

indicated potential methodological flaws that could impact

diagnostic accuracy. If all items in a section were answered as

“Yes”, it was rated as “low risk of bias”, which indicated that the

study followed a sound methodological design unlikely to introduce

bias. If the content reported was difficult to evaluate, it was rated as

“unclear”, indicating insufficient information to judge the risk of

bias. Supplementary Table S2 provided detailed scoring criteria for

each QUADAS-2 item.

RQS
The rigor and reproducibility of the included studies were

assessed using the Radiomics Quality Score (RQS) proposed by

Lambin (12). The RQS provides a meticulous assessment of 16

aspects across five key steps in the radiomics analysis, including

data selection, medical imaging, feature extraction, exploratory

analysis, and modeling. RQS both rewards and penalizes the

methodology and statistical analysis of research, thereby

promoting best scientific practices. The total score is 36,

representing a 100% RQS score. Two researchers independently

assessed the RQS score of each study, with disagreements resolved

through consensus. Supplementary Table S3 showed detailed

scoring criteria for each RQS item.
Statistical analysis

Review Manager (Cochrane; version 5.4) software was used to

perform methodological quality assessment with built-in

QUADAS-2 tool and to plot the risk of bias and applicability

graphs. Meta-Disc (XI Cochrane Colloquium, Barcelona, Spain;
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version 1.4) software was used to calculate the Spearman correlation

coefficient between the logit of sensitivity and the logit of 1-

specificity. Summary receiver operator characteristic (sROC)

curve was plotted to assess threshold effects in the pooled results.

A Spearman correlation coefficient with P < 0.05 or a “shoulder

arm” shape in the sROC curve scatters distribution indicated a

threshold effect. If there was no threshold effect, heterogeneity

among studies was analyzed using the inconsistency index (I2)

and Cochrane Q test. When I2 > 50% and P < 0.05, which indicated

the presence of heterogeneity, a random effects model was applied

to analyze sampling error and variance across studies, and potential

sources of heterogeneity should be explored. When I2 < 50% or P >

0.05, which indicated lack of heterogeneity, a fixed effects model

should be used, which assumed that all effect sizes come from a

single population and differences are due to chance.

In this study, a random effects model was applied, and the pooled

effect sizes were calculated using Meta-Disc software, including

sensitivity, specificity, positive likelihood ratio, negative likelihood

ratio, diagnostic odds ratio (DOR), and area under the sROC curve

(AUC). All analyses were conducted on the validation or test cohorts.

Forest plots and sROC curves were plotted to visually display pooled

effect sizes results. To further investigate the sources of heterogeneity,

the MIDAS module in Stata (Stata Corporation, College Station, TX,

USA; version 17.0) was used for meta-regression and subgroup

analyses, which incorporated covariates into a dichotomy model to

assess the impact of various factors on the predictive performance. The

following factors were considered as potential sources of heterogeneity:

publication year (≥2021 vs. <2021), publication country (China vs.

other), multicenter study (yes vs. no), sample size (≥200 vs. <200),

post-NCRT features (whether post-NCRT MRI images were

included), multi-MRI field strength (whether multiple field strengths

were used), multi-MRI sequence (whether multiple sequences were

used), ROI structure (2D vs. 3D), contour consistency (whether ROI

delineation consistency was evaluated), feature extraction software

(Pyradiomics vs. others), feature quantity after feature dimensionality

reduction (≥10 vs. <10), multi-modeling algorithm (whether multiple

methods were used for model construction), model validation

(external validation vs. others), radiomics type (deep learning-based

vs. machine learning-based), and RQS score (≥14 vs. <14).

Deeks’ asymmetry test was used to assess statistical significance,

and potential publication bias was evaluated by plotting Deeks’

funnel plot. The trim-and-fill method was used to calculate the

publication bias when a significant publication bias was found.

