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MRI-based radiomics for
predicting pathological complete
response after neoadjuvant
chemoradiotherapy in locally
advanced rectal cancer:

a systematic review and
meta-analysis

Zhongfan Liao, Dashuang Luo, Xiaoyan Tang,
Fasheng Huang and Xuhui Zhang*

Department of Oncology, Sichuan Provincial People’s Hospital, University of Electronic Science and
Technology of China, Chengdu, China

Purpose: To evaluate the value of MRI-based radiomics for predicting
pathological complete response (pCR) after neoadjuvant chemoradiotherapy
(NCRT) in patients with locally advanced rectal cancer (LARC) through a
systematic review and meta-analysis.

Methods: A systematic literature search was conducted in PubMed, Embase,
Proquest, Cochrane Library, and Web of Science databases, covering studies up to
July 1st, 2024, on the diagnostic accuracy of MRI radiomics for predicting pCR in
LARC patients following NCRT. Two researchers independently evaluated and
selected studies using the Quality Assessment of Diagnostic Accuracy Studies 2
(QUADAS-2) tool and the Radiomics Quality Score (RQS) tool. A random-effects
model was employed to calculate the pooled sensitivity, specificity, and diagnostic
odds ratio (DOR) for MRI radiomics in predicting pCR. Meta-regression and
subgroup analyses were performed to explore potential sources of heterogeneity.
Statistical analyses were performed using RevMan 5.4, Stata 17.0, and Meta-Disc 1.4.

Results: A total of 35 studies involving 9,696 LARC patients were included in this
meta-analysis. The average RQS score of the included studies was 13.91 (range 9.00-
24.00), accounting for 38.64% of the total score. According to QUADAS-2, there
were risks of bias in patient selection and flow and timing domain, though the overall
quality of the studies was acceptable. MRI-based radiomics showed no significant
threshold effect in predicting pCR (Spearman correlation coefficient=0.119,
P=0.498) but exhibited high heterogeneity (1°>50%). The pooled sensitivity,
specificity, positive likelihood ratio, negative likelihood ratio and DOR were 0.83,
0.82, 5.1, 0.23 and 27.22 respectively, with an area under the summary receiver
operating characteristic (SROC) curve of 0.91. According to joint model analysis,
publication year, country, multi-magnetic field strength, multi-MRI sequence, ROI
structure, contour consistency, feature extraction software, and feature quantity
after feature dimensionality reduction were potential sources of heterogeneity.
Deeks’ funnel plot suggested no significant publication bias (P=0.69).
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Conclusions: MRI-based radiomics demonstrates high efficacy for predicting
pCR in LARC patients following NCRT, holding significant promise for informing
clinical decision-making processes and advancing individualized treatment in
rectal cancer patients.

Systematic review registration: https://www.crd.york.ac.uk/prospero/,
identifier CRD42024611733.

magnetic resonance imaging, radiomics, rectal neoplasms, neoadjuvant
chemoradiotherapy, meta-analysis

Introduction

The standard treatment for locally advanced rectal cancer
(LARC) is neoadjuvant chemoradiotherapy (NCRT) combined
with total mesorectal excision (TME). Study reported that
approximately 15-27% of LARC patients exhibited no residual
viable tumor cells upon pathological examination after NCRT,
indicating a pathological complete response (pCR) (1). Some
studies suggested a “watch and wait” strategy for patients
achieving pCR, noting no significant differences in distant
metastasis rate, disease-free survival, or overall survival compared
to those who undergo surgery (2, 3). Therefore, some studies
recommended preoperative evaluation for LARC patients after
NCRT, allowing for a “watch and wait” approach for those who
achieve pCR. This strategy can help avoid permanent stoma
formation and postoperative complications, thereby improving
patients’ quality of life (4, 5). Consequently, accurate preoperative
prediction of pCR following NCRT can impact on clinical decision-
making and enhance quality of life.

Imaging modalities are the mainstay of preoperative prediction
of pCR. However, studies have shown that conventional imaging
methods did not achieve ideal predictive results (6, 7). Currently,
most studies focused on evaluating the efficacy of NCRT through
radiomics, a machine learning approach that enables high-
throughput extraction and quantitative analysis of numerous
imaging features from radiographic images. Compared with the
subjective analysis of conventional imaging, the advantage of
radiomics lies in the ability to quantitatively analyze, identify, and
reveal deep features within images that are difficult to discern with
the naked eye, effectively overcoming the limitations of subjectivity

Abbreviations: LARC, locally advanced rectal cancer; NCRT, neoadjuvant
chemoradiotherapy; pCR, pathological complete response; TME, total
mesorectal excision; QUADAS-2, Quality Assessment of Diagnostic Accuracy
Studies 2; RQS, Radiomics Quality Score; AUC, area under the curve; MRI,
magnetic resonance imaging; PRISMA-DTA, Preferred Reporting Items for
Systematic Reviews and Meta-Analyses of Diagnostic Test Accuracy; ROI,

region of interest.
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in manual image recognition (8). The basic workflow of radiomics
can be divided into five main steps: image acquisition, image
segmentation, feature extraction and quantification, feature
dimensionality reduction and selection, and model construction.
Magnetic resonance imaging (MRI) offers high-resolution
imaging of soft tissues, enabling clear visualization of structures
such as cancer nests and fibrosis in rectal cancer following NCRT.
Numerous studies have employed MRI-based radiomics to predict
whether LARC patients achieve pCR following NCRT. However,
discrepancies remained among study outcomes, and there is a lack
of latest research providing a comprehensive systematic review and
meta-analysis of MRI-based radiomics for the prediction of pCR
(9). This study aims to explore the predictive value of MRI-based
radiomics for pCR by screening and evaluating relevant studies,
thereby providing evidence-based guidance for clinical decision-

making and prognostic management.

