
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Roxana Pintican,
University of Medicine and Pharmacy Iuliu
Hatieganu, Romania

REVIEWED BY

Andrea Bianconi,
University of Genoa, Italy
Benedetta Masci,
Sapienza University of Rome, Italy

*CORRESPONDENCE

Xiaoyue Ma

maxiaoyue0822@163.com

Jingliang Cheng

fccchengjl@zzu.edu.cn

Kai Zhao

zzuzhaokai@163.com

†These authors share first authorship

RECEIVED 24 December 2024

ACCEPTED 07 July 2025
PUBLISHED 30 July 2025

CITATION

Zhao S, Wang P, Gao E, Wang M, Yang G,
Niu S, Pan M, Zhao K, Cheng J and Ma X
(2025) Predicting IDH and 1p/19q molecular
status of gliomas with multi-b values DWI.
Front. Oncol. 15:1551023.
doi: 10.3389/fonc.2025.1551023

COPYRIGHT

© 2025 Zhao, Wang, Gao, Wang, Yang, Niu,
Pan, Zhao, Cheng and Ma. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 30 July 2025

DOI 10.3389/fonc.2025.1551023
Predicting IDH and 1p/19q
molecular status of gliomas
with multi-b values DWI
Shanshan Zhao1†, Peipei Wang1†, Eryuan Gao1, Mengzhu Wang2,
Guang Yang3, Shouhui Niu4, Mengjiao Pan4, Kai Zhao1*,
Jingliang Cheng1* and Xiaoyue Ma1*

1Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University,
Zhengzhou, China, 2MR Research Collaboration, Siemens Healthineers Ltd., Beijing, China, 3Shanghai
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Background and purpose: In the 2021 WHO Classification, the importance of

molecular pathology in glioma diagnosis has been emphasized, particularly the

status of isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion.

Advanced magnetic resonance diffusion-weighted imaging (DWI) including

mono-exponential (Mono), intravoxel incoherent motion (IVIM), stretched

exponential model (SEM) techniques are beneficial for non-invasive prediction

of these molecular markers. The continuous-time random walk (CTRW) model

mitigates the empirical nature of the SEM and has shown promising results in

grading gliomas. However, the application of CTRW model in prediction of IDH

and 1p/19q molecular phenotypes in adult diffuse gliomas remains

underreported. This study compares the clinical utility of mono-exponential,

IVIM, SEM, and CTRW models for predicting IDH and 1p/19q molecular status in

adult diffuse gliomas.

Materials and methods: Data of adult diffuse glioma patients from January 2021

to August 2023 were collected. The multi-b-value DWI was acquired using a

spin-echo echo-planar imaging sequence with 13 b-values (0, 10, 20, 30, 50, 70,

100, 150, 200, 400, 800, 1500, 2000 s/mm²) in 30 diffusion-encoding directions.

Multi-b-value DWI images were post-processed to generate parametric maps

based on themono-exponential (Mono), the intravoxel incoherent motion (IVIM),

the stretched exponential model (SEM) and the continuous-time random walk

(CTRW) models. The mean parameter values of solid tumor regions were

calculated. An independent sample t-test or Mann-Whitney U test was used

for comparisons between different subtypes of glioma. Receiver operating

characteristic (ROC) analyses were used to assess diagnostic performance.

Results: A total of 95 glioma patients were included in the study. For predicting

IDH status, CTRW_a exhibited the largest effect size and best diagnostic

performance with an AUC of 0.761. At a threshold of 0.855, the sensitivity was

0.651, the specificity was 0.846, and the accuracy was 0.758. In predicting 1p/19q
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status in IDH-mutant gliomas, CTRW_a again showed the largest effect size and

the best diagnostic performance with an AUC of 0.790. At a threshold of 0.886,

sensitivity was 0.750, specificity was 0.903, and accuracy was 0.860.

Conclusions: The CTRWmodel could help predict IDH and 1p/19q status in adult

diffuse gliomas.
KEYWORDS

diffusion magnetic resonance imaging, continuous time random walk, glioma, IDH,
1p/19q
1 Introduction

Diffuse gliomas are the most common primary malignant brain

tumors in adults (1). In the 2021 fifth edition of the WHO’s Central

Nervous System tumor classification, a new grading system is

applied within each subtype, replacing the previous approach that

assigned a general grade across all subtypes (2). This updated

grading system comprehensively considers the responses to

clinical treatments of different glioma subtypes (3), establishing a

closer link with the clinical prognosis of gliomas (4). Two key

genetic markers, isocitrate dehydrogenase (IDH) and chromosome

1p/19q, are critical in guiding treatment and prognosis (5). IDH

catalyzes the oxidative decarboxylation of isocitrate to a-
ketoglutarate (a-KG), thereby contributing to cellular defense

against oxidative stress (6). IDH gene mutations are present in

approximately 50%–80% of WHO grade 2 and 3 gliomas, with

IDH1 mutations being more prevalent than IDH2 mutations (7, 8).

