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Background: Osteosarcoma is the most common primary bone tumor. It has a

high rate of early metastasis, and its treatment is one of the most challenging

topics in the bone tumor field. Recent studies have shown that neutrophil

extracellular traps play an important role in tumor metastasis and may provide

new horizons for exploring metastasis in osteosarcoma.

Methods: OS data were downloaded from the TARGET database and Gene

Expression Omnibus datasets. Univariate Cox regression was conducted to

assess NETRGs. Patients were subsequently categorized into high- and low-

risk groups on the basis of risk score values derived from multivariate Cox

analysis, and prognostic models were established. The immune infiltration of

relevant genes and drug sensitivity of key genes were also analyzed.

Results: A total of 15 NETs-related genes associated with osteosarcoma

metastases were identified. Among them, a total of 4 genes were related to

prognosis, namely, MAPK1, CFH, ATG7 and DDIT4, and a prognostic model based

on these 4 genes was established. The prognosis was worse in the high-risk

group, whose areas under the ROC curves (AUCs) were 0.857, 0.779, and 0.689

at 1, 3, and 5 years, respectively. The key genes were subsequently found to be

associated with the infiltration of 20 types of immune cells. Finally, the small-

molecule drug toxin c 10, an approximately 6700 mw protein, may target key

genes. Finally, ATG7 was validated at the histological level by combining the

results of the validation group dataset analysis.

Conclusions: A risk model based on 4 NETRDEGs is a reliable prognostic

predictor for OS patients, and CFH and ATG7 may serve as a new diagnostic

and therapeutic target.
KEYWORDS

osteosarcoma, neutrophil extracellular traps, key genes, therapeutic targets, ATG7,
CFH, metastases
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1 Introduction

Osteosarcoma is a malignant primary bone tumor that is

prevalent in children and adolescents (1–3) and is most common

in the distal femur, proximal tibia, and humeral metaphyseal

locations (4). It is characterized by the malignant proliferation of

prismatic mesenchymal stromal cells that directly produce osteoid

or immature bone tissue (5, 6). It is highly malignant with a high

rate of early metastasis, and its high propensity for metastasis is a

major cause of poor prognosis (7, 8). Simultaneous pulmonary

metastases have been reported to occur in approximately 15–20% of

patients at the time of initial diagnosis (9–11). Once metastasis

occurs in patients with osteosarcoma, the prognosis is extremely

poor. Moreover, treatment is of limited importance, with an overall

5-year survival rate of 20%-30% (12, 13), which is much lower than

that of patients without metastasis. Osteosarcoma is classified

according to the Enneking Surgical Staging System (SSS) into

Stage IIA (confined to the anatomical compartment), Stage IIB

(breaching bone cortex, fascial tissue, or joint cavity), and Stage III

(metastatic) (14, 15). The treatment follows the principle of

neoadjuvant chemotherapy → surgery → adjuvant chemotherapy,

with first-line chemotherapeutic agents including high-dose

methotrexate, doxorubicin, cisplatin, and ifosfamide (16, 17).

With the advent of neoadjuvant chemotherapy, limb-salvage

surgery has become the primary approach for osteosarcoma with

favorable staging. However, the success of surgery depends on

achieving safe surgical margins and a favorable chemotherapeutic

response. For Stage II A osteosarcoma, limb-salvage surgery is the

main treatment (18), but the use of preoperative chemotherapy

remains controversial, as chemotherapy insensitivity may lead to

tumor progression and worsen prognosis. For Stage II B tumors,

preoperative chemotherapy is routinely administered to shrink

tumor boundaries, followed by wide resection if vascular or nerve

invasion is absent; amputation is required if critical structures are

involved (19, 20). For Stage III osteosarcoma, palliative surgery is

the primary approach (21). The survival rate of osteosarcoma

patients has not improved over the past 30 years, primarily due

to the intractability of osteosarcoma metastases in patients (22, 23).