Fagan plot was used to assess the clinical utility of MRI-based

radiomics for predicting pCR in LARC patients after NCRT. All P-

values under 0.05 were considered statistically significant.
Results

Literature search

A total of 735 studies were retrieved through online search of

PubMed, Embase, Proquest, Cochrane Library, and Web of Science

databases, with an additional 45 articles identified through
Frontiers in Oncology 04
reference tracing. Detailed search results were shown in

Supplementary Table S1. Following the removal of 282 duplicate

studies, the titles and abstracts of the remaining articles were

screened, and 325 articles were excluded. Subsequently, 122

articles were excluded for not meeting eligibility criteria. Eleven

articles were excluded due to the inability to construct a 2x2 table,

and five articles were excluded due to low RQS scores. Ultimately,

35 articles were included in this systematic review for analyses (13–

47). The literature selection process is shown in Figure 1.
Characteristics of included studies

Table 1 showed the general characteristics of the studies

included in the systematic review. The 35 studies, published

between 2017 and 2024, included a total of 9,696 patients, with

sample sizes ranging from 38 to 1,033. Among them, 2,102 cases

were pCR patients, and 7,594 were non-pCR patients. The training

sets included 5,822 cases, and the validation sets included 3,874

cases. The overall average age was 58.6 years, with a range from 50.5

to 70 years. Approximately 69% of studies (24/35) were published in

2021 or later. About 57% of studies were conducted in China

(13, 15, 17, 19, 22–26, 28, 30, 33, 37, 40–45, 47) (20/35), five in the

United States (18, 20, 32, 35, 38), four in Italy (16, 31, 36, 39), three

in South Korea (27, 29, 34), and one each in Belgium, Brazil, and

Turkey (14, 21, 46). Approximately 54% of studies were

monocentric studies (19/35), 10 studies included data from two

centers, four studies included data from three centers, and two

studies included data from four centers. Most studies

(approximately 83%) were retrospective, with three studies being

prospective. Additionally, three studies conducted both

retrospective model construction and validation, as well as

prospective validation of the predictive performance of models.

The magnetic field strength of scanners was 3.0T in 16 studies,

accounting for about 46% (16/35), 1.5T in 5 studies, a combination

of both in 12 studies, with one study using 1.5T and 1.0T and not

reporting in one study. T2-weighted imaging (T2WI) and diffusion

weighted imaging (DWI) were commonly used MRI sequences,

accounting for 94% and 57%, respectively. Two studies used

diffusion kurtosis imaging (DKI). The above imaging sequences

were also often used simultaneously. Slice thicknesses of 3.0mm,

4.0mm, and 5.0mm were the most commonly used, accounting for

80%. Seventeen studies (about 49%) used pre-NCRT MRI images to

predict pCR, four studies used images acquired after NCRT, and 13

studies used both pre- and post- NCRT images. Notably, one study

used MRI images taken before, during, and after NCRT. Six studies

utilized deep learning-based radiomics for analysis. The 2x2 table

for the included studies were shown in Supplementary Table S4.

Detailed radiomics characteristics of the included studies were

mentioned in Table 2. Eleven studies used ITK-SNAP software for

radiomic feature extraction, and 7 used 3D Slicer. Approximately

77% of studies manual delineated the region of interest (ROI) (27/

35), followed by automated (1/35) and semi-automated (2/35)

delineation, with 3 studies not reporting and 2 not applicable.

The ROI structure was 3D in 20 studies, 2D in 14 studies, and
frontiersin.org
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unspecified in 1 study. Most of studies (approximately 63%)

conducted contour consistency assessments for ROI delineation.

Pyradiomics was the most commonly used feature extraction

software (14/35), followed by MATLAB (6/35). The vast majority

of studies (29/35) extracted texture features, with first-order

statistics (27/35), shape features (19/35), and wavelet features (11/

35) also frequently extracted. In 24 studies, the number of features

decreased by more than 90% after dimensionality reduction. Ten

studies used the Z-score method for feature normalization, while 18

studies did not report the method. About 40% of the studies used

least absolute shrinkage and selection operator (LASSO) for feature

dimensionality reduction and selection (14/35). Similarly, logistic

regression (LR) was the most commonly used algorithm for model

construction (15/35), followed by support vector machine (SVM)

(11/35), random forest (RF) (10/35), and neural networks (8/35).