The mutant IDH1 enzyme acquires a neomorphic activity that

converts a-KG into the oncometabolite 2-hydroxyglutarate (2-HG)

(9), which competitively inhibits a-KG–dependent dioxygenases

involved in DNA repair and epigenetic regulation (10). Patients

with IDH1-mutant gliomas have significantly better prognosis

compared to those with wild-type IDH1, and IDH mutation

status has been recognized as an independent prognostic marker

(2, 11). The 1p/19q codeletion, resulting from an unbalanced

translocation between chromosomes 1p and 19q, is a hallmark of

oligodendrogliomas (12, 13). Tumors harboring this codeletion

demonstrate increased sensitivity to radiochemotherapy and are

associated with prolonged survival compared to those without the

deletion (3). In recent years, the emergence of targeted and

immunotherapeutic approaches has opened new avenues for the

clinical management of gliomas (14–16). Accurate and reliable

molecular diagnosis is not only integral to the WHO classification

of gliomas but also critical for identifying actionable therapeutic

targets, guiding individualized treatment decisions, and

prognosticating outcomes. Currently, the molecular genetic

diagnosis of gliomas relies on pathological examination of tissue

samples (17) but this invasive method carries risks (18). A simple,

accurate, and non-invasive diagnostic method could benefit patients
02
unable to undergo surgery and provide essential information for

advanced surgical alternatives (14–16).

Magnetic resonance imaging (MRI) is the primary imaging

diagnostic tool in evaluating glioma patients. Increasing attention

has been given to functional MRI methods for non-invasive

molecular diagnosis and grading prediction in gliomas before

surgery (19–21).In IDH-wildtype gliomas, invasive growth and

rapid proliferation often lead to insufficient blood supply and

central necrosis, typically presenting as ill-defined margins and

ring-like enhancement. In contrast, gliomas lacking enhancement

and exhibiting well-defined, sharp margins are more commonly

IDH-mutant (22). The excellent performance of conventional MRI

combined with radiomics and deep learning in predicting glioma

molecular information has been well demonstrated (23–25).

However, these artificial intelligence techniques still face challenges

such as the black-box effect and limited interpretability. Functional

MRI provides quantitative or semi-quantitative parameters related to

the pathophysiological characteristics of tumors. Perfusion imaging

can characterize tumor hemodynamic differences, with IDH-wildtype

gliomas exhibiting a more disrupted blood-brain barrier and higher

vascular permeability, while gliomas with 1p/19q co-deletion often

show higher perfusion levels (26). Advanced spectroscopic MRI

predicts IDH status by detecting the mutant IDH product, 2-

hydroxyglutaric acid (2HG) (27). Diffusion-weighted imaging

(DWI) generates parameter maps for the quantitative evaluation of

tissue microstructure and so serve as tools for determining the

molecular characteristics of gliomas.

In current clinical applications, DWI typically uses two sets of

images with b-values of 0 s/mm² and 1000 s/mm², and the mono-

exponential (Mono) model based on the Gaussian distribution is

applied during post-processing to calculate the apparent diffusion

coefficient (ADC), which assesses tumor cell density. However,

water molecule diffusion may deviate from a Gaussian pattern,

leading to inaccuracies in ADC measurements in highly

heterogeneous tumor tissues. Furthermore, blood flow signals

within the tumor can interfere with these measurements (28). To

address this, the intravoxel incoherent motion (IVIM) based on a

bi-exponential model has been introduced (29). IVIM separates

water molecule diffusion into fast and slow components,
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differentiating diffusion and microcirculation perfusion. IVIM

parameters include: perfusion fraction (f), indicating the vascular

volume fraction within a voxel; fast diffusion coefficient (D*),
representing water movement within the microvascular; and slow

diffusion coefficient (D), reflecting tissue water diffusion.

While the IVIM improves diffusion analysis, some argue that

separating water movement into two components is overly simplistic,

with the stretched exponential model (SEM) (30) being developed to

address this. In SEM, the decay of the diffusion-weighted signal is

described as a continuous distribution rather than limited to specific

sources. This model introduces the distributed diffusion coefficient

(DDC) to evaluate the diffusion rate and the parameter a to quantify

heterogeneity. However, SEM_a is empirical and its fitting process

relies on experimental data, lacking comprehensive theoretical

support (31). The development of the continuous-time random

walk (CTRW) model mitigates the empirical nature of SEM (32).

In contrast to the SEM, which condenses all intravoxel heterogeneity

into a single stretching exponent (a) and a mean diffusivity (DDC),

the CTRW model-based on the random walk theory-characterizes

diffusion heterogeneity in two independent and complementary

dimensions: space and time (33). The time heterogeneity index a,
describes the likelihood of water molecules being trapped or released

during diffusion through complex tissues (e.g., cell–matrix adhesion

and slowed subdiffusion) (34). As a complement, b is related to

spatial diffusion heterogeneity (35), quantifying the variability in

water molecule movement distances (e.g., perivascular corridor-

mediated long-range migration) (33). This dual-exponent

formalism not only provides direct mechanistic links between DWI

signal attenuation and specific microstructural features (adhesion

kinetics vs. structural conduits) but also inherently spans diffusion

regimes from subdiffusion (a<1, b≈2) to Lévy‐flight superdiffusion

(b<2). In contrast, SEM’s single-parameter description cannot

distinguish whether non-monoexponential decay arises from

prolonged local retention or sporadic long jumps. CTRW model

also calculates the anomalous diffusion coefficient (Dm) to quantify

tissue cell density (36).Dm shares a similar physiological

interpretation with the conventional ADC (36), and enables the

CTRW model to be used with the conventional water diffusion

information preserved, which can be applied to characterize tissue

cellularity and ischemic changes (37). Recent studies have shown

growing interest in CTRW for noninvasive preoperative evaluation of

breast cancer (35, 38). Mao et al. (39) compared the performance of

mono-exponential, IVIM, fractional order calculus (FROC), and

CTRW models in predicting HER2 expression levels ,

demonstrating the superior diagnostic efficacy of CTRW. In central

nervous system tumors, CTRW has been successfully applied to

predict tumor grading in pediatric brain tumors (33, 40) and

preoperative glioma stratification (36, 41). Karaman et al. (33)

found significantly lower a, b, and Dm values in high-grade

pediatric brain tumors compared to low-grade ones, likely due to

increased microstructural complexity from hemorrhage, necrosis,

vasogenic edema, angiogenesis, and higher cellular proliferation.