Materials and methods
Study design

The Preferred Reporting Items for Systematic Reviews and
Meta-Analyses of Diagnostic Test Accuracy Studies (PRISMA-
DTA) guidelines were followed for conducting this systematic
review (10). There was no systematic review relevant to the topic
of this study that was identified in the Cochrane library.

Population, intervention,
comparison, outcome

* Population: LARC patients undergoing preoperative MRI
examination, either before or after NCRT, with TRG
confirmed by histopathology after TME.

* Intervention: Radiomics analysis was performed with
preoperative MRI images of tumors, classifying NCRT
response as pCR versus non-pCR.
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* Comparison: The predictive performance of MRI-based
radiomics in comparison to the pathological gold
standard was evaluated.

* Outcome: The efficacy of MRI-based radiomics to predict
pCR after NCRT in patients with LARC was evaluated
through a diagnostic accuracy study design (e.g., ROC
curve analysis).

Search strategy

A combination of MeSH terms and free text words was used for
an online search in the PubMed, Embase, Proquest, Cochrane
Library, and Web of Science databases, covering the period from
database inception to July 1, 2024. Detailed search terms and
strategies are provided in Supplementary Table S1. To avoid
duplication and prevent omissions, the retrieved documents were
cross-checked, and citation tracking was conducted.

Inclusion and exclusion criteria

Inclusion criteria: (1) studies involving diagnostic accuracy MRI
radiomics; (2) all subjects were required to undergo preoperative
rectal MRI; (3) the experimental group consisted of LARC patients
achieving pCR after NCRT, while the control group included LARC
patients with non-pCR after NCRT; (4) the gold standard for the
diagnosis of pCR is postoperative histopathological biopsy; (5)
sufficient data to directly extract or indirectly calculate the
numbers of true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN) cases.

Exclusion criteria: (1) non-diagnostic studies, including reviews,
case reports, experimental studies, or conference abstracts; (2)
duplicate publications; (3) studies with inaccessible full text or
incomplete data; (4) studies with a sample size of 20 or fewer
cases; (5) studies with a RQS score below 5.

Literature screening and data extraction

Initially, two researchers (each with over three years of
experience in radiomics analysis) independently screened the
titles and abstracts of the retrieved articles, excluding irrelevant
studies. Each excluded study was re-evaluated by the different
researcher. Subsequently, relevant studies were included in this
systematic review after a careful and thorough full-text review.

Data extraction was conducted for the included studies,
including general data and detailed radiomics data. General data
included: (1) first author, (2) publication year, (3) publication
country, (4) study type, (5) sample size, (6) average age, (7)
chemoradiotherapy regimen, (8) imaging acquisition timing, (9)
MRI field strength, sequence, and slice thickness, and (10) 2x2 table
(TP, FP, TN, FN). Detailed radiomics data included: (1) ROI
delineation software, method, and structure, (2) ROI contour
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consistency assessment, (3) feature extraction software, (4) feature
types, (5) feature quantity after feature dimensionality reduction,
(6) normalization methods, (7) feature dimensionality reduction
and selection methods, (8) modeling algorithms, (9) model
validations, and (10) optimal predictive model with AUC. In case
of discrepancies, the decision will be referred to a senior researcher
(with over ten years of experience in systematic review) for
adjudicating, or consensus will be reached through consultation.
When multiple modeling algorithms were applied to the same
sample in a study, the model with the best classification
performance was considered the optimal predictive model. If the
optimal predictive model in a study was developed using data
beyond MRI alone (such as PET-CT, ultrasound, pathological
features, or clinical features), only data based on MRI and clinical
features were extracted.

Methodological quality assessment

QUADAS-2

The quality of the included studies was evaluated using the
Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2)
tool, specifically including patient selection, index test, reference
standard, and flow and timing (11). If any item within a section was
answered as “No”, it was rated as “high risk of bias”, which
indicated potential methodological flaws that could impact
diagnostic accuracy. If all items in a section were answered as
“Yes”, it was rated as “low risk of bias”, which indicated that the
study followed a sound methodological design unlikely to introduce
bias. If the content reported was difficult to evaluate, it was rated as
“unclear”, indicating insufficient information to judge the risk of
bias. Supplementary Table S2 provided detailed scoring criteria for
each QUADAS-2 item.

RQS

The rigor and reproducibility of the included studies were
assessed using the Radiomics Quality Score (RQS) proposed by
Lambin (12). The RQS provides a meticulous assessment of 16
aspects across five key steps in the radiomics analysis, including
data selection, medical imaging, feature extraction, exploratory
analysis, and modeling. RQS both rewards and penalizes the
methodology and statistical analysis of research, thereby
promoting best scientific practices. The total score is 36,
representing a 100% RQS score. Two researchers independently
assessed the RQS score of each study, with disagreements resolved
through consensus. Supplementary Table S3 showed detailed
scoring criteria for each RQS item.