Therefore, an in-depth study of the molecules involved in the

invasion and metastasis of osteosarcoma cells is urgently needed.

Neutrophil extracellular traps (NETs), NET-like substances

released by neutrophils during their immune action against

pathogens that can capture and kill microorganisms, were

discovered by Volker Brinkmann’s research team in as early as

2004 (24). NETs consist mainly of intracellular DNA, histones and

granule proteins, such as myeloperoxidase and neutrophil elastase

(25). They are closely associated with the onset and progression of

diseases such as infections, sepsis, autoimmune disorders and

diabetes (26–28). In recent years, studies involving the interactive

functions of neutrophils and the tumor microenvironment have
Abbreviations: NETs, Neutrophil extracellular traps; OS, Osteosarcoma;

NETRGs, Neutrophil extracellular traps related genes; NETRDEGs, Neutrophil

extracellular traps related differentially expressed genes; GO, Gene Ontology;

GSEA, Gene set enrichment analysis; GEO, Gene Expression Omnibus.
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revealed that NETs are involved in the entire invasion–metastasis

cascade of a variety of tumors (29, 30). In breast cancer, NET DNA

can interact with CCDC25 on tumor cell membranes to activate the

ILK-b-Parvin pathway and promote liver metastasis (31). Amyloid-

b produced by cancer-associated fibroblasts (CAFs) promotes the

generation of NETs by facilitating the production of ROS in

neutrophils. NETs promote the hepatic metastasis of pancreatic

tumors by enhancing the migration of hepatic stellate cells (32, 33).

In addition, NETs contain programmed cell death ligand 1 (PD-L1),

which promotes tumor metastasis by binding to programmed cell

death protein 1 (PD-1) on the surface of T cells to inhibit T-cell

function, leading to T-cell dysfunction and metabolic failure (34).

These findings provide new directions for understanding the

mechanism of osteosarcoma metastasis and possible future

treatments. Therefore, exploring the molecular mechanisms of

NET-related genes in the development and metastasis of

osteosarcoma is highly important for the early diagnosis and

clinical treatment of osteosarcoma patients.

Here, we utilized bioinformatics approaches to explore the

role of NET-related genes in osteosarcoma metastasis (Figure 1).

First, we identified MAPK1, CFH, ATG7, and DDIT4 as

independent prognostic factors in osteosarcoma patients via Cox

regression analysis. In addition, a nomogram graph was

established. Analysis of immune infiltration and drug sensitivity

of key genes was performed for relevant genes. Finally, ATG7 was

validated at the histological level based on the results of the

validation group dataset analysis. These results suggest that

ATG7 may be a reliable diagnostic and therapeutic target for

patients with metastatic osteosarcoma.
2 Data and methods

2.1 Materials

The expression profile data of TARGET-OS in osteosarcoma

patients were downloaded from UCSC Xena (https://xena.ucsc.edu/

), and a total of 84 samples were obtained after patient samples with

no expression data or survival data were removed. The expression

profiling dataset GSE21257 containing metastasis group data was

d o w n l o a d e d f r om t h e G EO d a t a b a s e ( h t t p s : / /

www.ncbi.nlm.nih.gov/geo/) (Table 1). Combined with the Gene

Cards database (35) and published literature (36, 37), 258

neutrophil extracellular traps-related genes (NETRGs)

were obtained.
2.2 Methods

2.2.1 Data collection and processing
The R software “limma” package was used for data correction to

ensure the comparability of the data. The samples were divided into

2 groups (the unmetastases group and the metastases group), and

the genes whose |log FC| was >0 and P value was<0.05 were

considered differentially expressed genes (DEGs). The
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intersections of the DEGs and NETRGs were then plotted as Venn

diagrams and differential ordering plots.