About 40% of studies performed external validation (14/35),

followed by split sample (13/35) and cross-validation (11/35).
Frontiers in Oncology 05
Quality assessment

QUADAS-2
According to QUADAS-2, the risk of bias and applicability

concerns for the included studies were shown in Figure 2. In the

patient selection domain, the overall risk of bias was relatively low

(<25%). Only a few studies showed a high risk of bias due to not

specifying the timeframe for case inclusion or difficulty in

determining whether the study was case-controlled (Figure 2a).

Additionally, the applicability concerns in this domain were

generally low (Figure 2b). Two studies did not explicitly specify

the severity of rectal cancer in patients, and four studies lacked

relevant research background or relatively intact demographic

characteristics. Similarly, the overall risk of bias in the index test

domain was less than 25%, although 1 study owned a high risk of

bias due to not using a predefined threshold. Three studies did not

report whether the index test was conducted with blinding, leading
FIGURE 1

PRISMA flow chart of the study selection procedure for this systematic review and meta-analysis.
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to some applicability concerns in this domain. Since the treatment

efficacy of NCRT for all study subjects included was confirmed

through postoperative histopathological biopsy, the risk of bias in

the reference standard domain was relatively low. Furthermore,

postoperative histopathological biopsy is considered as the gold

standard for determining pCR (1), resulting in low applicability

concerns in this domain. Two studies did not specify the time

interval between MRI examinations and the reference standard.

However, the overall risk of bias in the flow and timing domain was

low, as all cases in the included studies were subject to radiomics

analysis. Detailed quality assessment results were shown in

Supplementary Table S5. Taken together, the quality of the

articles included was acceptable according to the QUADAS-

2 assessment.

RQS
The average RQS score of 35 included studies was 13.91,

approximately 38.64% of the total score. The median score was

13, with a range from 9 (25%) to 24 (67%). Over half of the studies

(about 51%) scored between 30% and 40% (Figure 3). All included

studies conducted “Feature reduction or adjustment for multiple

testing”, “Discrimination statistics”, “Validation” and “Open

science and data” items. Additionally, 75% and over 86% of

studies conducted “Multiple segmentations” and “Well-

documented image protocols” items respectively. Approximately

58% of studies performed multivariable analysis, incorporating

non-radiomics features, which is expected to provide a more

holistic model. About 44% of studies reported potential clinical

utility and provided clinical decision curves. Only one study

conducted a cost-effectiveness analysis for the clinical application

of the model. Only five studies registered prospective cohort studies

in trial databases, providing the highest level of evidence

supporting the clinical validity and usefulness of the radiomics

biomarker. Only three studies conducted phantom studies, which

help detect inter-scanner differences and vendor-dependent

features. Detailed RQS scores for all included studies were

provided in Supplementary Table S6.
Meta-analysis

Heterogeneity analysis
The threshold effect across studies was examined by calculating

the Spearman correlation coefficient between the logit of sensitivity

and logit of 1-specificity. The results showed a Spearman

correlation coefficient of 0.119 (P = 0.498), with the scatter points

corresponding to the included studies distributing in a non-

“shoulder arm” pattern on the sROC curve, indicating no

significant threshold effect. The I2 statistic indicated significant

heterogeneity in sensitivity (I2 = 78.5%, P < 0.001) and specificity

(I2 = 92.1%, P < 0.001) across the study cohorts.
Diagnostic test accuracy analysis
A total of 35 studies were included in this meta-analysis, and

only the validation or test cohorts with superior predictive
T
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performance were evaluated. The pooled sensitivity, specificity,

positive likelihood ratio, negative likelihood ratio and DOR were

0.83 (95% CI: 0.80-0.84), 0.82 (95% CI: 0.81-0.83), 5.10 (95% CI:

3.92-6.63), 0.23 (95% CI: 0.17-0.31), and 27.22 (95% CI: 16.92-

43.79), respectively. The AUC was 0.91. The forest plots and sROC

curve for the pooled effect sizes were shown in Figure 4.
Frontiers in Oncology 12
Heterogeneity exploration and meta-regression
As shown in Table 3, 15 covariates were used to explore

potential sources of heterogeneity. Meta-regression and joint

model analysis indicated the following factors as contributors to

significant heterogeneity in the meta-analysis: publication year (≥

2021 vs. < 2021) (P = 0.02), publication country (China vs. others)

(P = 0.01), multi-magnetic field strength (multi-Telsa vs. mono-

Telsa) (P = 0.02), multi-MRI sequence (multi-sequence vs. mono-

sequence) (P = 0.01), ROI structure (3D vs. 2D) (P = 0.02), contour

consistency (evaluated vs. unevaluated) (P < 0.001), feature

extraction software (Pyradiomics vs. others) (P < 0.001), and

feature quantity after feature dimensionality reduction (≥ 10 vs.

<10) (P < 0.001).

Subgroup analysis
According to subgroup analysis results (Figure 5), studies from

China showed lower pooled sensitivity (78% vs. 87%, P < 0.001) and

specificity (80% vs. 89%, P < 0.001) compared to studies from other

countries. Studies using multicenter cohorts for model development

and validation owned higher specificity (89% vs. 83%, P = 0.01).

Studies with a sample size of 200 or more demonstrated higher

sensitivity (84% vs. 83%, P = 0.02) and specificity (89% vs. 84%, P =

0.01). Studies incorporating multiple MRI imaging sequences

showed higher sensitivity (85% vs. 80%, P = 0.13, not significant)

and specificity (88% vs. 82%, P = 0.03) compared to those using

only one sequence. Studies that performed consistency evaluations

for lesion contouring showed higher sensitivity (86% vs. 77%, P =

0.88, not significant), which helped analyze the robustness of

radiomic features to segmentation variability. Studies with using

Pyradiomics software for feature extraction showed lower

sensitivity (81% vs. 85%, P = 0.01) and specificity (83% vs. 85%, P

< 0.001). Studies that validated the predictive performance of the

model on external validation cohorts manifested lower sensitivity

(83% vs. 84%, P = 0.01) and higher specificity (90% vs. 83%, P =

0.02). Deep learning-based radiomics studies showed higher

sensitivity (91% vs. 82%, P = 0.59, not significant) and specificity

(90% vs. 85%, P = 0.14, not significant) compared to conventional

radiomics, although these differences were not statistically

significant. From the overall score, studies with higher RQS scores

demonstrated higher sensitivity (88% vs. 79%, P = 0.11, not

significant) and specificity (89% vs. 83%, P = 0.01).

Publication bias
Deeks’ test was used to explore potential publication bias in the

included studies. The funnel plot (Figure 6) showed a generally

symmetrical distribution around the regression line, suggesting no

significant publication bias (P = 0.69).

Clinical utility
According to the Fagan plot of the study cohort (Figure 7), the

pre-test probability of predicting pCR in LARC patients was 30%.

The positive likelihood ratio for MRI radiomics in predicting pCR

was 6, and the negative likelihood ratio was 0.19, which increased

the post-test probability of a positive result to 72% and decreased

the post-test probability of a negative result to 8%.
FIGURE 2

Risk of bias and applicability concerns according to Quality
Assessment of Diagnostic Accuracy Studies-2 tool. (a) Per study
assessment; (b) Per domain summary.
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Discussion

Accurate assessment of NCRT efficacy in LARC patients after

receiving NCRT can provide critical information for subsequent

treatment decisions. Studies have shown that if accurate prediction

of pCR in LARC patients receiving NCRT could be made

preoperatively, a “watch and wait” strategy may be adopted. This

approach could help avoid surgical complications and permanent

stoma formation, ultimately helping to improve quality of life and

achieve precision medicine (48). Currently, the predictive value of

conventional imaging methods for pCR is limited (6, 7), whereas the

efficacy of pCR prediction has been significantly improved by MRI-

based radiomics in recent years. By extracting numerous features

from MRI images, identifying correlations between image features

and predictive outcomes, and using machine learning methods to

build predictive models, MRI-based radiomics offers a new

approach for predicting pCR (49).