Statistical analysis

Review Manager (Cochrane; version 5.4) software was used to
perform methodological quality assessment with built-in
QUADAS-2 tool and to plot the risk of bias and applicability
graphs. Meta-Disc (XI Cochrane Colloquium, Barcelona, Spain;
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version 1.4) software was used to calculate the Spearman correlation
coefficient between the logit of sensitivity and the logit of 1-
specificity. Summary receiver operator characteristic (sROC)
curve was plotted to assess threshold effects in the pooled results.
A Spearman correlation coefficient with P < 0.05 or a “shoulder
arm” shape in the sROC curve scatters distribution indicated a
threshold effect. If there was no threshold effect, heterogeneity
among studies was analyzed using the inconsistency index (I%)
and Cochrane Q test. When I? > 50% and P < 0.05, which indicated
the presence of heterogeneity, a random effects model was applied
to analyze sampling error and variance across studies, and potential
sources of heterogeneity should be explored. When I* < 50% or P >
0.05, which indicated lack of heterogeneity, a fixed effects model
should be used, which assumed that all effect sizes come from a
single population and differences are due to chance.

In this study, a random effects model was applied, and the pooled
effect sizes were calculated using Meta-Disc software, including
sensitivity, specificity, positive likelihood ratio, negative likelihood
ratio, diagnostic odds ratio (DOR), and area under the sROC curve
(AUC). All analyses were conducted on the validation or test cohorts.
Forest plots and sSROC curves were plotted to visually display pooled
effect sizes results. To further investigate the sources of heterogeneity,
the MIDAS module in Stata (Stata Corporation, College Station, TX,
USA; version 17.0) was used for meta-regression and subgroup
analyses, which incorporated covariates into a dichotomy model to
assess the impact of various factors on the predictive performance. The
following factors were considered as potential sources of heterogeneity:
publication year (2021 vs. <2021), publication country (China vs.
other), multicenter study (yes vs. no), sample size (=200 vs. <200),
post-NCRT features (whether post-NCRT MRI images were
included), multi-MRI field strength (whether multiple field strengths
were used), multi-MRI sequence (whether multiple sequences were
used), ROI structure (2D vs. 3D), contour consistency (whether ROI
delineation consistency was evaluated), feature extraction software
(Pyradiomics vs. others), feature quantity after feature dimensionality
reduction (210 vs. <10), multi-modeling algorithm (whether multiple
methods were used for model construction), model validation
(external validation vs. others), radiomics type (deep learning-based
vs. machine learning-based), and RQS score (214 vs. <14).

Deeks’ asymmetry test was used to assess statistical significance,
and potential publication bias was evaluated by plotting Deeks’
funnel plot. The trim-and-fill method was used to calculate the
publication bias when a significant publication bias was found.
Fagan plot was used to assess the clinical utility of MRI-based
radiomics for predicting pCR in LARC patients after NCRT. All P-
values under 0.05 were considered statistically significant.

Results
Literature search
A total of 735 studies were retrieved through online search of

PubMed, Embase, Proquest, Cochrane Library, and Web of Science
databases, with an additional 45 articles identified through
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reference tracing. Detailed search results were shown in
Supplementary Table S1. Following the removal of 282 duplicate
studies, the titles and abstracts of the remaining articles were
screened, and 325 articles were excluded. Subsequently, 122
articles were excluded for not meeting eligibility criteria. Eleven
articles were excluded due to the inability to construct a 2x2 table,
and five articles were excluded due to low RQS scores. Ultimately,
35 articles were included in this systematic review for analyses (13-
47). The literature selection process is shown in Figure 1.

Characteristics of included studies

Table 1 showed the general characteristics of the studies
included in the systematic review. The 35 studies, published
between 2017 and 2024, included a total of 9,696 patients, with
sample sizes ranging from 38 to 1,033. Among them, 2,102 cases
were pCR patients, and 7,594 were non-pCR patients. The training
sets included 5,822 cases, and the validation sets included 3,874
cases. The overall average age was 58.6 years, with a range from 50.5
to 70 years. Approximately 69% of studies (24/35) were published in
2021 or later. About 57% of studies were conducted in China
(13, 15, 17, 19, 22-26, 28, 30, 33, 37, 40-45, 47) (20/35), five in the
United States (18, 20, 32, 35, 38), four in Italy (16, 31, 36, 39), three
in South Korea (27, 29, 34), and one each in Belgium, Brazil, and
Turkey (14, 21, 46). Approximately 54% of studies were
monocentric studies (19/35), 10 studies included data from two
centers, four studies included data from three centers, and two
studies included data from four centers. Most studies
(approximately 83%) were retrospective, with three studies being
prospective. Additionally, three studies conducted both
retrospective model construction and validation, as well as
prospective validation of the predictive performance of models.
The magnetic field strength of scanners was 3.0T in 16 studies,
accounting for about 46% (16/35), 1.5T in 5 studies, a combination
of both in 12 studies, with one study using 1.5T and 1.0T and not
reporting in one study. T2-weighted imaging (T2WT) and diffusion
weighted imaging (DWI) were commonly used MRI sequences,
accounting for 94% and 57%, respectively. Two studies used
diffusion kurtosis imaging (DKI). The above imaging sequences
were also often used simultaneously. Slice thicknesses of 3.0mm,
4.0mm, and 5.0mm were the most commonly used, accounting for
80%. Seventeen studies (about 49%) used pre-NCRT MRI images to
predict pCR, four studies used images acquired after NCRT, and 13
studies used both pre- and post- NCRT images. Notably, one study
used MRI images taken before, during, and after NCRT. Six studies
utilized deep learning-based radiomics for analysis. The 2x2 table
for the included studies were shown in Supplementary Table S4.