CTRW parameters (a, b, Dm) were also shown to decrease with

increasing tumor grade (36). These findings highlight the model’s
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valuable in brain tumors where necrosis, cystic degeneration,

hemorrhage, edema, calcification, and diverse cellular subtypes are

commonly present. Compared to mono-exponential diffusion

models, CTRW provides enhanced sensitivity to such

heterogeneity, offering a promising tool for more accurate

tumor characterization.

Previous studies (28, 33, 36, 42, 43) have shown that the mono-

exponential, IVIM, and SEM models effectively predict glioma

grading, IDH, and 1p/19q status. However, the use of the CTRW

model for predicting genetic status in gliomas is less explored. This

study evaluates and compares the clinical potential of the mono-

exponential, IVIM, SEM, and CTRWmodels in predicting IDH and

1p/19q molecular status in adult diffuse gliomas.
2 Material and methods

2.1 Study participants

This study was approved by the Medical Ethics Review

Committee of the First Affiliated Hospital of Zhengzhou

University (Approval Number: 2019-KY-231). Written informed

consent was waived. We prospectively collected data from patients

diagnosed with adult diffuse glioma at our institution between

January 2021 and August 2023. Inclusion criteria were: 1. MRI

with a multi-b-value DWI sequence performed in two weeks before

surgery; 2. postoperative diagnosis of adult diffuse glioma based on

the 2021 WHO CNS tumor classification. Exclusion criteria were: 1.

prior anti-tumor treatments before MRI; 2. incomplete molecular

data from glioma pathology; 3. low MRI quality due to severe

susceptibility or motion artifacts.
2.2 Molecular studies

IDH genes were detected using Sanger sequencing. The

presence of either IDH1 R132H or IDH2 R172H mutation was

considered diagnostic of an IDH mutation. Chromosome 1p/19q

status was assessed using fluorescence in situ hybridization (FISH).
2.3 MRI protocol

All scans were performed using a Siemens 3.0T MRI scanner

(MAGNETOM Prisma, Siemens Healthcare, Erlangen, Germany)

with a 64-channel head and neck coil. The conventional MRI

sequences included: axial T1-weighted imaging (T1WI); axial T2-

weighted imaging; axial T2-weighted dark-fluid imaging; and

delayed-enhancement 3D-T1 magnetization-prepared rapid

gradient echo (MPRAGE) sequence.

The multi-b-value DWI was acquired using a spin-echo echo-

planar imaging sequence: TE = 71.0 ms, TR = 2500.0 ms, 60 slices,

slice thickness = 2.2 mm, b-values = 0, 10, 20, 30, 50, 70, 100, 150,
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200, 400, 800, 1500, 2000 s/mm², 30 diffusion-encoding directions,

FOV = 220 mm × 220 mm, matrix = 100 × 100, scan time = 2

minutes 48 seconds, total scan time = 11 minutes 15 seconds.
2.4 Image processing and analysis

The raw DICOM data of multi-b-value DWI images was

transformed to the NIfTI1.1 format with the MRIcron (https://

www.nitrc.org/projects/mricron). All DWI data underwent eddy

current and motion correction using the Diffusionkit tool (44).

Post-processing of multi-b-value DWI images was performed using

an in-house postprocessing software (BoDiLab) based on the open-

resource tool DIPY (Diffusion Imaging in Python, https://dipy.org)

(34, 45) to generate parametric maps from various DWI models. S

(0) and S(b) represent the signal intensities at b = 0 and non-zero b-

values, respectively.

Based on the mono-exponential model, ADC map was

generated:

S bð Þ
S 0ð Þ = exp( − b · ADC)

Based on the IVIM model, the D, D*, and f maps were

generated:

S bð Þ
S 0ð Þ = f · exp (−b ·D* )½ � + ( 1 − f ) · exp (−b · D )½ �

Based on the SEM, DDC and the heterogeneity index (a) were
generated:

S bð Þ
S 0ð Þ = exp −( b ·DDC )a½ �

Based on the CTRW model, Dm, the time diffusion

heterogeneity index (a), and the spatial diffusion heterogeneity

index (b) were generated, and the b parameter is restricted to a

maximum value of 1 through normalization:

S bð Þ
S 0ð Þ = Ea −(b · Dm)

b
� �

ITK-SNAP software (http://www.itksnap.org/pmwiki/

pmwiki.php) was used to register each patient’s diffusion

parameter maps to axial T2 dark-fluid and enhanced 3D-T1

MPRAGE images. A senior physician with 3 years of experience

manually delineated the solid tumor regions while avoiding areas of

hemorrhage, calcification, edema, necrosis, or cystic changes to

define volumes of interest (VOIs), and the MRI morphological

characteristics of the tumor (location (46), presence of hemorrhage,

cystic/necrosis, edema, and enhancement) were assessed. The

delineations and the morphological characteristics were reviewed

by an associate chief physician with 11 years of experience. Both of

the physicians were blinded to the final molecular diagnosis. The

solid tumor region was defined as the enhanced region on enhanced

3D-T1 MPRAGE images, or, if no enhancement was present, as the

hyperintense area on T2 dark-fluid sequence (Figure 1). DWI
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parameter maps and VOI files were imported into FAE software

