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Background: Renal cell carcinoma (RCC) is characterized by a high degree of

genomic but also functional intratumoral heterogeneity (ITH). Mutations in VHL,

chromatin remodeling genes such as SETD2 and genes that regulate the PI3K/

AKT/mTOR pathway have been identified as recurrent drivers despite genomic

ITH. Whether and to what extent these mutations shape functional ITH including

the formation of spatial niches is incompletely understood. Herein, we analyze

the correlation between mutational drivers and their functional proxies in a

spatially defined manner.

Methods: A total of 23 RCCs were analyzed by panel next-generation

sequencing followed by immunohistochemistry for five functional proxies for

key genetic alterations including the expression of CD31, GLUT1, phospho-

mTOR S2448, H3K36me3 and Ki-67. Antibody stainings were scored

semiquantitatively in the tumor periphery and the tumor center.

Results: Unexpectedly, the presence of a VHLmutation was not found to correlate

with its functional proxies including the expression of CD31/microvessel density or

the expression of the glucose transporter GLUT1. Likewise, there was no correlation

between the presence of activating mutations in genes of the PI3K/AKT/mTOR

pathway and the expression of activated phospho-mTOR S2448. Furthermore,

mutations in the methyltransferase gene SETD2 were not found to correlate with

the expression level of its downstream target H3K36me3. Lastly, there was no

correlation between the expression of the proliferation marker Ki-67 and the

number of driver mutations.
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Conclusion: This proof-of-concept study adds genotype-phenotype

heterogeneity as additional layer of complexity to the known genomic and

functional ITH in RCC.
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Introduction

Renal cell carcinoma (RCC) is among the most lethal urological

malignancies once metastatic (1). It is characterized by a high

degree of genomic intratumoral heterogeneity (ITH) (2). Despite

this general notion, several clonal genomic driver aberrations have

been identified and a classification of clear cell RCC (ccRCC) based

on the type, number and timing of driver mutations has been

proposed (3). Among the high confidence driver genes in ccRCC

are VHL, which plays a crucial role in oxygen sensing and in

counteracting hypoxia through VEGF upregulation and

neoangiogenesis, and genes involved in chromatin remodeling,

for example, SETD2, PBRM1, and BAP1 (4). Moreover, genes that

regulate the PI3K/AKT/mTOR pathway such as PTEN or MTOR

itself also function as mutational drivers in ccRCC (4).

Besides genomic ITH, there is compelling evidence for

functional ITH, which includes the formation of intratumoral

niches that are occupied by tumor cells with certain functional

properties (5, 6). The most obvious niches in RCC are the tumor

center and the tumor periphery with the latter being a hotspot for

proliferation and activation of intracellular signaling pathways (5,

7). Importantly, a previous study could not detect any niche-specific

genetic alterations to explain the enhanced tumor cell proliferation

in the tumor periphery (5). Instead, there is evidence to suggest that

the adjacent tumor stroma plays a role in driving tumor cell

proliferation in this niche (8). These findings highlight the

important role of non-genetic factors in modulating key tumor

characteristics in RCC.

The therapeutic landscape of RCC has evolved significantly over

the past decades and the current standard of care involves a

combination of immune checkpoint inhibitors and tyrosine

kinase inhibitors (9, 10). Interestingly, both of these treatment

modalities target primarily the tumor microenvironment

(cytotoxic T cells and the tumor vasculature, respectively) rather

than the tumor cells. Despite these therapeutic advances, a

substantial proportion of patients with advanced RCC will

ultimately experience malignant progression and succumb to the

disease (11). It is hence paramount to continue to expand the

treatment armamentarium and to develop better biomarkers for

patient risk stratification (12). One promising avenue may be to use

genetic information to personalize treatment decisions. However,

there are a number of intricacies that need to be taken into

consideration. For example, while mutations in mTOR pathway
02
genes were found in patients with metastatic RCC who benefited

from mTOR inhibitors, the majority of responding patients did not

harbor mTOR pathway gene mutations (13). A follow-up study

showed in fact no correlation between mTOR pathway gene

alterations and response to rapalogs (14). These findings raise the

general question whether a certain genotype always and inevitably

translates into corresponding downstream effects.

In the present proof-of-concept study, we show a substantial

disconnection between somatic mutations in RCC driver genes and

their expected phenotypic effects (referred to as functional proxies).