Detailed radiomics characteristics of the included studies were
mentioned in Table 2. Eleven studies used ITK-SNAP software for
radiomic feature extraction, and 7 used 3D Slicer. Approximately
77% of studies manual delineated the region of interest (ROI) (27/
35), followed by automated (1/35) and semi-automated (2/35)
delineation, with 3 studies not reporting and 2 not applicable.
The ROI structure was 3D in 20 studies, 2D in 14 studies, and
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Identification of studies via databases and registers
Records identified from:
= PubMed = 149
-2- Embase = 281 Records added from reference tracing = 45
é ProQuest =37
k= Cochrane Library = 14
= Web of Science = 254
= Duplicate records removed
Total = 780 (n=282)
& Records excluded (n = 325)
E Recorisrsereaned (Including fild not meet eligibility criteria
g (n = 498) ) in title and abstract)
g (Including reviews, case reports, animal study,
comments/editorial, meeting paper/book chapter)
o Reports excluded (n = 122)
= Reports assessed for eligibilit; [ Not MRI radiomics (n = 49);
= p - e y Not differentiate between pCR and non-pCR (n = 47);
) (n=173) . . i
5 Not dlagn0§tlc accuracy test (n = 23);
Sample size less than 20 (n =3) |
Studies included in qualitative synthesis
(n=51)
Studies excluded (n = 16)
v [ Insuffcient data for 2x2 table (n = 11);
RQS score less than 5 (n=5) |
Studies included in quantitative synthesis
(n=35)
FIGURE 1

PRISMA flow chart of the study selection procedure for this systematic review and meta-analysis.

unspecified in 1 study. Most of studies (approximately 63%)
conducted contour consistency assessments for ROI delineation.
Pyradiomics was the most commonly used feature extraction
software (14/35), followed by MATLAB (6/35). The vast majority
of studies (29/35) extracted texture features, with first-order
statistics (27/35), shape features (19/35), and wavelet features (11/
35) also frequently extracted. In 24 studies, the number of features
decreased by more than 90% after dimensionality reduction. Ten
studies used the Z-score method for feature normalization, while 18
studies did not report the method. About 40% of the studies used
least absolute shrinkage and selection operator (LASSO) for feature
dimensionality reduction and selection (14/35). Similarly, logistic
regression (LR) was the most commonly used algorithm for model
construction (15/35), followed by support vector machine (SVM)
(11/35), random forest (RF) (10/35), and neural networks (8/35).
About 40% of studies performed external validation (14/35),
followed by split sample (13/35) and cross-validation (11/35).

Frontiers in Oncology

Quality assessment

QUADAS-2

According to QUADAS-2, the risk of bias and applicability
concerns for the included studies were shown in Figure 2. In the
patient selection domain, the overall risk of bias was relatively low
(<25%). Only a few studies showed a high risk of bias due to not
specifying the timeframe for case inclusion or difficulty in
determining whether the study was case-controlled (Figure 2a).
Additionally, the applicability concerns in this domain were
generally low (Figure 2b). Two studies did not explicitly specify
the severity of rectal cancer in patients, and four studies lacked
relevant research background or relatively intact demographic
characteristics. Similarly, the overall risk of bias in the index test
domain was less than 25%, although 1 study owned a high risk of
bias due to not using a predefined threshold. Three studies did not
report whether the index test was conducted with blinding, leading
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NR, Not reported; TIWI, T1 weighted imaging; T2WI, T2 weighting imaging; DWI, Diffusion weighted imaging; CT1WI, Contrast T1 weighted imaging; DKI, Diffusion kurtosis imaging; CapeOX, capecitabine plus oxaliplatin; Cape, capecitabine; 5-FU, 5-fluorouracil;

FOLFOX6, 5-fluorouracil plus leucovorin plus oxaliplatin; mFOLFOX6, Modified 5-fluorouracil plus leucovorin plus oxaliplatin; PD-1, Programmed cell death protein-1.
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to some applicability concerns in this domain. Since the treatment
efficacy of NCRT for all study subjects included was confirmed
through postoperative histopathological biopsy, the risk of bias in
the reference standard domain was relatively low. Furthermore,
postoperative histopathological biopsy is considered as the gold
standard for determining pCR (1), resulting in low applicability
concerns in this domain. Two studies did not specify the time
interval between MRI examinations and the reference standard.
However, the overall risk of bias in the flow and timing domain was
low, as all cases in the included studies were subject to radiomics
analysis. Detailed quality assessment results were shown in
Supplementary Table S5. Taken together, the quality of the
articles included was acceptable according to the QUADAS-
2 assessment.