(https://github.com/salan668/FAE) (47) to calculate the mean

values of each parameter within the VOIs.
2.5 Statistical analysis

Statistical analysis was performed with R software (version

4.3.1; https://www.R-project.org/). The interobserver and

concordance of DWI values was assessed using intraclass

correlation coefficient (ICC) analysis with a two-way random-

effects model. Continuous variables were assessed for normality

using the Shapiro-Wilk test and for homogeneity of variance using

Levene’s test. For normally distributed data, independent samples t-

tests or Welch’s t-tests were used, depending on variance

homogeneity. Non-normally distributed data were analyzed with

the Mann-Whitney U test. For each DWI parameter, we

independently tested its association with two molecular markers

(IDH and 1p/19q), resulting in a total of 9 parameters × 2 genes =

18 hypotheses. Benjamini-Hochberg correction was applied to

adjust these 18 P values of parameters for multiple comparisons

using the function: p.adjust(). Results are reported as ‘mean ±

standard deviation’ or ‘median (25th percentile, 75th percentile)’.

Effect sizes were calculated with Cohen’s d values, where an absolute

value greater than 0.8 indicates a strong effect. Categorical variables

were analyzed using the chi-square test. Receiver operating

characteristic (ROC) curves assessed the performance of diffusion

parameters in predicting IDH and 1p/19q status, with diagnostic

performance quantified by the area under the curve (AUC). The

optimal threshold was determined using the Youden index, and

sensitivity, specificity, and accuracy were calculated. Statistical

significance was set at P < 0.05.
3 Results

3.1 Patients characteristics

This study included 95 glioma patients (54 males, 41 females)

aged 24 to 70 years, with a mean age of 48. According to the 2021

WHO CNS tumor classification, the tumors were categorized as:

IDH wild-type gliomas (glioblastomas, 52 cases), IDH-mutant

without 1p/19q codeleted gliomas (astrocytomas, 12 cases), and

IDH-mutant with 1p/19q codeleted gliomas (oligodendrogliomas,

31 cases). Patients with IDH wild-type gliomas were significantly

older than those with IDH-mutant gliomas (P < 0.001). No

significant age differences were found between IDH-mutant

gliomas with and without 1p/19q co-deletion. Gender distribution

did not significantly differ among glioma subtypes. In terms of MRI

morphology, IDH wild-type gliomas are significantly more likely to

exhibit cystic/necrotic changes, edema, and contrast enhancement,

whereas IDH mutant gliomas are predominantly located in the

frontal lobe or insular lobe. Table 1 summarizes the patients’

demographic characteristics and the morphological characteristics.
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3.2 DWI parameters in predicting IDH
status

The interobserver and reproducibility were good for all DWI

parameters (ICC = 0.918–0.996). The ICCs for different DWI values

are provided in Supplementary Table S1.

Mono_ADC, IVIM_D, SEM_DDC, CTRW_a, and CTRW_Dm

were significantly higher in IDH-mutant gliomas compared to IDH
Frontiers in Oncology 05
wild-type gliomas (P < 0.05). No significant differences were

observed in other diffusion parameters between the two groups

(P > 0.05) (Table 2). CTRW_a had the largest effect size for

predicting IDH genotype (Cohen’s d = -0.897), as shown in

Table 2. ROC analysis (Table 3) indicated that CTRW_a
provided the best diagnostic performance for predicting IDH

genotype (AUC = 0.761). At a threshold of 0.855, sensitivity was

0.651, specificity was 0.846, and accuracy was 0.758 (Figure 2).
FIGURE 1

The red areas represent the delineated VOIs. (A) A 52-year-old female with IDH wild-type glioblastoma in the left basal ganglia, CTRW_a = 0.714,
below the IDH threshold (0.855), correctly classified by imaging analysis. (B) A 38-year-old female with IDH-mutant & 1p/19q co-deletion
oligodendroglioma in the left temporal lobe, CTRW_a = 0.872, above the IDH threshold and below the 1p/19q threshold (0.886), correctly classified
by imaging analysis. (C) A 38-year-old female with IDH-mutant astrocytoma without 1p/19q co-deletion in the right frontal lobe, CTRW_a = 0.916,
above the IDH or 1p/19q thresholds, correctly classified by imaging analysis.
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3.3 DWI parameters in predicting 1p/19q
status

In IDH-mutant gliomas, SEM_DDC, CTRW_a , and

CTRW_Dm were significantly lower in 1p/19q codeleted gliomas

compared to non-codeleted gliomas (P < 0.05) (Table 4). No

significant differences were found in other diffusion parameters

between the two groups (P > 0.05). CTRW_a had the largest effect

size for predicting 1p/19q co-deletion (Cohen’s d = 0.889), as shown

in Table 4. ROC analysis (Table 5) indicated that CTRW_a
provided the best diagnostic performance (AUC = 0.790). At a

threshold of 0.886, sensitivity was 0.750, specificity was 0.903, and

accuracy was 0.860 (Figure 3). Figure 1 presents representative cases

of the three glioma subtypes, while Figure 4 displays box plots of
Frontiers in Oncology 06
diffusion parameter distributions across the subtypes, highlighting

inter-group differences.
3.4 Performance of DWI parameters in
giomas with different imaging features

Our study revealed notable variations in imaging presentations

between gliomas with different IDH statuses. To investigate

potential underlying mechanisms, we examined associations

between DWI parameter changes and radiological features and

evaluating how imaging heterogeneity impacts diagnostic

performance. IVIM_f shows a significant increase in gliomas with

enhancement or cystic necrosis (Supplementary Tables S2, S3). In
TABLE 1 Patient characteristics.