2.2.2 GSEA and GO analysis
GSEA was performed via the “cluster Profiler” package and the

“c2.cp.v7.2.symbols.gmt” gene set from the Molecular Signatures

Database (MSigDB). The parameters were set as follows: the

number of seeds was 2020, the number of calculations was 1000,

the number of genes contained in each gene set was at least 10, and

the maximum number of genes contained was 500. Subsequently,

Gene Ontology (GO) functional enrichment analysis was carried

out on 15 NETRDEGs.

2.2.3 Construction and validation of the
nomogram model

Univariate Cox analysis of NETRDEGs was performed using

the “survival” package, and genes with P< 0.05 were used as the key

genes in our subsequent study. Patients were categorized into high-

and low-risk groups based on the median risk score via multivariate
Frontiers in Oncology 03
regression analysis. A nomogram was constructed using the R

software package “rms”, and a decision curve was constructed

using the R package “gg DCA” to evaluate the accuracy of the

prediction results.

RiskScore =o
i
Coefficient(genei) � mRNAExpression(genei)

In this formula, the coefficient represents the risk factor, and

mRNA expression represents the expression value of the gene.

The functional similarity between key genes was calculated

using the R package “GO Sem Sim”. The “p ROC” package was

used to plot the ROC curves of the key genes.
2.2.4 Immune infiltration and drug sensitivity
analysis

Enrichment scores for the level of infiltration of each immune

cell type with other stromal cells were calculated using the R

software packages “GSVA” and “MCP Counter”. The correlation

between immune infiltrating cells was determined via Spearman’s

correlation analysis, and P< 0.05 was considered statistically

significant. The Cell Miner database (https://discover.nci.nih.gov/

cell miner/home.do) was searched and based on the expression of

the key genes with the drug data in the Cell Miner database. Drug

sensitivity analysis of key genes was performed using the

“pRRophetic” package.

2.2.5 Immunohistochemical analysis
Osteosarcoma tissue microarrays (Changsha Yaxiang

Biotechnologies, Changsha, China) were used for these

experiments. The chips were subjected to a dewaxing process and

antigen repair, followed by serum blocking to block nonspecific

binding. For primary antibody incubation, the samples were rinsed

three times with phosphate buffer for 3 min each. Then, the ATG7
FIGURE 1

Research flowchart.
TABLE 1 Osteosarcoma dataset information.

TARGET-OS GSE21257

Platform TARGET GPL10295

Species Homo sapiens Homo sapiens

Tissue
Osteosarcoma
tumor tissues

Osteosarcoma
tumor tissues

Samples in
unmetastases group

63 19

Samples in
metastases group

21 34
OS, osteosarcoma; GEO, Gene Expression Omnibus.
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antibody (OriGene Technologies, Wuxi, China) was diluted at a

ratio of 1:1000, the primary antibody was added dropwise, and the

samples were incubated overnight at 4°C in a refrigerator. For

secondary antibody incubation, the samples were washed with

phosphate buffer three times for 3 min each, horseradish

peroxidase-labeled secondary antibody was added dropwise, the

samples were incubated at room temperature for 2 h, and the

samples were rinsed with phosphate buffer three times for 3 min

each. DAB staining solution was added dropwise for coloring, and

the color development was observed under a microscope. The

samples were quickly washed after coloring. The samples were

restrained by incubating them with hematoxylin for 1min, followed

by rinsing for 5 min and drying at room temperature before sealing

them with a coverslip. The next day, images were obtained with a

tissue microarray scanner.