RQS

The average RQS score of 35 included studies was 13.91,
approximately 38.64% of the total score. The median score was
13, with a range from 9 (25%) to 24 (67%). Over half of the studies
(about 51%) scored between 30% and 40% (Figure 3). All included
studies conducted “Feature reduction or adjustment for multiple
testing”, “Discrimination statistics”, “Validation” and “Open
science and data” items. Additionally, 75% and over 86% of
studies conducted “Multiple segmentations” and “Well-
documented image protocols” items respectively. Approximately
58% of studies performed multivariable analysis, incorporating
non-radiomics features, which is expected to provide a more
holistic model. About 44% of studies reported potential clinical
utility and provided clinical decision curves. Only one study
conducted a cost-effectiveness analysis for the clinical application
of the model. Only five studies registered prospective cohort studies
in trial databases, providing the highest level of evidence
supporting the clinical validity and usefulness of the radiomics
biomarker. Only three studies conducted phantom studies, which
help detect inter-scanner differences and vendor-dependent
features. Detailed RQS scores for all included studies were
provided in Supplementary Table Sé.

Meta-analysis

Heterogeneity analysis

The threshold effect across studies was examined by calculating
the Spearman correlation coefficient between the logit of sensitivity
and logit of 1-specificity. The results showed a Spearman
correlation coefficient of 0.119 (P = 0.498), with the scatter points
corresponding to the included studies distributing in a non-
“shoulder arm” pattern on the sROC curve, indicating no
significant threshold effect. The I* statistic indicated significant
heterogeneity in sensitivity (I* = 78.5%, P < 0.001) and specificity
(I* = 92.1%, P < 0.001) across the study cohorts.

Diagnostic test accuracy analysis
A total of 35 studies were included in this meta-analysis, and
only the validation or test cohorts with superior predictive
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Risk of bias and applicability concerns according to Quality
Assessment of Diagnostic Accuracy Studies-2 tool. (a) Per study
assessment; (b) Per domain summary.

performance were evaluated. The pooled sensitivity, specificity,
positive likelihood ratio, negative likelihood ratio and DOR were
0.83 (95% CI: 0.80-0.84), 0.82 (95% CI: 0.81-0.83), 5.10 (95% CI:
3.92-6.63), 0.23 (95% CI: 0.17-0.31), and 27.22 (95% CI: 16.92-
43.79), respectively. The AUC was 0.91. The forest plots and sSROC
curve for the pooled effect sizes were shown in Figure 4.
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Heterogeneity exploration and meta-regression

As shown in Table 3, 15 covariates were used to explore
potential sources of heterogeneity. Meta-regression and joint
model analysis indicated the following factors as contributors to
significant heterogeneity in the meta-analysis: publication year (>
2021 vs. < 2021) (P = 0.02), publication country (China vs. others)
(P = 0.01), multi-magnetic field strength (multi-Telsa vs. mono-
Telsa) (P = 0.02), multi-MRI sequence (multi-sequence vs. mono-
sequence) (P = 0.01), ROI structure (3D vs. 2D) (P = 0.02), contour
consistency (evaluated vs. unevaluated) (P < 0.001), feature
extraction software (Pyradiomics vs. others) (P < 0.001), and
feature quantity after feature dimensionality reduction (= 10 vs.
<10) (P < 0.001).

Subgroup analysis

According to subgroup analysis results (Figure 5), studies from
China showed lower pooled sensitivity (78% vs. 87%, P < 0.001) and
specificity (80% vs. 89%, P < 0.001) compared to studies from other
countries. Studies using multicenter cohorts for model development
and validation owned higher specificity (89% vs. 83%, P = 0.01).
Studies with a sample size of 200 or more demonstrated higher
sensitivity (84% vs. 83%, P = 0.02) and specificity (89% vs. 84%, P =
0.01). Studies incorporating multiple MRI imaging sequences
showed higher sensitivity (85% vs. 80%, P = 0.13, not significant)
and specificity (88% vs. 82%, P = 0.03) compared to those using
only one sequence. Studies that performed consistency evaluations
for lesion contouring showed higher sensitivity (86% vs. 77%, P =
0.88, not significant), which helped analyze the robustness of
radiomic features to segmentation variability. Studies with using
Pyradiomics software for feature extraction showed lower
sensitivity (81% vs. 85%, P = 0.01) and specificity (83% vs. 85%, P
< 0.001). Studies that validated the predictive performance of the
model on external validation cohorts manifested lower sensitivity
(83% vs. 84%, P = 0.01) and higher specificity (90% vs. 83%, P =
0.02). Deep learning-based radiomics studies showed higher
sensitivity (91% vs. 82%, P = 0.59, not significant) and specificity
(90% vs. 85%, P = 0.14, not significant) compared to conventional
radiomics, although these differences were not statistically
significant. From the overall score, studies with higher RQS scores
demonstrated higher sensitivity (88% vs. 79%, P = 0.11, not
significant) and specificity (89% vs. 83%, P = 0.01).

Publication bias

Deeks’ test was used to explore potential publication bias in the
included studies. The funnel plot (Figure 6) showed a generally
symmetrical distribution around the regression line, suggesting no
significant publication bias (P = 0.69).