This study conducted a meta-analysis of 35 relevant studies,

showing that MRI-based radiomics owned a high AUC (0.91) for

predicting pCR in LARC patients following NCRT, with pooled

sensitivity and specificity of 0.83 (95% CI: 0.80-0.84) and 0.82 (95%

CI: 0.81-0.83), respectively. These findings are consistent with

previous reviews and systematic reviews (50, 51). The Fagan plot

demonstrated that MRI-based radiomics can raise the post-test

probability of a positive result to 72% and reduce the post-test

probability of a negative result to 8%. Compared to previous studies

using conventional imaging methods for pCR prediction, MRI-

based radiomics showed significantly enhanced predictive

performance, indicating that MRI-based radiomics provided a

new approach for predicting pCR and may offer valuable

guidance for treatment planning in LARC patients (52).

Compared with the previous study by Jia et al., the predictive

performance of MRI radiomics for pCR is largely consistent.

However, this study demonstrated superiority from 4 aspects: (1)

an increased number of included studies (35 vs. 21); (2) higher

quality of included studies (RQS 13.91 vs. 10.95); (3) exploration of
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potential sources of heterogeneity using meta-regression; and (4)

additional subgroup analysis (9).

We assessed the quality of included studies using the QUADAS-

2 and RQS tools. Since all study subjects were confirmed by

postoperative histopathological biopsy, the risk of bias and overall

applicability concerns in the reference standard domain were low.

Some studies did not clearly specify whether cases were enrolled

consecutively, performed ROI delineation without implementing

blinding, or did not report the interval between MRI examination

and pathological biopsy, resulting in certain risks of bias and overall

applicability concerns in domains other than the reference

standard. Phantom study was designed to detect potential feature

differences across scanners and vendors. Many studies used MRI

imaging data from different vendors (e.g., Siemens, Philips) and

multiple medical centers, making phantom study a suitable

approach to measure these uncertainties and identify vendor-

dependent features. Cost-effectiveness analysis was a health

economics approach that advocated for cost-quality-adjusted life-

year comparison, with or without the use of radiomics, to more

accurately evaluate the economic potential of such studies. Future

study reports should consider incorporating the above details of

quality assessment.

We emphasized the role of various feature extraction software,

including Pyradiomics, in contributing to the heterogeneity of

results. This variability stemmed from the diversity of algorithmic

approaches and parameter settings across software. While not

inherently detrimental but rather highlighted the subtle impact of

the choice of feature extraction software on research outcomes.

Given this variability, we underscored the importance of

understanding and transparently reporting the software used, as it

significantly impacted on the overall radiomics analysis. Likewise,

contour consistency is another critical source of heterogeneity that

cannot be ignored. Evaluating the consistency of ROI delineation

helped to ensure high concordance in the outlining of lesion

contours among different observers or by the same observer at

different time points. This was crucial for radiomics studies, as
FIGURE 3

Methodological quality assessment based on the RQS tool. (a) Proportion of studies per different RQS range percentages. (b) Average points per
each RQS item. RQS, radiomics quality score.
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feature extraction relied on precise lesion regions. Large variations

in contour could lead to fluctuations in extracted features, thereby

impacting stability and predictive performance of model. Different

observers may interpret lesion boundaries differently, especially
Frontiers in Oncology 14
when the lesion morphology is complex, or boundaries are

indistinct. These discrepancies can affect the conclusions of

individual studies and potentially introduce greater bias in

multicenter studies, thereby undermining the quality of evidence.
FIGURE 4

Forest plot of sensitivity, specificity, positive LR, negative LR and DOR, and sROC curve of MRI-based radiomics for prediction of pathological
complete response. (a) Sensitivity for MRI. (b) Specificity for MRI. (c) Positive LR for MRI. (d) Negative LR for MRI. (e) DOR for MRI. (f) The sROC plane
for heterogeneity test of threshold effect of each independent study. Corresponding indices, 95% CI and the pooled indices are represented by red
circles, horizontal lines and red diamonds, respectively. The sROC (middle line) with 95% CI (the other two lines). LR, likelihood ratio; DOR,
diagnostic odds ratio; sROC, summary receiver operator characteristic; AUC, area under the curve; Q*, Q index value; SE, standard error; CI,
confidence interval.
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Subgroup analysis results indicated that studies published in