Our findings establish genotype-phenotype heterogeneity as an

additional form of ITH and highlight the challenges of biomarker

development and precision medicine in RCC.
Patients and methods

Patients

Formalin-fixed, paraffin-embedded (FFPE) tumor samples

obtained from a total of 23 consecutive patients with RCC

(Table 1) were analyzed by targeted next-generation sequencing

(NGS) and immunohistochemistry. Tissue samples were obtained

from primary tumors (n=15), local recurrences (n=2) or metastatic

lesions (n=6). The histology was clear cell (n=17), papillary (n=4),

chromophobe (n=1) and collecting duct carcinoma (CDC; n=1). All

patients underwent surgery at the Department of Urology of the

University Hospital Heidelberg. FFPE sections were provided by the

tissue bank of the National Center for Tumor Diseases (NCT)

Heidelberg in accordance to the regulations of the tissue bank and

after approval by the Ethics Committee of the Medical Faculty

Heidelberg of the University of Heidelberg (206/2005, 207/2005, S-

864/2019).
Next-generation sequencing

The NGS analysis of the 23 patients has previously been

reported (15). Targeted panel sequencing was performed using

the capture-based TruSight™ Oncology 500 panel (Illumina,

Cambridge, UK) that covers 523 genes including all relevant RCC

driver genes. Mutations were classified as pathogenic, likely

pathogenic, activating or likely activating.
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Immunohistochemistry and tissue analysis

FFPE sections were first baked overnight at 37°C. The next day,

the slides were deparaffinized in xylene and rehydrated in a graded

ethanol series. Antigen retrieval was performed in a steamer using

Target Retrieval Solution (Dako, Glostrup, Denmark) followed by

quenching with 3% hydrogen peroxide solution and epitope

blocking with goat serum. The primary antibodies used were

directed against: Ki-67 (Dako, MIB-1, 1:100), phospho-mTOR

S2448 (Cell Signaling, Beverly, MA, USA; 49F9, 1: 100), CD31

(Dako, JC70A, 1:100), GLUT1 (Invitrogen, Waltham, MA, USA;

SA0377, 1:100), H3K36me3 (Cell Signaling, D5A7, 1:100). Primary
Frontiers in Oncology 03
antibodies were incubated at 4°C overnight, antibodies against

GLUT1 and CD31 were incubated for two nights. The slides were

treated with a biotinylated secondary antibody for 3 h at 37°C,

followed by the application of POD-streptavidin for 30 minutes.

Sections were counterstained with hematoxylin (Sigma-Aldrich, St.

Louis, MO, USA) and dehydrated in ethanol before mounting

(Histomount, Life Technologies, Frederick, MD, USA).

For each tumor section, we defined the tumor periphery as the

outermost zone of the tumor directly adjacent to non-malignant

stroma. The tumor center was defined as at least one 20x

microscopic field away from the border of the tumor.

For CD31, Ki-67 and phospho-mTOR S2448, representative areas

of the tumor periphery and the tumor center were selected and

semiquantitatively assessed (median number of areas for CD31, n=5,

range 5-10; phospho-mTOR S2448, n=10, range 5-10; Ki-67, n=10,

range 4-10). CD31 was scored as microvessel density (MVD) i.e., the

number of CD31 positive blood vessel cross-sections per 40x high

power field (HPF; 10x ocular lens). The number of Ki-67 positive cells

was counted using photomicrographs captured with a 20x objective

and a 10x ocular lens (field number 25) thus yielding a field of view

(FOV) of 1.23 mm2.

For the evaluation of phospho-mTOR S2448 as well as GLUT1 and

H3K36me3, we used a modified immunoreactive score (IRS) with

staining intensity scored as 0=negative, 0.5=negative-weak, 1=weak,

1.5=weak-moderate, 2=moderate, 2.5=moderate-strong and 3=strong)

and the proportion of positive cells scored as 0=negative, 1=<10%, 2 =

10%-50%, 3 = 50%-80%, 4=>80%. All IHC stainings were scored

independently by two observers (J.W. and S.D.). To assess the

interobserver reliability (IOR) for CD31 and Ki-67 counts, randomly

selected tumors were re-counted by one observer and compared to

counts by the other observer. The IOR for CD31 with respect to the

peak expression in tumor periphery or center was 100%. The IOR for

individual counts with a 25% tolerance range was 66.7%. The IOR for

Ki-67 with respect to the spatial peak expression was likewise 100%.

