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Purpose: This study was to assess whether baseline magnetic resonance habitat

imaging can predict the efficacy of neoadjuvant chemoradiotherapy (nCRT) in

patients with locally advanced rectal cancer (LARC).

Methods: This retrospective study analyzed data from 181 patients with locally

advanced rectal cancer, including 60 who exhibited a good treatment response.

The cohort was randomly divided into a training set (127 patients, 42 with good

response) and a validation set (54 patients, 18 with good response). Five models

were developed: ModelClinic, ModelRadiomics, ModelHabitat, ModelClinic+Radiomics,

and ModelClinic+Habitat. Model performance was assessed using the area under

the receiver operating characteristic (ROC) curve (AUC) for both training and

validation sets.

Results: The AUC values for predicting the efficacy of LARC neoadjuvant therapy

were as follows: in the training set, ModelClinic achieved 0.788, ModelRadiomics

0.827, ModelHabitat 0.815, ModelClinic+Radiomics 0.938, and ModelClinic+Habitat

0.896; in the test set, the corresponding AUCs were 0.656, 0.619, 0.636,

0.532, and 0.710, respectively. Decision curve analysis demonstrated that the

clinical combined habitat model (ModelClinic+Habitat) provided higher net benefits

than other models within a threshold probability range of 20% to 80%.

Conclusion: The habitat model we developed, which integrates first-order and

clinical features, demonstrates potential for predicting the efficacy of nCRT

clinically interpretable spatial heterogeneity information. This model may aid in

personalized treatment decision-making for LARC.
KEYWORDS

habitat, locally advanced rectal cancer (LARC), neoadjuvant chemoradiotherapy (NCRT),
radiomics, magnetic resonance imaging (MRI)
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Introduction

According to the GLOBOCAN 2022 data, colorectal cancer is

the third most commonly diagnosed cancer and the second leading

cause of cancer-related mortality, with over 1.9 million new cases

accounting for 9.6% of all new cancer cases. The incidence of rectal

cancer representing 30-50% of colorectal cancer cases (1), continues

to rise. Approximately half of the cases are diagnosed as locally

advanced rectal cancer (LARC) at initial presentation (2). LARC is

defined as a rectal tumor located within 15 cm of the anal verge and

classified as stage T3, T4, or N+ with M0 based on the American

Joint Committee on Cancer (AJCC) staging system (3). In recent

years, preoperative neoadjuvant chemoradiotherapy (nCRT),

followed by total mesorectal excision (TME) has emerged as

standard treatment of LARC, resulting in significant tumor

regression and pathological downstaging (4).

In clinical practice, the pathological response of patients with

LARC undergoing nCRT exhibits significant heterogeneity, with

only approximately 13%-22.2% achieving a pathological complete

response (pCR), defined as no residual tumor cells in the resected

specimen (5, 6). For patients with a clinical complete response

(cCR) before radical surgery and no evidence of local tumor residue

after nCRT confirmed by physical and ancillary examinations, a

“watch-and-wait” strategy may be considered under strict follow-up

to avoid the risks of radical surgery (7, 8). Conversely, patients with

a poor response to nCRT not only fail to achieve favorable

therapeutic outcomes but may also experience treatment-related

toxicities (9). Currently, postoperative pathology remains the gold

standard for assessing nCRT efficacy in rectal cancer, while

magnetic resonance imaging (MRI) is widely used for staging,

treatment evaluation, and follow-up (10).

Radiomics involves extracting and analyzing a large number of

advanced quantitative imaging features from routine radiological

examinations (11). Previous studies have demonstrated its

significant contributions to precise staging, treatment efficacy

evaluation, genetic status assessment, and prognosis prediction in

colorectal cancer (12, 13). However, tumors are complex

ecosystems composed of heterogeneous subpopulations of tumor

cells with varying invasive potential, growth rates, drug sensitivity,

and prognosis outcomes (14). Conventional radiomics, which
Abbreviations: LARC, Locally Advanced Rectal Cancer; nCRT, Neoadjuvant

Chemoradiotherapy; ROC, receiver operating characteristic; AUC, area under the

receiver operating characteristic curve; TME, total mesorectal excision; pCR,

pathological complete response; MRI, Magnetic resonance imaging; IVIM,

Intravoxel incoherent motion; DKI, diffusional kurtosis imaging; ITH, intra-

tumor heterogeneit;EMVI, extramural vascular invasion; MRF, status of the

mesorectal fascia; CEA, carcinoembryonic antigen, AFP, alpha-fetoprotein;

CA125, carbohydrate antigen 125, CA724, carbohydrate antigen 724; CA199,

carbohydrate antigen 199; TRG, Tumor Regression Grade; T2WI, T2-weighted

imaging; DWI, diffusion-weighted imaging; ADC, Apparent diffusion coefficient;

ICC, intraclass correlation coefficient; LASSO, least absolute shrinkage and

selection operator; PPV, positive predictive value; NPV, negative predictive

value; TME, tumor microenvironment; DCE, Dynamic Contrast Enhancement.
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predominantly evaluates the entire tumor region, has limitations

as it fails to account for spatial heterogeneity within the tumor.