2021 or later showed slightly lower predictive performance

compared to those published before 2021. The reasons may be

analyzed as a result of the lack of robust validation, resulting in

potential model overfitting. Studies with a sample size greater than

200, using multicenter cohorts, incorporating post-NCRT MRI

features, or employing multiple MRI sequences, showed higher

predictive performance. This could be that larger sample sizes allow

for more comprehensive training and validation of the model, and

richer imaging information provides a greater chance of extracting
Frontiers in Oncology 15
features that can accurately distinguish pCR from non-pCR during

the feature extraction phase, thus better reflecting the efficacy of

NCRT and enhancing model predictive performance. Deep

learning-based radiomics studies showed higher sensitivity (91%

vs. 82%, P = 0.59, not significant) and specificity (90% vs. 85%, P =

0.14, not significant) than those of machine learning-based, though

the differences were not statistically significant. In terms of feature

extraction, traditional machine learning methods typically rely on

manually designed and selected features. This requires experts to

predetermine useful features based on domain knowledge, such as
TABLE 3 Investigation of heterogeneity using meta-regression and subgroup analysis.

Covariates N Sensitivity P1 Specificity P2 Joint Model Analysis

I2 LRT chi2 P

Year ≥2021 24 0.80 [0.73 - 0.87] 0.00 0.83 [0.78 - 0.89] 0.00 74 [43 - 100] 7.70 0.02

<2021 11 0.90 [0.84 - 0.96] 0.90 [0.85 - 0.95]

Country China 15 0.78 [0.69 - 0.87] 0.00 0.80 [0.72 - 0.88] 0.00 78 [53 - 100] 9.26 0.01

Others 20 0.87 [0.82 - 0.93] 0.89 [0.85 - 0.93]

Multicenter Yes 15 0.83 [0.74 - 0.91] 0.01 0.89 [0.84 - 0.94] 0.01 0 [0 - 100] 1.78 0.41

No 20 0.84 [0.78 - 0.91] 0.83 [0.77 - 0.89]

Sample size ≥200 13 0.84 [0.76 - 0.92] 0.02 0.89 [0.83 - 0.94] 0.01 0 [0 - 100] 1.65 0.44

<200 22 0.83 [0.77 - 0.90] 0.84 [0.78 - 0.89]

Post-NCRT features Yes 15 0.85 [0.77 - 0.92] 0.02 0.86 [0.80 - 0.92] 0.00 0 [0 - 100] 0.12 0.94

No 20 0.83 [0.76 - 0.90] 0.86 [0.80 - 0.91]

Multi-MRI Telsa Yes 14 0.85 [0.77 - 0.92] 0.04 0.84 [0.77 - 0.91] 0.00 76 [46 - 100] 8.20 0.02

No 20 0.82 [0.74 - 0.89] 0.87 [0.82 - 0.92]

Multi-MRI sequence Yes 23 0.85 [0.79 - 0.91] 0.13 0.88 [0.83 - 0.92] 0.03 80 [57 - 100] 10.02 0.01

No 11 0.80 [0.69 - 0.90] 0.82 [0.73 - 0.91]

ROI structure 3D 20 0.83 [0.76 - 0.90] 0.02 0.86 [0.81 - 0.91] 0.00 74 [42 - 100] 7.67 0.02

2D 14 0.83 [0.75 - 0.92] 0.86 [0.79 - 0.92]

Contour consistency Yes 22 0.86 [0.80 - 0.92] 0.88 0.86 [0.80 - 0.91] 0.07 98 [97 - 99] 109.40 0.00