The IOR for individual counts with a 25% tolerance range was 83.3%.
Statistical analysis

GraphPad® (Boston, MA, USA) Prism 9 was used for statistical

analysis and the nonparametric Mann-Whitney U or Kruskal-Wallis

tests were applied. Both are non-parametric tests and hence suitable for

all data that do not follow a normal distribution, which is the case for

almost all biological data. Categorical variables were analyzed using

Fisher’s Exact Probability test (two-tailed). Statistical significance was

accepted at p<0.05.
Results

Mutational drivers and their functional
proxies in RCC

Frequent mutational driver genes in ccRCC are VHL, PI3K/

AKT/mTOR pathway genes and SETD2 (4). The expression of five
TABLE 1 Clinico-pathological patient characteristics.

Patient characteristics (n=23)

Sex (m/f) 7/16

Age, years (mean) 62.8

TNM stage, n (%)

pT1 5 (21.7)

pT2 3 (13)

pT3 12 (52.2)

pT4 1 (4.4)

pTx 2 (8.7)

p/cN0 10 (43.5)

p/cN1 4 (17.4)

p/cNx 9 (39.1)

p/cM0 8 (34.8)

p/cM1 9 (39.13)

p/cMx 6 (26.1)

Fuhrman Grade, n (%)

1 1 (4.4)

2 9 (39.1)

3 6 (26.1)

4 3 (13)

unknown 4 (17.4)

Histology, n (%)

Clear Cell 17 (73.9)

Papillary 4 (17.4)

Chromophobe 1 (4.4)

CDC 1 (4.1)

Tissue origin, n (%)

Primary tumor 15 (65.2)

Local recurrence 2 (8.7)

Metastatic lesion 6 (26.1)
frontiersin.org

https://doi.org/10.3389/fonc.2025.1551077
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wieke et al. 10.3389/fonc.2025.1551077
protein proxies (CD31, GLUT1, phospho-mTOR S2448, Ki-67,

H3K36me3; Figure 1) was analyzed in the tumor periphery and

the tumor center of 15 primary tumors and two local recurrences

(Figure 2). No distinction between the peripheral and central niche

was made in metastatic lesions since fundamentally different growth

conditions can be presumed.

The expression of CD31 positive blood vessels (scored as MVD)

was used as a proxy for VHL inactivation (16). Fourteen of the 15

primary tumors showed an increased MVD in the tumor periphery

(93.3%; Figure 3A). The two local recurrences showed an uneven

distribution of the MVD. Metastases showed a considerable

intertumoral heterogeneity with a range of 10.8 to 101.4 CD31

positive blood vessels cross-sections/40x HPF.

Phospho-mTOR S2448 staining served as a proxy for mutations

in PI3K/AKT/mTOR pathway genes. The expression was

consistently higher in the tumor periphery of primary tumors

(80%) as well as local recurrences (100%) when compared to the

tumor center (Figure 3B). Metastatic lesions showed, again, a

heterogeneous staining with a minimum mean IRS of 4.9 and a

maximum mean IRS of 11.6.

Expression of the proliferation marker Ki-67 followed the same

pattern and all primary tumors except tumors 6, 12, and 15 showed

an increased tumor cell proliferation in the tumor periphery (80%;

Figure 3C). One of the two local recurrences also showed this

pattern. The tumor cell proliferation rate in metastases ranged

considerably with a minimum of 24.4 Ki-67 positive cells/FOV and

a maximum of 128.9 Ki-67 positive cells/FOV.

In summary, all three functional proxies of mutational driver

events in ccRCC showed differences in the expression between

tumor periphery and tumor center with the tumor periphery

showing on average a statistically significant enhancement of

neovasculature, intracellular signaling pathway activation and

tumor cell proliferation (all p<0.001; Figure 3D).

There were no differences in expression between tumor

periphery and tumor center for the functional proxies GLUT1,

which is also regulated by the VHL-HIF axis, and H3K36me3,
Frontiers in Oncology 04
which is methylated by SETD2 (Figure 4). In line with previous

results (17), GLUT1 showed a higher expression in ccRCC

compared to papillary or chromophobe RCC (p<0.05; Mann-

Whitney U-test; Figure 4A). H3K36me3 was found to show a

high degree of intertumoral heterogeneity with a wide range of

the IRS between 0 and 12 in primary tumors (Figure 4B). The IRS

also varied widely among locally recurrent and metastatic RCC

(range, 2.5-12; Figure 4B).