Parameter
IDH

wild-type
IDH

mutant
P

(IDH)
IDH mutant & 1p/19q

codeleted
IDH mutant & 1p/19q

non-codeleted
P

(1p/19q)

Age 54 (50, 60) 41 (34, 49) <0.001 42 ± 9 38 ± 9 0.225

Gender (M/F) 28/24 26/17 0.518 20/11 6/6 0.599

Cystic/Necrosis (Y/N) 44/8 28/15 0.027 21/10 7/5 0.822

Hemorrhage (Y/N) 4/48 0/43 0.124 0/31 0/12 –

Edema (Y/N) 42/10 24/19 0.009 17/14 7/5 0.836

Enhancement (Y/N) 47/5 18/25 <0.001 13/18 5/7 0.987

VOI volume (mm2)
10225

(5802.5,17465)
15300

(2907.5,40655)
0.134 13060 (2609.5,31160) 28930 (9138.5,88145) 0.142

Location

-Frontal or Insula (Y/N) 18/34 31/12 <0.001 22/9 9/3 >0.99

-Basal ganglia or
Thalamus (Y/N)

6/46 1/42 0.188 1/30 0/12 >0.99

-Other (Y/N) 28/24 12/31 0.011 9/22 3/9 >0.99
fr
IDH, isocitrate dehydrogenase; M, Male; F, Female; Y, Yes; N, No; VOI, volume of interest.
TABLE 2 Parameter values between different IDH status.

Parameter IDH wild-type IDH mutant t/U P Cohen’s d

Mono_ADC 1.088(0.997,1.219) 1.200(1.141,1.307) 1648 < 0.001 -0.704

IVIM_D 0.983(0.883,1.083) 1.099(1.028,1.157) 1677 < 0.001 -0.769

IVIM_D* 7.298(6.630,7.929) 7.443(6.991,8.676) 1324 0.204 -0.424

IVIM_f 0.089(0.075,0.106) 0.085(0.060,0.104) 967 0.363 0.149

SEM_a 0.867(0.840,0.88) 0.875(0.835,0.911) 1306 0.242 -0.123

SEM_DDC 1.117(1.029,1.274) 1.233(1.163,1.342) 1628 < 0.001 -0.666

CTRW_a 0.825(0.789,0.849) 0.867(0.844,0.890) 1702 < 0.001 -0.897

CTRW_b 0.938(0.917,0.956) 0.935(0.904,0.968) 1093 0.906 0.202

CTRW_Dm 1.218(1.102,1.365) 1.335(1.254,1.396) 1551 0.004 -0.599
IDH, isocitrate dehydrogenase; ADC, apparent diffusion coefficient; IVIM, intravoxel incoherent motion; D, slow diffusion coefficient; D*, fast diffusion coefficient; SEM, stretched exponential
model; DDC, distributed diffusion coefficient; CTRW, continuous-time random walk; Dm, anomalous diffusion coefficient.
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gliomas with enhancement, SEM_a and CTRW_a are significantly

reduced (Supplementary Table S2). DWI parameters reveals no

significant differences between gliomas with and without

peritumoral edema (Supplementary Table S4).The cut-off values

from Table 3 was employed to evaluate the diagnostic efficacy of

parameters with significant differences in gliomas with distinct

molecular features. Results demonstrated that CTRW_a
maintained moderate predictive accuracy (>0.7) for IDH status

across all imaging manifestations (Supplementary Table S5).
4 Discussion

This study assessed the diagnostic performance of the DWI

mono-exponential, IVIM, SEM, and CTRW models in predicting
Frontiers in Oncology 07
IDH and 1p/19q status in adult diffuse gliomas. CTRW_a exhibited

the highest AUC and effect size for predicting IDH and 1p/19q

status, highlighting its potential as a promising biomarker for the

preoperative evaluation of these molecular characteristics

in gliomas.

CTRW_a is related to the heterogeneity of time-dependent

diffusion, quantifying the probability of water molecules being

“trapped” or “released” as they diffuse through the complex

structures and environments of biological tissues (34). A

decreased CTRW_a value in IDH-wildtype gliomas implies

increased subdiffusion behavior due to stronger cell-matrix

adhesion, increased microstructural complexity, and a more

restrictive diffusion environment. Heterogeneity information is

crucial for elucidating the microstructural characteristics of tumor

tissues, which are difficult to capture accurately using traditional
FIGURE 2

ROC curve of IDH status predicting by DWI parameters.
TABLE 3 ROC curve analysis of parameters for predicting IDH status.