2.2.6 Statistical analysis
R software version 4.1.2 was used for analysis, and R language-

related packages (“limma,” “cluster Profiler,” “p ROC,” “rms,”

“survival,” “GO Sem Sim,” “gg DCA,” “GSVA,” etc.) were used to

process data. Differences in survival were analyzed via the Kaplan–
Frontiers in Oncology 04
Meier method and are expressed as hazard ratios (HRs) and 95%

confidence intervals (CIs). P< 0.05 was considered a statistically

significant difference. The statistical significance is shown as

follows: P value< 0.05 (*) and P value< 0.01 (**).
3 Results

3.1 Standardization of the dataset and
screening results of NETRDEGs

The dataset GSE21257 was standardized such that the trend of

expression among different samples converged, and a box line plot

was drawn for the distribution of data before and after

standardization (Figures 2A, B). In the dataset, 1068 genes satisfied

the threshold of |logFC| > 0 and P value< 0.05, and 602 and 466 genes

exhibited high and low expression in the metastasis group,

respectively (Figure 2C). Taking the intersection of all DEGs and

NETRGs, a total of 15 NETRDEGs were obtained, including IL1RL1,

AZU1, NFIL3, DDIT4, ENO1, KRT10, ATG7, MAPK1, PIK3CG,

DECR1, IL36G, CFH, SELL, SFTPD, and COLEC11 (Figures 2D, E).
FIGURE 2

Analysis of TARGET-OS differential genes in the dataset. (A, B) Box plots of the GSE21257 dataset before and after correction. (Red represents the
metastases group, blue represents the unmetastases group). (C) Volcano plots of differentially expressed genes. (D, E) Venn diagrams and differential
ordering plots of intersecting genes.
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3.2 GSEA and GO analysis

To analyze the biological functions of the 15 NETRDEGs, we

first performed GO analysis of the NETRDEGs (Figures 3A–C).

These genes were found to be involved in autophagy in the nucleus,

the regulation of the cellular response to hypoxia, the response to

hypoxia, and the circadian rhythm in biological processes. The

cellular component terms were significantly associated with the

secretory granule lumen, cytoplasmic vesicle lumen, vesicle lumen,

and collagen trimer. The enriched molecular function of the DE-

FRGs were as follows: oligosaccharide binding, heparan sulfate

proteoglycan binding, heparin binding, and proteoglycan binding.

GSEA revealed that the DEGs were significantly enriched in the

glycolysis pathway, autophagy pathway, IL7 pathway, Wnt

signaling pathway, and PI3K/Akt signaling pathway (Figures 3D–I).
Frontiers in Oncology 05
3.3 Construction of a prognostic model
and establishment of a nomogram

To obtain a prognostic model for NET-related genes, we

screened for NETRGs via univariate Cox analysis in conjunction

with survival outcomes and survival times and constructed a forest

plot (Figure 4A). We then included these key genes in a multivariate

Cox analysis to obtain the risk score value and grouped the samples

of the dataset into high- and low-risk groups according to the

median value of the risk score (cutoff value = -0.050965805) and

found that the prognosis was worse in the high-risk group

(Figures 4C, D). The prognostic model can be expressed as

f o l l ows : r i s k s co r e=MAPK1* (−0 . 350932209 )+CFH*

(−0.540468911)+ATG7*(−0.765106538)+DDIT4*0.132203877. We

then performed a nomogram analysis to determine the prognostic
FIGURE 3

GO analysis of NETRDEGs and GSEA of DEGs. (A–C) GO analysis of NETRDEGs. (A) bubble chart, (B) column chart, (C) ring network chart. (D–I)
Genes associated with the glycolysis pathway (E), the autophagy pathway (F), the IL7 pathway (G), the Wnt signaling pathway (H), the PI3K/Akt
signaling pathway (I) were significantly enriched.
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ability of the key genes (Figure 4B). The nomogram yields a score

for each item, and the total score and corresponding survival rate

can be obtained after adding the scores of all the items. The results

showed that the utility of the expression of the CFH gene in the
Frontiers in Oncology 06
model was significantly greater than that of the other genes.