No 4 0.77 [0.58 - 0.97] 0.88 [0.77 - 0.99]

Feature extraction software Pyradiomics 14 0.81 [0.72 - 0.90] 0.01 0.83 [0.76 - 0.90] 0.00 96 [93 - 99] 52.52 0.00

Others 16 0.85 [0.77 - 0.92] 0.85 [0.78 - 0.91]

Feature quantity ≥10 15 0.81 [0.74 - 0.89] 0.00 0.89 [0.84 - 0.93] 0.08 97 [95 - 99] 74.31 0.00

<10 14 0.85 [0.78 - 0.92] 0.78 [0.70 - 0.86]

Multi-modeling algorithm Yes 7 0.86 [0.75 - 0.96] 0.13 0.83 [0.72 - 0.94] 0.01 0 [0 - 100] 0.58 0.75

No 28 0.83 [0.77 - 0.89] 0.87 [0.82 - 0.91]

Model validation External 14 0.83 [0.74 - 0.92] 0.01 0.90 [0.85 - 0.95] 0.02 23 [0 - 100] 2.59 0.27

Others 21 0.84 [0.77 - 0.91] 0.83 [0.77 - 0.89]

Deep learning Yes 6 0.91 [0.83 - 0.99] 0.59 0.90 [0.81 - 0.98] 0.14 38 [0 - 100] 3.22 0.20

No 29 0.82 [0.76 - 0.88] 0.85 [0.80 - 0.90]

RQS ≥14 16 0.88 [0.82 - 0.93] 0.11 0.89 [0.84 - 0.94] 0.01 65 [22 - 100] 5.74 0.06

<14 19 0.79 [0.71 - 0.87] 0.83 [0.77 - 0.89]
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edges or textures in image processing. This process is time-

consuming, depends on expert experience, and may miss some

potentially important features. Deep learning, particularly

convolutional neural networks, can automatically extract multi-

level features from raw data. Through multiple layers of nonlinear

transformation, deep learning models can detect complex and

abstract patterns in data without the need of manually designed

features. This automated feature extraction not only improves

efficiency but also reveals deep features that traditional methods

may overlook. The primary characteristic of deep learning methods

is the emphasis on feature learning, namely autonomously learning

data representations (53). This is the key distinction between deep

learning and more “traditional” machine learning methodologies.

However, this meta-analysis included only six deep learning studies,

and more research is needed to confirm this conclusion.

Additionally, studies with RQS scores ≥14 demonstrated higher

predictive performance compared to those with RQS <14,

suggesting that studies with a more standardized radiomics

workflow have fewer confounding factors, which reduces bias

while enhances the predictive performance and robustness of

the model.
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While current systematic review has focused specifically on

locally advanced rectal cancer (LARC), it is noteworthy that

colorectal cancer (CRC) as a broader entity remains the third most

prevalent malignancy worldwide, with colon cancer accounting for

approximately 70% of all CRC cases (54). The integration of the

Internet of Things (IoT) into surgical practice has revolutionized

CRC management by enabling real-time data acquisition, remote

monitoring, and enhanced intraoperative precision. IoT-driven

devices, such as smart surgical instruments and wearable

biosensors, facilitate continuous postoperative surveillance of

physiological parameters (e.g. bowel motility, inflammatory

markers) to detect complications early. Furthermore, IoT platforms

enhance multidisciplinary collaboration by synchronizing imaging,

pathology, and clinical data, thereby optimizing preoperative

planning and personalized therapeutic strategies (55).

Deep learning algorithms have emerged as transformative tools

in CRC diagnosis, particularly in histopathology image analysis.

Recent studies demonstrate that convolutional neural networks can

classify colorectal adenocarcinoma with accuracy comparable to

expert pathologists, reducing interobserver variability and

diagnostic delays (56). For example, Deep learning models trained
FIGURE 5

Summary plot of sensitivity and specificity of each subgroup using univariable meta-regression and subgroup analyses.
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on whole-slide images (WSIs) excel in detecting subtle

morphological features, such as tumor budding and lymph

vascular invasion, which are critical for staging and prognosis.