Parameter Threshold P AUC (95% CI) Sensitivity Specificity Accuracy

Mono_ADC 1.122 < 0.001 0.737 (0.634,0.839) 0.860 0.673 0.758

IVIM_D 0.998 < 0.001 0.750 (0.644,0.843) 0.884 0.654 0.758

IVIM_D* 8.586 0.061 0.592 (0.470,0.707) 0.279 0.904 0.621

IVIM_f 0.067 0.140 0.568 (0.447,0.686) 0.372 0.865 0.642

SEM_a 0.896 0.093 0.584 (0.456,0.703) 0.419 0.904 0.684

SEM_DDC 1.130 < 0.001 0.728 (0.623,0.826) 0.907 0.577 0.726

CTRW_a 0.855 < 0.001 0.761 (0.661,0.854) 0.651 0.846 0.758

CTRW_b 0.909 0.430 0.511 (0.388,0.634) 0.326 0.846 0.611

CTRW_Dm 1.248 < 0.001 0.694 (0.585,0.793) 0.791 0.596 0.684
AUC, area under the curve; CI, confidence interval; ADC, apparent diffusion coefficient; IVIM, intravoxel incoherent motion; D, slow diffusion coefficient; D*, fast diffusion coefficient; SEM,
stretched exponential model; DDC, distributed diffusion coefficient; CTRW, continuous-time random walk; Dm, anomalous diffusion coefficient.
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mono-exponential models. IDH wild-type gliomas are

characterized by rapid growth, and a tendency towards

hemorrhage and necrosis, and their parenchyma contains cells at

varying stages and/or distinct RNA transcription subtypes (48).

These biological features result in more complex and heterogeneous

water molecule movement in IDH wild-type glioma tissue (49) and

a reduction in CTRW_a values (50). High cell density also

contributes to lower a values. Wild-type IDH catalyzes the

oxidative decarboxylation of isocitrate to produce a-ketoglutarate
(a-KG), protecting cells from oxidative stress (6). However, mutant

IDH, with neomorphic enzymatic activity, makes the

oncometabolite 2-hydroxyglutarate (2-HG) (9). 2-HG reduces the

proliferation rate of glioma cells, decreases angiogenesis, and results

in relatively slower tumor progression and lower tissue

heterogeneity within the voxel (51).

Given that the 1p/19q codeletion is primarily associated with

IDH mutations (19), we evaluated the diagnostic performance of

DWI parameters in preoperatively predicting the 1p/19q status in

IDH-mutant gliomas. 1p/19q codeleted oligodendrogliomas are
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characterized by increased neovascularization and a greater

propensity to involve the cortex (52), with approximately 90% of

oligodendrogliomas exhibiting calcification (53). These features

may lead to a more complex tumor structure and heterogeneous

signal intensity, which a lower CTRW_a can exhibit. Chu et al. (49)

employed diffusion kurtosis imaging and reported that

oligodendrogliomas with 1p/19q co-deletion had higher mean

kurtosis values compared to 1p/19q non-codeleted astrocytomas,

attributing this to the increased tissue complexity in

oligodendrogliomas, which supports with our findings.

Additionally, oligodendrogliomas are characterized by high

perfusion and rich microvascularity, which may further reduce

the CTRW_a value, as the rapid signal decay at low b-values may

be misinterpreted by the CTRW model as a manifestation of

delayed diffusion processes.

The parameter b in the CTRW model serves as an indicator of

spatial diffusion heterogeneity and is mathematically similar to the

a parameter in the stretched exponential model (33). This explains

the comparable performance observed between these two
TABLE 4 Parameter values between different 1p/19q status.

Parameter
1p/19q

non-codeleted
1p/19q

codeleted
t/U P Cohen’s d

Mono_ADC 1.281(1.193,1.377) 1.188(1.140,1.238) 110 0.079 0.743

IVIM_D 1.188 ± 0.159 1.089 ± 0.098 -2.014* 0.114 0.843

IVIM_D* 7.399(6.981,9.730) 7.453(6.991,8.541) 166 0.723 0.472

IVIM_f 0.087 ± 0.035 0.084 ± 0.028 -0.276* 0.882 0.094

SEM_a 0.874(0.827,0.911) 0.875(0.839,0.911) 188 0.968 -0.031

SEM_DDC 1.347(1.288,1.421) 1.21(1.155,1.272) 93 0.027 0.888

CTRW_a 0.894(0.885,0.906) 0.86(0.836,0.876) 78 0.008 0.889

CTRW_b 0.908(0.880,0.973) 0.937(0.911,0.967) 217 0.532 -0.446

CTRW_Dm 1.387(1.364,1.466) 1.309(1.251,1.348) 100 0.043 0.640
*In line with normal distribution, an independent t-test was adopted. ADC, apparent diffusion coefficient; IVIM, intravoxel incoherent motion; D, slow diffusion coefficient; D*, fast diffusion
coefficient; SEM, stretched exponential model; DDC, distributed diffusion coefficient; CTRW, continuous-time random walk; Dm, anomalous diffusion coefficient.
TABLE 5 ROC curve analysis of parameters for predicting 1p/19q status.