Moreover, the AUCs of the 1-, 3- and 5-year ROCs were 0.857,

0.779 and 0.689, respectively (Figure 4E). In addition, we performed

1-, 3-, and 5-year prognostic calibration analyses and plotted
FIGURE 4

Construction of the Cox regression model. (A) Forest plots for univariate Cox regression; (B) Nomogram integrating the risk score and clinical
characteristics; (C-E) Distribution, Kaplan–Meier plot, and time-dependent ROC curve of the risk model. (F-H) 1-year, 3-year, and 5-year survival
calibration plots of the nomogram. (I-K) 1-year, 3-year, and 5-year survival DCA plots of the nomogram.
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calibration curves for the prognostic model (Figures 4F–H). We

found that the model predicted patient survival in general

agreement with actual patient survival. We then used decision

curve analysis to assess the magnitude of the clinical utility of the

constructed models at 1, 3, and 5 years (Figures 4I–K), which

revealed that the 5-year prognostic model had the best

clinical utility.
3.4 Prognostic analysis of key genes in the
training group

To assess the relationships between the four key genes and

prognosis, we plotted prognostic Kaplan–Meier survival curves in

the TARGET-OS dataset for each of the key genes (Figures 5A–D),

which revealed that all four genes significantly correlated with
Frontiers in Oncology 07
survival: MAPK (P = 0.035), CFH (P = 0.029), ATG7 (P = 0.004),

and DDIT4 (P = 0.043). Group comparison plot of key genes among

different subgroups in the training dataset were drawn (Figure 5E).

In addition, gene correlation analysis was performed based on the

complete expression matrix of key genes, and correlation heatmaps

were drawn (Figure 5F). The results revealed a positive correlation

between the genes ATG7 and MAPK1 and between CFH and

ATG7. We subsequently performed functional similarity analysis

of the key genes and then visualized the results of the functional

similarity analysis among the key genes via a box-and-line plot

(Figure 5G), which revealed that ATG7 was the most similar gene to

the other three genes in terms of function. Next, the ROC curves of

the key genes were plotted (Figures 5H–K). The ROC curves

revealed that the differences in the expression of the CFH gene

(AUC = 0.711) in the dataset presented comparable accuracy

across subgroups.
FIGURE 5

K–M curves and correlation analysis for the TARGET-OS dataset. (A-D) K–M curves for prognstic analysis of the genes MAPK1, CFH, ATG7, and
DDIT4. (E) Group comparison plot of key genes among different subgroups in the TARGET-OS dataset. (F) Correlation heatmap of key genes in the
TARGET-OS dataset. (G) Functional similarity analysis of key genes. (H-K) ROC curve analysis of key genes in the TARGET-OS dataset.
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3.5 Analysis of immune cell infiltration

To explore immune cell infiltration, the correlation between the

infiltration abundance of 28 immune cells was calculated via the

ssGSEA algorithm. The results of the correlation heatmap

(Figure 6A) revealed a positive correlation between the infiltration

abundance of immune cells that activated CD8+ T cells and

macrophages and between effector memory CD8+ T cells and

immature B cells, macrophages and MDSCs. Subsequently, we
Frontiers in Oncology 08
analyzed the relationships between the key genes and the

infiltration abundance of 28 immune cells via the ssGSEA

algorithm, and the key genes CFH, ATG7, and DDIT4 were

correlated with 20 of these immune cells (Figure 6B). Among

them, positive correlations were identified between CFH and

immune cells, central memory CD4 T cells, natural killer cells, as

well as between ATG7 and immune cells and killer cells. To ensure

the accuracy of the above algorithm, we also calculated the

correlation between key genes and immune cell infiltration
FIGURE 6

Immune infiltration analysis. (A) Correlation analysis of the infiltration abundances of 28 immune cell types calculated via the ssGSEA algorithm.
(B) The results of the ssGSEA algorithm. (C) The results of the MCP Counter algorithm.
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abundance via the MCP Counter algorithm (Figure 6C), which

revealed that the key genes were related to 10 types of immune cells.