In summary, these results underscore that tumor periphery and

center represent distinct spatial niches in RCC. However, our

finding that not all functional proxies followed this pattern

suggests that some markers may be more susceptible to external

stimuli than others (8).
No correlation between RCC driver gene
mutations and their functional proxies

We next sought to determine whether and to what extent the

presence of certain ccRCC driver mutations or combinations

thereof are represented by their functional proxies (Figure 5).

First, we asked whether the presence of a VHLmutation (14 of

17 ccRCCs: 82.4%) correlates with in an increased MVD (>30

CD31 positive blood vessel cross sections/40x HPF) or a high

GLUT1 expression (IRS 10-12). Only the highest expression

regardless of the intratumoral region in which it was found was

considered. There was no statistically significant correlation

between a VHL mutation and the MVD (p=1) or GLUT

expression (p=0.541).

Next, we correlated the presence of activating/likely activating

mutations in PI3K/AKT/mTOR pathway genes or a pathogenic

PTEN mutation (two of 17 ccRCCs; 11.8%) to a high expression of

phospho-mTOR S2448 (IRS 9-12) and found no statistically

significant correlation (p=0.154).

We then correlated the presence of a pathogenic/likely

pathogenic mutation in SETD2 (six of 17 ccRCCs; 35.3%) to a
FIGURE 1

Overview of selected RCC mutational drivers and their downstream pathways. Functional proxies of mutational driver events relevant for the present
study are shown in red.
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reduced expression of H3K36me3 (IRS 0-6). No statistically

significant correlation could be corroborated (p=0.304).

Multiple driver gene alterations defined as VHL mutation plus

two or more additional mutations in PBRM1, SETD2, BAP1 or

PTEN in analogy to (3) were detected in seven of 17 ccRCC patients

(41.2%). Since these tumors have been suggested to show a more

aggressive clinical behavior (3), we correlated to the presence of

multiple drivers to a high expression of Ki-67 (>80 positive cells/

FOV) or moderate to high expression of Ki-67 (>20 positive cells/

FOV). No statistically significant correlation could be corroborated

with both cut-offs (p=1 and p=0.603, respectively). Remarkably, two

of the three tumors with the highest proliferation rate lacked any

somatic driver mutations in our panel NGS analysis (patients 10

and 11; Figure 5).
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Given the heterogeneity of the histological subtypes, a subgroup

analysis including only ccRCCs was performed. There was no

statistically significant correlation between mutational events and

their functional proxies (Supplementary Figure 1).

In conclusion, our results suggest that RCC is characterized by

an extensive disconnection between mutational drivers and their

functional proxies.
Discussion

Clear cell RCC is characterized by a high degree of genomic and

functional ITH (2, 5, 18). Nevertheless, a number of recurrent driver

gene mutations have been identified (3, 4). Whether and to what
FIGURE 2

Immunohistochemical detection of functional proxies of mutational driver events in RCC. Representative photomicrographs of immunohistochemical
stainings for CD31, GLUT1, phospho-mTOR S2448, H3K36me3 and Ki-67 in the tumor periphery and the tumor center are shown. Positive controls
include endothelial cells for CD31 (asterisk and arrow), red blood cells for GLUT1 and Caki-1 RCC cells grown as subcutaneous xenografts (Charles River
Laboratories, Freiburg, Germany) for phospho-mTOR S2448, H3K26me3 and Ki-67. Scale bar for large panels = 100 µm.
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FIGURE 3

Intratumoral spatial expression of CD31, phospho-mTOR S2448 and Ki-67 in RCC. (A–C) Quantification of the expression of CD31, phospho-mTOR
S2448 and Ki-67 in a total of 23 primary tumors, local recurrences, and metastases. Tumor periphery and tumor center were assessed separately in
primary tumors and local recurrences. Metastases were excluded from the spatial analysis since fundamentally different growth characteristics can
be presumed. Each bar represents mean and standard error of at least four and up to a maximum of ten tumor areas. (D) Quantification of the
average expression of the three functional proxies in 11 primary tumors with clear cell histology subdivided into tumor periphery and tumor center.
HPF, high power field; CC, clear cell; PAP, papillary; CH, chromophobe; CDC, collecting duct carcinoma; IRS, immunoreactive score; FOV, field of
view [1.23 mm2]. Asterisks indicate statistical significance: * p<0.05, **p<0.005, ***p<0.0005.
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extent these driver gene alterations shape the functional ITH in

ccRCC is not known in detail.