Clinical utility

According to the Fagan plot of the study cohort (Figure 7), the
pre-test probability of predicting pCR in LARC patients was 30%.
The positive likelihood ratio for MRI radiomics in predicting pCR
was 6, and the negative likelihood ratio was 0.19, which increased
the post-test probability of a positive result to 72% and decreased
the post-test probability of a negative result to 8%.
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Discussion

Accurate assessment of NCRT efficacy in LARC patients after
receiving NCRT can provide critical information for subsequent
treatment decisions. Studies have shown that if accurate prediction
of pCR in LARC patients receiving NCRT could be made
preoperatively, a “watch and wait” strategy may be adopted. This
approach could help avoid surgical complications and permanent
stoma formation, ultimately helping to improve quality of life and
achieve precision medicine (48). Currently, the predictive value of
conventional imaging methods for pCR is limited (6, 7), whereas the
efficacy of pCR prediction has been significantly improved by MRI-
based radiomics in recent years. By extracting numerous features
from MRI images, identifying correlations between image features
and predictive outcomes, and using machine learning methods to
build predictive models, MRI-based radiomics offers a new
approach for predicting pCR (49).

This study conducted a meta-analysis of 35 relevant studies,
showing that MRI-based radiomics owned a high AUC (0.91) for
predicting pCR in LARC patients following NCRT, with pooled
sensitivity and specificity of 0.83 (95% CI: 0.80-0.84) and 0.82 (95%
CI: 0.81-0.83), respectively. These findings are consistent with
previous reviews and systematic reviews (50, 51). The Fagan plot
demonstrated that MRI-based radiomics can raise the post-test
probability of a positive result to 72% and reduce the post-test
probability of a negative result to 8%. Compared to previous studies
using conventional imaging methods for pCR prediction, MRI-
based radiomics showed significantly enhanced predictive
performance, indicating that MRI-based radiomics provided a
new approach for predicting pCR and may offer valuable
guidance for treatment planning in LARC patients (52).
Compared with the previous study by Jia et al, the predictive
performance of MRI radiomics for pCR is largely consistent.
However, this study demonstrated superiority from 4 aspects: (1)
an increased number of included studies (35 vs. 21); (2) higher
quality of included studies (RQS 13.91 vs. 10.95); (3) exploration of
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potential sources of heterogeneity using meta-regression; and (4)
additional subgroup analysis (9).

We assessed the quality of included studies using the QUADAS-
2 and RQS tools. Since all study subjects were confirmed by
postoperative histopathological biopsy, the risk of bias and overall
applicability concerns in the reference standard domain were low.
Some studies did not clearly specify whether cases were enrolled
consecutively, performed ROI delineation without implementing
blinding, or did not report the interval between MRI examination
and pathological biopsy, resulting in certain risks of bias and overall
applicability concerns in domains other than the reference
standard. Phantom study was designed to detect potential feature
differences across scanners and vendors. Many studies used MRI
imaging data from different vendors (e.g., Siemens, Philips) and
multiple medical centers, making phantom study a suitable
approach to measure these uncertainties and identify vendor-
dependent features. Cost-effectiveness analysis was a health
economics approach that advocated for cost-quality-adjusted life-
year comparison, with or without the use of radiomics, to more
accurately evaluate the economic potential of such studies. Future
study reports should consider incorporating the above details of
quality assessment.

We emphasized the role of various feature extraction software,
including Pyradiomics, in contributing to the heterogeneity of
results. This variability stemmed from the diversity of algorithmic
approaches and parameter settings across software. While not
inherently detrimental but rather highlighted the subtle impact of
the choice of feature extraction software on research outcomes.
Given this variability, we underscored the importance of
understanding and transparently reporting the software used, as it
significantly impacted on the overall radiomics analysis. Likewise,
contour consistency is another critical source of heterogeneity that
cannot be ignored. Evaluating the consistency of ROI delineation
helped to ensure high concordance in the outlining of lesion
contours among different observers or by the same observer at
different time points. This was crucial for radiomics studies, as
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confidence interval.

feature extraction relied on precise lesion regions. Large variations
in contour could lead to fluctuations in extracted features, thereby
impacting stability and predictive performance of model. Different
observers may interpret lesion boundaries differently, especially
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when the lesion morphology is complex, or boundaries are
indistinct. These discrepancies can affect the conclusions of
individual studies and potentially introduce greater bias in
multicenter studies, thereby undermining the quality of evidence.
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TABLE 3 Investigation of heterogeneity using meta-regression and subgroup analysis.
Covariates Sensitivity Py Specificity Joint Model Analysis

2 LRT chi®# P

Year >2021 24 0.80 [0.73 - 0.87] 0.00 0.83 [0.78 - 0.89] 0.00 74 [43 - 100] 7.70 0.02
<2021 11 0.90 [0.84 - 0.96] 0.90 [0.85 - 0.95]

Country China 15 0.78 [0.69 - 0.87] 0.00 0.80 [0.72 - 0.88] 0.00 78 [53 - 100] 9.26 0.01
Others 20 0.87 [0.82 - 0.93] 0.89 [0.85 - 0.93]

Multicenter Yes 15 0.83 [0.74 - 0.91] 0.01 0.89 [0.84 - 0.94] 0.01 0 [0 - 100] 1.78 0.41
No 20 0.84 [0.78 - 0.91] 0.83 [0.77 - 0.89]