Among them, positive correlations were identified between ATG7

and endothelial and monocyte lineage cells as well as between CFH

and monocytic lineage cells; DDIT4 negatively correlated with

NK cells.
3.6 Drug sensitivity analysis and
immunohistochemical analysis

To obtain small-molecule drugs that target key genes, we used

data from the cancer drug database Cell Miner, including the

mRNA expression profiles of key genes and drug activities. Using

the pRRophetic algorithm, a ridge regression model was

constructed based on the expression and gene expression profiles

of the key genes in the TARGET-OS dataset, and the sensitivities of

the key genes to common anticancer drugs were predicted by the
Frontiers in Oncology 09
IC50 values (Figure 7A). The results show that key genes can be

found in the database Cell Miner for a variety of drugs with

interaction relationships. Among them, ATG7, kinetin riboside,

MAPK1, and CFH positively correlated with the small molecule

sri1215. Negative correlations were identified between ATG7 and

the small-molecule drug protein toxin c10-mwapprox.6700,

between CFH and benzethonium chloride, and between MAPK1

and zimelidine hydrochloride.

To explore the expression of key genes in different sequencing

datasets, the differences in the high- and low-expression key genes

among different subgroups in the GEO dataset were analyzed

(Figure 7B). ATG7 expression was significantly lower in the

metastasis group than in the metastasis-free group in the GSE21257

dataset, which was consistent with the analysis of the TARGET dataset.

This difference may be a common phenomenon in metastatic patients.

However, the expression levels of MAPK1, CFH and DDIT4 did not

significantly differ between groups in the GSE21257 dataset, but the

trend was consistent with the results in the training set. Low expression
FIGURE 7

Drug sensitivity analysis and immunohistochemical analysis. (A) Drug sensitivity analysis (dark brown represents antagonists, and blue–gray
represents agonists). (B) Differential expression of key genes between different subgroups in GSE21257. (C) Immunohistochemistry of ATG7 in the
metastatic and nonmetastatic groups.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1551074
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chu et al. 10.3389/fonc.2025.1551074
of ATG7 is likely a common genetic variant in all patients with

osteosarcoma metastases. To assess the potential of ATG7 as a

biomarker and therapeutic target for osteosarcoma metastases, we

analyzed the expression of ATG7 in tissue microarrays using

immunohistochemistry. ATG7 was expressed at low levels at the

histological level, which was consistent with the results of our

bioinformatics analysis. (Figure 7C).
4 Discussion

Despite advances in the diagnosis and treatment of

osteosarcoma, distant metastasis has become a bottleneck in

improving the survival of osteosarcoma patients, which severely

restricts their long-term survival (38). In fact, metastasis is a

multifactorial and multistep process in which tumor cells undergo

three stages: acquisition of in situ invasive ability, escape from the

immune surveillance system during the circulatory process, and

colonization of the premetastatic microenvironment; then, the

surviving tumor cells grow in distal organs far from the site of

origin, resulting in multiorgan failure (39, 40). Recent studies have

demonstrated that the extracellular trap network released by

neutrophils during their physiological function is involved in the

three stages of the metastatic process to varying degrees, including

the establishment of the premetastatic microenvironment,

epithelial-to-mesenchymal transition, the colonization of

circulating tumor cells, and the growth of tumor cells in

micrometastatic lesions (25). However, the role of NETs in the

pathogenesis of OS remains poorly understood, prompting us to

explore the possibility of using NET-related genes as

OS biomarkers.

Here, we functionally analyzed osteosarcoma NET-related

genes via bioinformatics methods. A new prognostic risk model

associated with osteosarcoma NETs was identified, and the

correlations of the associated genes with the immune

microenvironment and small-molecule drugs were also analyzed.

Previous studies have indicated that NETs-related genes play a

significant role in osteosarcoma metastasis and immune cell

infiltration, with notable differences in key immune components,

such as natural killer T (NKT) cells and CD4 T cells, observed

between metastatic and non-metastatic groups (41, 42).