In the present report, we made the perplexing discovery that

there is no correlation between mutational drivers and their

functional proxies. This included MVD and GLUT1 expression in

tumors with mutated VHL, mTOR phosphorylation in tumors with

activating mutations in PI3K/AKT/mTOR pathway genes,

H3K36me3 status and mutations in SETD2 and, lastly, the tumor

cell proliferation rate and presence of multiple driver

gene mutations.

Clear cell RCCs are highly vascularized tumors and VHL loss is

crucially involved in this phenotype through hyperstimulation of

HIF-dependent transcription of the VEGF gene (19). However,

VEGF can be upregulated through other mechanisms than VHL

loss including numerous cytokines, growth factors and hormones

(20). Moreover, there is extensive crosstalk between immune cells

and endothelial cells. For example, innate immune cells such as
Frontiers in Oncology 07
tumor-associated macrophages, neutrophils and myeloid-derived

tumor suppressor cells secrete pro-angiogenic factors (21).

Likewise, T lymphocytes have been reported to secrete VEGF

upon stimulation (22). These findings underscore the complexity

of neoangiogenesis and may help to explain disconnection between

VHL status and CD31/MVD in our analysis.

While CD31 expression/MVD was higher in the tumor

periphery, the expression of GLUT1 did not show a zonal

pattern. Like neoangiogenesis, GLUT1 expression is driven by

hypoxia/HIF but also a broad spectrum of additional factors

including hormones, growth factors, intracellular signaling

pathways such as the PI3K/AKT/mTOR pathway as well as

several oncogenes such as MYC, RAS and SRC and the TP53

tumor suppressor gene (23, 24). Why GLUT1 expression showed

no spatial differences when compared to CD31/MVD remains to be

determined but one possibility is that neoangiogenesis may be more

susceptible to extrinsic stimuli than GLUT1 expression.
FIGURE 4

No spatial differences in the intratumoral expression of GLUT1 (A) and H3K36me3 (B). Graphic representation of the immunoreactive score (IRS) for
GLUT1 and H3K36me3 per tumor. Because of the homogenous expression patterns, no subdivision into tumor periphery and tumor center was
performed. CC, clear cell; PAP, papillary; CH, chromophobe; CDC, collecting duct carcinoma.
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Activation of the PI3K/AKT/mTOR pathway not only involves

mutations in related pathway genes but also other regulators such as

VHL itself (25, 26). This signaling pathway is likewise regulated by

various extrinsic factors such as growth factors, hormones or

inflammatory cytokines (27). Since many of these factors are

produced by the adjacent tumor microenvironment, the latter

may play an important role in the genotype-phenotype

disconnection described herein. The fact that the tumor periphery

is a hotspot for the activation of intracellular signaling pathways as

shown here and in previous studies (5, 7) lends additional support

to this notion.

Our results are in line with previous results showing that

H3K36me3 expression is reduced in both SETD2 mutated and

SETD2 wild-type tumors albeit with a higher frequency in RCCs

harboring a SETD2 mutation (28, 29). In our study, only two

patients were found to harbor a pathogenic SETD2 mutation.

Although SETD2 exclusively trimethylates H2K36, the levels of

H3K36me3 are regulated by other methyltransferases such as

SETD3 as well as demethylases of the JHDM family (30). Since

the interplay between these “writers” and “erasers” determine

H3K36me3 levels, it is obvious that SETD2 inactivation alone

may not necessarily lead to diminished H3K36 methylation. In

this context, it is noteworthy that H3K36me3 loss in advanced RCC

is much more frequent than SETD2 mutations thus supporting the
Frontiers in Oncology 08
notion that alternative factors may contribute to the regulation of

H3K36me3 (30).

Three of 17 ccRCCs analyzed showed a proliferation that was in

the highest category i.e., >80 Ki-67 positive cells per FOV. Only one

of these three tumors belonged to the group of ccRCCs with

multiple driver gene mutations (3). The two other ccRCCs

showed no detectable driver mutations. Although we cannot

formally conclude that the latter ccRCCs were VHL wild-type,

since no epigenetic analyses were performed, our finding is

nonetheless reminiscent of the TRACERx Renal study, were VHL

wild-type tumors showed a similar proliferation rate compared to

tumors with multiple (clonal) driver gene mutations (3).