Parameter Threshold P AUC (95% CI) Sensitivity Specificity Accuracy

Mono_ADC 1.250 0.016 0.704 (0.503,0.882) 0.667 0.774 0.744

IVIM_D 1.134 0.040 0.683 (0.465,0.866) 0.667 0.806 0.767

IVIM_D* 9.357 0.304 0.554 (0.344,0.750) 0.333 0.935 0.767

IVIM_f 0.100 0.469 0.508 (0.306,0.712) 0.417 0.742 0.651

SEM_a 0.853 0.481 0.505 (0.290,0.731) 0.500 0.677 0.628

SEM_DDC 1.265 0.004 0.750 (0.556,0.917) 0.833 0.742 0.767

CTRW_a 0.886 < 0.001 0.790 (0.613,0.941) 0.750 0.903 0.860

CTRW_b 0.893 0.237 0.583 (0.344,0.801) 0.500 0.903 0.791

CTRW_Dm 1.353 0.009 0.731 (0.532,0.898) 0.833 0.806 0.814
AUC, area under the curve; CI, confidence interval; ADC, apparent diffusion coefficient; IVIM, intravoxel incoherent motion; D, slow diffusion coefficient; D*, fast diffusion coefficient; SEM,
stretched exponential model; DDC, distributed diffusion coefficient; CTRW, continuous-time random walk; Dm, anomalous diffusion coefficient.
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FIGURE 3

ROC curve of 1p/19q status predicting by DWI parameters.
FIGURE 4

Box plot of the distribution of each parameter in three subtypes of gliomas. n.s.: no significant difference, *P = 0.01~ 0.05, **P = 0.001~ 0.01,
***P < 0.001.
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parameters in our study. CTRW_b and SEM_a did not exhibit

significant differences across different IDH and 1p/19q genotypes in

this study. Previous research (28, 43) has demonstrated that SEM_a
can predict IDH status in low-grade gliomas, with IDH wild-type

gliomas showing significantly lower SEM_a values than IDH-

mutant gliomas. These findings are inconsistent with our results,

potentially because those studies pre-classified gliomas as low-grade

gliomas and glioblastomas based on the 2016 WHO classification.

However, with the 2021 WHO classification update, the

applicability of such study designs to current clinical practice

warrants reevaluation. To better align with clinical practice, we

opted not to predict glioma genetic information based on tumor

grade. CTRW_b are less discriminative between IDH or 1p/19q

statuses, suggesting that the primary diffusion alteration in is in

temporal retention rather than spatial jumps. This supports the

hypothesis that these tumors trap diffusing particles within their

microenvironment rather than faci l itat ing large-scale

migratory leaps.

While CTRW_a and CTRW_b describe tissue heterogeneity

from different perspectives, the exact microstructural changes in

neural tissue that these parameters reflect remain unclear (54).

There is a lack of direct histological evidence or relevant studies that

physiologically explain the specific mechanisms by which CTRW_a
and CTRW_b characterize brain tissue microstructure.

Nevertheless, our findings confirm the point of Zhou et al. (55),

that the CTRW model offers additional and relatively independent

heterogeneity parameters compared to the SEM model, which helps

overcome some SEM limitations in describing tissue heterogeneity.

CTRWmodel provides information on the diffusion rate of water

molecules through the Dm value. Current research (42), based on the

2021 WHO classification criteria, indicates that ADC values predict

genetic status in gliomas across all grades. The highest ADC values

were observed in the IDH-mutant & 1p/19q non-codeleted subgroup,

followed by the IDH-mutant & 1p/19q codeleted subgroup, with the

lowest values seen in IDH wild-type gliomas, consistent with our

results. IDH-mutant gliomas, due to changes in downstream protein

synthesis, exhibit relatively slower tumor cell proliferation (56) and

lower cell density. Among IDH-mutant gliomas, the parenchymal

regions of 1p/19q codeleted gliomas typically exhibit dense and

abundant cell arrangements (57). Additionally, calcification,

common in 1p/19q codeleted gliomas (58), impacts MRI signal

acquisition. This results in locally low parameter values on

diffusion maps. Although ADC in our study is lower in

oligodendrogliomas than in astrocytomas, no significant difference

was found (P = 0.079), nor was it found for IVIM_D (P = 0.114). This

may be due to a relatively small and unbalanced sample size.

SEM_DDC seems to be the optimal parameter of diffusion rate in

predicting the 1p/19q codeletion status. It showed significant

differences between the two groups and had a good effective size

(Cohen’s d = 0.888). CTRW_Dm showed significant differences

between groups, but with a small effect size (Cohen’s d = 0.640),

meaning the value differences between subgroups are relatively close

andmay limit clinical applicability. Measurements of water molecular

diffusion rate within the tissue are influenced by blood flow perfusion.

The tissue microenvironment and cellular density result in lower
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diffusion rates in oligodendrogliomas than in astrocytomas. However,

the higher perfusion in oligodendrogliomas (59) increases the

proportion of fast diffusion components, overestimating their

diffusion rate values and diminishing the differentiation between

the two tumor types. SEM_DDC offers an effective modeling

approach for assessing diffusion rates in 1p/19q codeleted

oligodendrogliomas. Although SEM_DDC does not explicitly

separate perfusion effects, it offers improved robustness over ADC

by modeling signal attenuation as a continuous distribution of

diffusion rates. This allows DDC to better accommodate non-

Gaussian behavior and mitigate some of the confounding effects

caused by perfusion-related signal at low b-values. However, like

ADC, DDC remains susceptible to perfusion contamination and does

not isolate perfusion from true diffusion as in the IVIM model.

IVIM_D reduces the overestimation bias in ADC caused by perfusion

effects, which is especially relevant in highly vascular tissues such as

oligodendrogliomas. The observed difference in IVIM_D between the

two groups did not reach statistical significance (p = 0.114) with a

large effect size (Cohen’s d = 0.843). Considering the relatively small

sample size in the present study, this result suggests a high risk of

Type II error. The potential value of IVIM_D warrants further

validation in larger cohorts.