Importantly, in their study, compared to the low NETscore

group, the high NETscore group exhibited significantly lower

scores in immune function-related aspects, including immune

checkpoints. Using different research methods, we further

confirmed that CFH, functioning similarly to an immune

checkpoint, plays a crucial role in immune regulation. CFH may

help tumor cells evade immune surveillance, promoting metastasis.

What’s more, we firstly found that autophagy pathways were

significantly enriched in the metastatic group. ATG7, as an

important member of the autophagy family, showed significant

differential expression in our study. This indicates that ATG7 plays

a crucial role in osteosarcoma autophagy, underscoring its

importance for further research. Additionally, we identified small-
Frontiers in Oncology 10
molecule drug agonists or inhibitors targeting key genes, providing

potential therapeutic avenues for further exploration.

Recent developments in the field of immunotherapy have

facilitated in-depth studies of the osteosarcoma tumor

microenvironment, where immune cells within the TME play a

key role in osteosarcoma genesis and influence the therapeutic

response and clinical outcomes (43). Previous studies have

demons t ra t ed tha t many neu troph i l s in the tumor

microenvironment are affected by CXCR1- and CXCR2-activating

ligands produced by tumor cells, which induce the production of

NETs to shield immune cells (CD8+ T cells and NK cells) from

exposure to tumor cells, thereby preventing tumor cells from being

killed by immune cells and facilitating tumor metastasis (27, 44).

Therefore, to further clarify the driving role of immune cells in

osteosarcoma metastasis, we explored the infiltration of NET-

related genes by various immune cells. We found that these four

genes were significantly associated with the infiltration of 20 types

of immune cells, including T cells and NK cells (45). These findings

confirm that key genes play important roles in tumor immunity and

provide new ideas for osteosarcoma immunotherapy. Most

importantly, our study found a statistically significant difference

in CFH between the two groups. As a crucial regulatory protein of

the complement system, although CFH is not a typical immune

checkpoint molecule (such as PD-1 or CTLA-4), it plays a

“checkpoint-like” role in immune regulation, primarily by

modulating the activity of the complement system to maintain

immune homeostasis and prevent excessive immune responses and

tissue damage (46). As is well-known, immune checkpoints such as

PD-1 act as “switches” of the immune system (47). Their

dysregulation compromises the body’s immune surveillance of

tumor cells and plays a critical role in tumor metastasis.

Specifically, as an inhibitor of the complement system, CFH can

prevent inflammatory responses and tissue damage caused by

overactivation of the complement system, thereby inhibiting

complement-mediated autoimmune reactions and maintaining

the balance of the immune system. Furthermore, CFH can exert

antimetastatic effects by inhibiting excessive angiogenesis in tumor

tissues (48, 49). In our study, we observed reduced expression of

CFH in the metastatic group, and we believe that CFH plays a

significant role in the imbalance of the complement and immune

systems in osteosarcoma. This finding is important for further

research and will be a key focus of our next steps.

MAPK1, also known as extracellular signal–regulated kinase

(ERK2), is an important component of the MAP kinase signal

transduction pathway. It plays an important role in regulating cell

proliferation, differentiation, apoptosis, migration and other

activities (50). Studies have shown that aberrant activation of

ERK2 in the MAPK pathway is an important cause of a variety of

cancers, such as oral cancer (51) and hepatocellular carcinoma (52),

in which the hyperactivation of ERK2 can be detected. In addition, a

study revealed that this protein, which is a moonlighting protein,

also has a transcriptional repressive effect independent of kinase

activity. Specifically, IFNg signaling leads to ERK overactivation in

melanoma cells, followed by the generation of an overstress
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response that leads to cell death. Moreover, the overexpression of

either ERK1 or ERK2 leads to cell death in human melanoma cell

lines (53). In our study, MAPK1 was expressed at low levels in the

training set, but this difference was not significant in the validation

set GSE21257. We speculate that the reason for this difference may

be related to differences in the site of metastasis and the

heterogeneity of the tumor, resulting in different molecular

biological alterations, however, this hypothesis needs to be

verified in larger studies.