Bousis et al. highlighted that Deep learning-based systems achieve
Frontiers in Oncology 17
>90% sensitivity in differentiating benign polyps from malignant

lesions, minimizing unnecessary biopsies (57). Similarly,

Chlorogiennis et al. emphasized the utility in predicting

microsatellite instability status directly from H&E-stained slides,

potentially bypassing costly molecular testing (58).

Postoperative complications, such as infection, anastomotic

leakage, bowel obstruction, and postoperative bleeding, remain

significant challenges in colorectal surgery, impacting morbidity

and long-term survival. Emerging biomarkers, including

butyrylcholinesterase (BChE), show promise in predicting these

adverse outcomes. BChE, an enzyme involved in detoxification and

inflammation modulation, correlates with systemic stress responses.

Recent evidence suggests that preoperative BChE levels inversely

associate with postoperative ileus and sepsis risk, potentially reflecting

impaired cholinergic anti-inflammatory pathways (59). Patients with

low BChE activity (<1,900 IU/L) exhibit a higher risk of anastomotic

dehiscence, likely due to dysregulated tissue repair and prolonged

inflammation (60). While these findings underscore the prognostic

utility of BChE, further validation in prospective cohorts is needed to

establish standardized cutoff values and evaluate interactions with

comorbidities (e.g. hepatic dysfunction). Combining BChE with

clinical risk scores may refine perioperative decision-making,

enabling targeted interventions for high-risk patients. Overall,

despite these advances, clinical implementation faces hurdles,

including model generalizability across diverse populations and

regulatory standardization. Future integration with radiomics may

yield multimodal predictive frameworks, further enhancing

CRC management.

This systematic review and meta-analysis has several limitations

that are necessary to mention: (1) Most of the included studies were

retrospectively designed (approximately 83%). Prospective studies are

generally regarded as superior to retrospective studies due to

standardized imaging protocols, timely and relevant radiomic

feature extraction, standardized and blinded data collection, and

optimized study design. These factors can all enhance the quality

and relevance of the study results. (2) Only a small number of studies

used deep learning methods for model establishment. Deep learning

and convolutional neural network offer a more automated and

efficient approach to feature extraction, allowing for extracting high-

level features from images. This makes them particularly suitable for

radiomics studies, where the complexity and volume of medical

imaging data can be high. (3) There was substantial heterogeneity

among studies due to non-threshold effects (for sensitivity, I2 = 78.5%,

P < 0.001). Although meta-regression was used to explore numerous

potential sources of heterogeneity, it was not possible to identify all

sources. (4) We only evaluated pCR studies and did not include

studies on tumor regression grading and T downstaging. It is known

that pathological evaluation of TRG and T downstaging is more

subjective than pCR evaluation. (5) Only the predictive performance

of MRI-based radiomics models and their combination with clinical

factors were evaluated. In actual clinical practice, other imaging

modalities (e.g., PET-CT, ultrasound), as well as pathological and

biochemical indicators, are commonly used to assess NCRT efficacy,

relying on a multidisciplinary comprehensive judgment.
FIGURE 7

Fagan plots for assessing clinical utility.
FIGURE 6

The Deeks’ funnel plot asymmetry test for publication bias in the
literature evaluation. Each study is shown as a circle, and the
regression line is shown.
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Conclusion

In summary, MRI-based radiomics demonstrates a high efficacy

in predicting whether LARC patients achieve pCR following NCRT,

providing valuable guidance for treatment planning and potentially

enhancing patients’ quality of life. However, there is still a lack of

large-sample, prospective, multicenter external validation studies,

and the external applicability of MRI-based radiomics models

requires further investigation. With the advancement of big data

and resource sharing, alongside the innovation and enhancement of

computational and artificial intelligence methodologies, the

predictive performance of MRI-based radiomics for pCR stands

to be significantly augmented, holding promise for the realization of

precision medicine tailored to patients with LARC.
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