IVIM_f and IVIM_D* provide information about tissue

perfusion. Our study results indicate that IVIM-derived perfusion

parameters did not show significant differences when predicting

glioma genotypes across all grades. Previous studies (28, 43) have

shown that IVIM_f and IVIM_D* can be used to predict IDH

genotypes in 2016 WHO glioblastomas, while no significant

differences were found between IDH wild-type and IDH-mutant

in WHO 2016 grade II-III gliomas. However, the findings regarding

these parameters show variability in the direction of effect across

different studies, leading to ongoing controversy about their roles.

Such inconsistency may be related to the instability and

approximate nature of IVIM_f and IVIM_D* in characterizing

perfusion. Furthermore, considering the latest WHO classification

system, which prioritizes genetic subtyping before histopathological

grading, our approach of analyzing gliomas without grade-based

stratification may have influenced the interpretation of IVIM_f and

IVIM_D*. Specifically, this methodology could amplify the

confounding factors beyond molecular phenotype, such as tumor

vascularization patterns, cellular density, and hypoxia. As a result,

the statistical sensitivity for detecting genotype-related differences

may have been reduced in the absence of grade-based stratification.

Further evaluation of the predictive value of IVIM-derived

perfusion parameters for glioma molecular information in larger

datasets is warranted.

Morphological MRI results indicate that IDHmutant gliomas are

more frequently located in the frontal/insula lobe, IDH wild-type

gliomas more frequently exhibit enhancement, central necrosis, and

peritumoral edema, which is consistent with previous study (60).

Such visual differences can, to some extent, assist in differentiating

different molecular subtypes of gliomas. Visual image interpretation

is easy to perform, provides intuitive and rapid results, has low

requirements for equipment and technology, and is widely adopted in

current clinical practice. In contrast, DWI quantitative analysis has
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problems such as complex processing procedures and the lack of

complete standardization in parameter interpretation and diagnostic

criteria, which impede the widespread application of related

technologies. Our findings demonstrate that imaging heterogeneity

can interfere with the reflection of molecular status by DWI

parameters, causing fluctuations in diagnostic performance

indicators and reducing predictive efficacy. In contrast-enhanced

gliomas or those with cystic/necrotic components, a higher IVIM_f

may reflect enhanced neovascularization characteristic of these

lesions. The reduction in a values derived from CTRW and DDC

model suggests increased histological heterogeneity within these

tumors. CTRW_a maintained moderate IDH mutation prediction

accuracy (>0.7) across diverse imaging presentations, indicating

parameter stability. However, CTRW_a exhibited diminished

diagnostic efficacy, particularly reduced sensitivity (using IDH-

mutant as positive and wildtype as negative labels), in gliomas

demonstrating contrast enhancement, cystic/necrosis changes, or

peritumoral edema. This diagnostic bias predisposed these lesions

to misclassification as IDH-wildtype tumors, potentially leading to

overestimation of clinical malignancy. These observations underscore

the necessity for expanded research focusing on radiologically

homogeneous lesion cohorts, which better reflects real-world

clinical decision-making scenarios (61). And, the evolving

paradigm of artificial intelligence (AI)-driven diagnostic systems

presents promising solutions. Machine learning or deep learning

algorithms capable of integratively analyzing conventional MRI

features with quantitative DWI parameters may overcome current

limitations through multidimensional pattern recognition. However,

the development of advanced DWI models still makes sense.

Considering the safety concerns of gadolinium-based contrast

agents, particularly for patients with renal impairment who are

unable to undergo contrast-enhanced T1 imaging, DWI techniques

could be a key solution to this issue. Besides, advancements in

quantitative MRI techniques may contribute to the development of

AI-based predictive models by providing additional information on

tumor microstructure and hemodynamics. Their roles in radiomics

modeling has been well recognized (62, 63). The integration of

radiomics , automated segmentat ion algor i thms, and

multiparametric MRI features enables AI models to achieve a more

comprehensive characterization of tumors from both physiological

and morphological perspectives. This approach facilitates more

accurate noninvasive characterization of glioma genotype (64).

However, several clinical implementation challenges remain such as

the prolonged scanning time required for multiparametric MRI

acquisition, which may not be feasible for patients with limited

tolerance or emergency conditions, and the complex post-

processing steps required specialized expertise and computational

resources, which may limit widespread adoption in routine clinical

workflows. Moreover, the development of reliable and generalizable

models requires large-scale, multicenter datasets to account for inter-

patient and inter-scanner variability, thereby enhancing model

robustness and clinical applicability.

In this study, we assessed the predictive efficacy of the DWI

mono-exponential model, IVIM, SEM, and CTRW models for
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glioma IDH genotyping and 1p/19q status. We confirmed the

improvement of CTRW over SEM and identified the significant

potential of CTRW_a. However, our study has several limitations:

1. The sample size is relatively small and imbalanced across groups;

2. The VOIs in this study were manually delineated, which

introduces subjectivity. Future studies could improve this by

utilizing deep learning algorithms for automatic delineation; 3.

There is currently no consensus on the optimal scanning

protocols or standard post-processing methods for DWI models.

To improve the generalizability of multi-b-value DWI across

different research centers, it is essential to standardize and

validate scanning protocols and post-processing techniques.
5 Conclusion

CTRW model offers valuable imaging biomarkers for developing

personalized treatment plans and assessing patient prognosis. The a
parameter in the CTRWmodel has the best diagnostic performance for

predicting both glioma IDH genotype and 1p/19q status.
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