The relationship between cancer and autophagy is complex and

is characterized by the fact that the pro– and anticancer properties

of autophagy are mutually transformative under specific

circumstances (54–57). As an important autophagy effector

enzyme, ATG7 can regulate immunity, cell death, and protein

secretion together with other autophagy–associated proteins and

independently regulate the cell cycle and apoptosis (58). ATG7

multifunctionality is reportedly associated with oncogenic or pro–

oncogenic properties in different tumors. Studies have reported that

ATG7 deficiency in mice leads to hepatocellular carcinoma by

activating the Yap metabolic pathway (59). In another study,

elevated ATG7 expression was associated with bladder cancer

(60) and lung cancer (61), and high levels of ATG7 expression

were associated with poor prognosis in breast cancer patients (62).

Other studies have shown that whether ATG7 promotes or

suppresses tumors also seems to depend on the status of the

tumor suppressor P53 (63, 64). Our findings suggest that ATG7

may suppress metastasis, and its association with the status of P53

has not been reported in the field of osteosarcoma and warrants

further investigation. Although the complex link between ATG7

and osteosarcoma remains puzzling, alterations in autophagy are

increasingly associated with tumors, and targeting and regulating

ATG7 may constitute a promising therapeutic approach.

DNA damage–inducible transcript 4 (DDIT4) is a tumor–

associated protein that is highly expressed under stress conditions,

such as chemotherapy, heat shock, energy depletion, hypoxia and

DNA damage. It is involved not only in tumor survival, antitumor

resistance and antiapoptotic processes but also in tumor metastatic

behaviors, such as proliferation and invasion (65, 66). Recent analyses

of DDIT4 in several cancer types have shown that high expression of

this gene is associated with poor prognosis in several hematological

and solid tumors, such as acute myeloid leukemia (67), breast cancer

(68) and lung cancer (69). In terms of mechanism, DDIT4 is involved

in the mTORC1, p53, HIF, autophagy and oxygen sensing signaling

pathways through intermolecular interactions with multiple pathway

proteins. It is directly involved in the activation of several important

pathways and has a driving role in tumor progression and metastasis

(70, 71). This finding is consistent with our findings and can be used

as a new therapeutic strategy to provide a research basis.

However, our study is subject to several shortcomings. First, the

data used in our study were not our own but were obtained from

public databases, and whether the sequencing data in the databases

can reflect the genetic alterations in all patients remains to be
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demonstrated. Second, due to the lack of clinical samples from

osteosarcoma patients, the key genes could not be quantitatively

analyzed by RT–qPCR and WB experiments. Third, the specific

mechanisms of ATG7 and CFH with respect to the OS autophagy

and immune microenvironment have not been further investigated.

More prospective studies are needed if the value of NETs in OS

metastasis is to be further confirmed.
5 Conclusion

In conclusion, we developed a prognostic model based on four

NETRDEGs, namely, MAPK1, CFH, ATG7 and DDIT4. ROC

curves and nomogram plots were used to assess the accuracy of

the model, which demonstrated that our prognostic model could

reliably predict OS outcome. Furthermore, our study revealed that

NETRDEGs can influence immune cells within the tumor

microenvironment, and CFH may play a “checkpoint–like” role

in the immune regulation of osteosarcoma. More importantly,

ATG7 plays a significant role in osteosarcoma autophagy,

providing new clues for exploring immunotherapeutic approaches

for osteosarcoma patients.

These findings may lead to new therapeutic targets for the

diagnosis and treatment of metastasis in OS patients, and more

relevant studies are needed to further validate the link between

CFH, ATG7 and osteosarcoma metastases. This study provides a

basis for exploring the molecular mechanisms, diagnosis and

treatment of osteosarcoma metastases.
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