One can envision various mechanisms through which

extrinsic factors such as the tumor microenvironment may

overlay mutational events in RCC. It has been reported that

cytokines and growth factors secreted by non-malignant cells of

the intratumoral and/or extratumoral microenvironment play an

important role in this context. For example, FGF-2 secreted by

non-malignant cells adjacent to a RCC was found to stimulate

RCC cell proliferation (8). Moreover, tumor-derived cytokines

have been identified as drivers of intratumoral spatial

heterogeneity in RCC (6). Spatial omics and single cell analysis

are not only important tools for validating spatial niche formation

in RCC, but also instrumental for novel hypothesis-generating
FIGURE 5

No correlation between mutational drivers and their functional proxies in RCC. Graphic representation of driver mutations and expression of five
functional proxies in 23 RCCs. Metastases were excluded from the spatial analysis. Because of the non-heterogeneous expression patterns, no
subdivision into tumor periphery and tumor center was performed for GLUT1 and H3K36me3. Color gradients reflect the protein expression levels
from low to high. MVD, microvessel density; HPF, high power field, IRS, immunoreactive score; FOV, field of view [1.23 mm2]; CC, clear cell; PAP,
papillary; CH, chromophobe; CDC, collecting duct carcinoma.
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approaches to better understand the mechanisms underlying ITH

(7, 31–34).

The extensive disconnection between genotype and phenotype

is reflected by a number of clinical observations. For example,

despite initial evidence, no correlation could ultimately be

corroborated between mutations in PI3K/mTOR pathway genes

and the response to rapalogs, small molecule inhibitors of mTOR

(13, 14, 35). Genotype-phenotype disconnections as shown

herein may contribute to this clinical observation. Furthermore,

there was no significant difference in the response to VEGF-targeted

agents between patients with inactivated VHL and patients with

wild-type VHL (36). In addition, the response to the VEGFR

inhibitors axitinib or pazopanib was found to be independent of

the VHL status (36). These clinical findings support the notion that

RCCs critically depend on certain functional pathways, which is, at

least in part, independent of the mutational status of genes involved

in these pathway. At the same time, they suggest that a gene-centric

view may fall short and prevent the development of more effective

therapies for advanced RCC.

Biomarker development in RCC has been particularly

challenging. A key implication of our proof-of-concept study is

that biomarker development should be multidimensional and very

likely needs to entail more than one parameter to be successful. This

notion of “biomarker uncertainty” is underscored by reports

showing that combined omics approaches can lead to a clinically

meaningful substratification of RCC patients (37–39).

Limitations of our study are the relatively small and

heterogeneous patient population, the heterogeneity of

histological subtypes that limits conclusions on non-ccRCCs, the

fact that epigenetic alterations e.g., VHL silencing, were not

analyzed and that no correlation to treatment responses could be

corroborated. The latter is due to the fact that most patients were

treated at other academic and non-academic centers following

surgery. We were hence unable to retrieve high-quality data on

treatment regimens, treatment responses and patient survival.

Moreover, we did not attempt to correlate the staining results for

functional proxies of mutational events to the actual allele

frequency. The reason was that variant allele frequencies are

currently not routinely used for clinical-decision making (40).

Validation experiments are currently under way in which digital

spatial profiling is used to further corroborate genotype-phenotype

discrepancies in RCC (7). This method allows a simultaneous

assessment of gene expression in tumors and the surrounding

microenvironment and is hence well suited to better understand

interactions between these two compartments (41).

Although in vitro models for the novel type of tumor

heterogeneity reported herein are beyond the scope of the

manuscript, further experiments along these lines are clearly

warranted. Patient-derived tumor xenografts have been shown to

recapitulate the genomic heterogeneity of cancer but extrinsic

drivers from the microenvironment including the immune

microenvironment are more difficult to emulate (42). Although

the same notion may apply to organoids, which are ex vivo three-

dimensional cell culture models, a number of sophisticated

approaches for co-cultivation with immune or stromal cells have
Frontiers in Oncology 09
been developed (43). The latter may allow to directly dissect the role

of certain cell types in driving genotype-phenotype heterogeneity.

Altogether, the present proof-of-concept study adds genotype-

phenotype heterogeneity as another layer of complexity to the

known genomic and functional ITH in RCC.
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