Sample size >200 13 0.84 [0.76 - 0.92] 0.02  0.89 [0.83 - 0.94] 0.01 0 [0 - 100] 1.65 0.44
<200 22 0.83 [0.77 - 0.90] 0.84 [0.78 - 0.89]

Post-NCRT features Yes 15 0.85 [0.77 - 0.92] 0.02 0.86 [0.80 - 0.92] 0.00 0 [0 - 100] 0.12 0.94
No 20 0.83 [0.76 - 0.90] 0.86 [0.80 - 0.91]

Multi-MRI Telsa Yes 14 0.85 [0.77 - 0.92] 0.04 0.84 [0.77 - 0.91] 0.00 76 [46 - 100] 8.20 0.02
No 20 0.82 [0.74 - 0.89] 0.87 [0.82 - 0.92]

Multi-MRI sequence Yes 23 0.85 [0.79 - 0.91] 0.13 0.88 [0.83 - 0.92] 0.03 80 [57 - 100] 10.02 0.01
No 11 0.80 [0.69 - 0.90] 0.82 [0.73 - 0.91]

ROI structure 3D 20 0.83 [0.76 - 0.90] 0.02 0.86 [0.81 - 0.91] 0.00 74 [42 - 100] 7.67 0.02
2D 14 0.83 [0.75 - 0.92] 0.86 [0.79 - 0.92]

Contour consistency Yes 22 0.86 [0.80 - 0.92] 0.88 0.86 [0.80 - 0.91] 0.07 98 [97 - 99] 109.40 0.00
No 4 0.77 [0.58 - 0.97] 0.88 [0.77 - 0.99]

Feature extraction software = Pyradiomics 14 0.81 [0.72 - 0.90] 0.01 0.83 [0.76 - 0.90] 0.00 96 [93 - 99] 52.52 0.00
Others 16 0.85 [0.77 - 0.92] 0.85 [0.78 - 0.91]

Feature quantity =10 15 0.81 [0.74 - 0.89] 0.00 0.89 [0.84 - 0.93] 0.08 97 [95 - 99] 74.31 0.00
<10 14 0.85 [0.78 - 0.92] 0.78 [0.70 - 0.86]

Multi-modeling algorithm Yes 7 0.86 [0.75 - 0.96] 0.13  0.83[0.72 - 0.94] 0.01 0 [0 - 100] 0.58 0.75
No 28 0.83 [0.77 - 0.89] 0.87 [0.82 - 0.91]

Model validation External 14 0.83 [0.74 - 0.92] 0.01 0.90 [0.85 - 0.95] 0.02 23 [0 - 100] 2.59 0.27
Others 21 0.84 [0.77 - 0.91] 0.83 [0.77 - 0.89]

Deep learning Yes 6 0.91 [0.83 - 0.99] 0.59 0.90 [0.81 - 0.98] 0.14 38 [0 - 100] 322 0.20
No 29 0.82 [0.76 - 0.88] 0.85 [0.80 - 0.90]

RQS >14 16 0.88 [0.82 - 0.93] 0.11 0.89 [0.84 - 0.94] 0.01 65 [22 - 100] 5.74 0.06
<14 19 0.79 [0.71 - 0.87] 0.83 [0.77 - 0.89]

Subgroup analysis results indicated that studies published in
2021 or later showed slightly lower predictive performance
compared to those published before 2021. The reasons may be
analyzed as a result of the lack of robust validation, resulting in
potential model overfitting. Studies with a sample size greater than
200, using multicenter cohorts, incorporating post-NCRT MRI
features, or employing multiple MRI sequences, showed higher
predictive performance. This could be that larger sample sizes allow
for more comprehensive training and validation of the model, and
richer imaging information provides a greater chance of extracting
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features that can accurately distinguish pCR from non-pCR during
the feature extraction phase, thus better reflecting the efficacy of
NCRT and enhancing model predictive performance. Deep
learning-based radiomics studies showed higher sensitivity (91%
vs. 82%, P = 0.59, not significant) and specificity (90% vs. 85%, P =
0.14, not significant) than those of machine learning-based, though
the differences were not statistically significant. In terms of feature
extraction, traditional machine learning methods typically rely on
manually designed and selected features. This requires experts to
predetermine useful features based on domain knowledge, such as
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Summary plot of sensitivity and specificity of each subgroup using univariable meta-regression and subgroup analyses.

edges or textures in image processing. This process is time-
consuming, depends on expert experience, and may miss some
potentially important features. Deep learning, particularly
convolutional neural networks, can automatically extract multi-
level features from raw data. Through multiple layers of nonlinear
transformation, deep learning models can detect complex and
abstract patterns in data without the need of manually designed
features. This automated feature extraction not only improves
efficiency but also reveals deep features that traditional methods
may overlook. The primary characteristic of deep learning methods
is the emphasis on feature learning, namely autonomously learning
data representations (53). This is the key distinction between deep
learning and more “traditional” machine learning methodologies.
However, this meta-analysis included only six deep learning studies,
and more research is needed to confirm this conclusion.
Additionally, studies with RQS scores >14 demonstrated higher
predictive performance compared to those with RQS <14,
suggesting that studies with a more standardized radiomics
workflow have fewer confounding factors, which reduces bias
while enhances the predictive performance and robustness of
the model.

Frontiers in Oncology

While current systematic review has focused specifically on
locally advanced rectal cancer (LARC), it is noteworthy that
colorectal cancer (CRC) as a broader entity remains the third most
prevalent malignancy worldwide, with colon cancer accounting for
approximately 70% of all CRC cases (54). The integration of the
Internet of Things (IoT) into surgical practice has revolutionized
CRC management by enabling real-time data acquisition, remote
monitoring, and enhanced intraoperative precision. IoT-driven
devices, such as smart surgical instruments and wearable
biosensors, facilitate continuous postoperative surveillance of
physiological parameters (e.g. bowel motility, inflammatory
markers) to detect complications early. Furthermore, IoT platforms
enhance multidisciplinary collaboration by synchronizing imaging,
pathology, and clinical data, thereby optimizing preoperative
planning and personalized therapeutic strategies (55).

Deep learning algorithms have emerged as transformative tools
in CRC diagnosis, particularly in histopathology image analysis.
Recent studies demonstrate that convolutional neural networks can
classify colorectal adenocarcinoma with accuracy comparable to
expert pathologists, reducing interobserver variability and
diagnostic delays (56). For example, Deep learning models trained
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The Deeks’ funnel plot asymmetry test for publication bias in the
literature evaluation. Each study is shown as a circle, and the
regression line is shown.
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Fagan plots for assessing clinical utility.

on whole-slide images (WSIs) excel in detecting subtle
morphological features, such as tumor budding and lymph
vascular invasion, which are critical for staging and prognosis.
Bousis et al. highlighted that Deep learning-based systems achieve
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>90% sensitivity in differentiating benign polyps from malignant
lesions, minimizing unnecessary biopsies (57). Similarly,
Chlorogiennis et al. emphasized the utility in predicting
microsatellite instability status directly from H&E-stained slides,
potentially bypassing costly molecular testing (58).

Postoperative complications, such as infection, anastomotic
leakage, bowel obstruction, and postoperative bleeding, remain
significant challenges in colorectal surgery, impacting morbidity
and long-term survival. Emerging biomarkers, including
butyrylcholinesterase (BChE), show promise in predicting these
adverse outcomes. BChE, an enzyme involved in detoxification and
inflammation modulation, correlates with systemic stress responses.
Recent evidence suggests that preoperative BChE levels inversely
associate with postoperative ileus and sepsis risk, potentially reflecting
impaired cholinergic anti-inflammatory pathways (59). Patients with
low BChE activity (<1,900 IU/L) exhibit a higher risk of anastomotic
dehiscence, likely due to dysregulated tissue repair and prolonged
inflammation (60). While these findings underscore the prognostic
utility of BChE, further validation in prospective cohorts is needed to
establish standardized cutoff values and evaluate interactions with
comorbidities (e.g. hepatic dysfunction). Combining BChE with
clinical risk scores may refine perioperative decision-making,
enabling targeted interventions for high-risk patients. Overall,
despite these advances, clinical implementation faces hurdles,
including model generalizability across diverse populations and
regulatory standardization. Future integration with radiomics may
yield multimodal predictive frameworks, further enhancing
CRC management.

This systematic review and meta-analysis has several limitations
that are necessary to mention: (1) Most of the included studies were
retrospectively designed (approximately 83%). Prospective studies are
generally regarded as superior to retrospective studies due to
standardized imaging protocols, timely and relevant radiomic
feature extraction, standardized and blinded data collection, and
optimized study design. These factors can all enhance the quality
and relevance of the study results. (2) Only a small number of studies
used deep learning methods for model establishment. Deep learning
and convolutional neural network offer a more automated and
efficient approach to feature extraction, allowing for extracting high-
level features from images. This makes them particularly suitable for
radiomics studies, where the complexity and volume of medical
imaging data can be high. (3) There was substantial heterogeneity
among studies due to non-threshold effects (for sensitivity, % = 78.5%,
P < 0.001). Although meta-regression was used to explore numerous
potential sources of heterogeneity, it was not possible to identify all
sources. (4) We only evaluated pCR studies and did not include
studies on tumor regression grading and T downstaging. It is known
that pathological evaluation of TRG and T downstaging is more
subjective than pCR evaluation. (5) Only the predictive performance
of MRI-based radiomics models and their combination with clinical
factors were evaluated. In actual clinical practice, other imaging
modalities (e.g., PET-CT, ultrasound), as well as pathological and
biochemical indicators, are commonly used to assess NCRT efficacy,
relying on a multidisciplinary comprehensive judgment.
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Conclusion

In summary, MRI-based radiomics demonstrates a high efficacy
in predicting whether LARC patients achieve pCR following NCRT,
providing valuable guidance for treatment planning and potentially
enhancing patients’ quality of life. However, there is still a lack of
large-sample, prospective, multicenter external validation studies,
and the external applicability of MRI-based radiomics models
requires further investigation. With the advancement of big data
and resource sharing, alongside the innovation and enhancement of
computational and artificial intelligence methodologies, the
predictive performance of MRI-based radiomics for pCR stands
to be significantly augmented, holding promise for the realization of
precision medicine tailored to patients with LARC.
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