Habitat imaging analysis is an innovative radiomics approach

that identifies tumor subregions with similar characteristics using

quantitative imaging markers (15). Preliminary findings suggest

that habitat analysis holds promise for predicting molecular

profiles, treatment response, and prognosis in diseases such as

glioblastoma and breast cancer, while also quantifying intra-

tumor heterogeneity (ITH) (16–18). For example, Chao et al. (19)

demonstrated that regions with high cellular density and low

arrangement complexity in breast cancer, identified through

intravoxel incoherent motion (IVIM) and diffusional kurtosis

imaging (DKI), were more likely to achieve a pCR. Although

habitat imaging has shown potential in other malignancies, its

application in predicting treatment efficacy for rectal cancer

remains unexplored. This study aims to evaluate the predictive

accuracy and clinical utility of baseline MR habitat imaging models

for assessing nCRT response in locally advanced rectal cancer.
Methods

Study setting and timeframe

A retrospective analysis was performed on 181 patients with

rectal cancer who received treatment at Fujian Provincial Hospital

from June 2020 to June 2024. The study protocol was approved by

the Fujian Provincial Hospital Ethics Committee (approval code:

K2021-05-007; May 2019), and all procedures were conducted in

compliance with relevant guidelines and regulations. Written

informed consent was obtained from all participating patients.

The inclusion criteria were as follows: (I) clinically diagnosed

LARC with the tumor located ≤15 cm from the anal verge; (II) no

prior pharmacological or surgical treatment; (III) completion of

neoadjuvant chemoradiotherapy at our institution; (IV)

availability of complete pathological data; and (V) availability of

high-quality MRI with complete criteria included: (I) incomplete

neoadjuvant therapy at our institution, (II) baseline distant

metastasis, (III) significant MRI artifacts or incomplete

sequences compromising habitat analysis, or (IV) previous pelvic

radiotherapy or rectal resection. Figure 1 illustrates the patient

selection and grouping process.

The dataset was randomly divided into training (n=127) and

test (n=54) cohorts in a 7:3 ratio. The training cohort was used to

develop the diagnostic model, while the test cohort served to

evaluate model performance.
Neoadjuvant treatment

The intensity-modulated radiation therapy regimen consisted

of two schedules: short-course radiotherapy delivering a total dose

of 25 Gy in 5 Gy fractions, and long-course chemoradiation

involving 22–25 fractions of 2–2.3 Gy to the gross tumor volume

and 1.8–2.0 Gy to the clinical target volume. Neoadjuvant treatment
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modalities included long-course radiotherapy with concurrent

chemotherapy (n=19), short-course radiotherapy followed by

neoadjuvant chemotherapy (n=11), long-course radiotherapy

followed by neoadjuvant chemotherapy (n=61), and neoadjuvant

chemotherapy alone (n=90).
Clinical characteristics

The clinical baseline characteristics included the following

parameters: age, sex, type of therapy (whether combined with

radiation therapy), tumor location, maximum tumor thickness,

maximum tumor length, distance to the anal verge, presence of

extramural vascular invasion (EMVI), mesorectal fascia (MRF)

status, histologic grade, MRI-predicted T/N stage (MRI-T/N stage)

(3), and pretreatment levels of carcinoembryonic antigen (CEA), alpha-

fetoprotein (AFP), carbohydrate antigen 125 (CA125), carbohydrate

antigen 724 (CA724), and carbohydrate antigen 199 (CA199).
Pathologic assessment of response

Pathological assessment and postoperative TNM restaging were

performed according to the pathological findings of the surgically

resected specimens. Tumor regression response was evaluated using

the AJCC Tumor Regression Grade (TRG) system, which

categorizes responses as follows: Grade 0 (complete response)

indicates no viable tumor cells; Grade 1 (moderate response)

denotes residual small clusters or single tumor cells; Grade 2
Frontiers in Oncology 03
(minimal response) represents residual tumor with predominant

fibrosis; and Grade 3 (poor response) shows minimal or no tumor

regression with extensive residual cancer. The specimens were

reviewed by an experienced pathologist (Y.H.) with 20 years of

expertise in rectal cancer diagnosis. TRG 0–1 was considered a good

response, whereas TRG 2–3 was classified as a poor response.
Imaging studies

Prior to MRI examination, patients were instructed to fast for

4–6 hours and empty their bladder and bowels. The scans were

performed using three 3T MRI scanners (MAGNETOM Prisma,

Skyra, and Verio; Siemens Healthcare, Erlangen, Germany) with a

16-channel phased-array surface coil. The imaging protocol

included high-resolution axial T2-weighted imaging (T2WI) and

diffusion-weighted imaging (DWI), with apparent diffusion

coefficient (ADC) maps automatically generated by the system.

Detailed acquisition parameters are provided in Table 1.
Tumor segmentation

T2WI and ADC maps were visualized using 3D Slicer (version

4.10.2, www.slicer.org) for image segmentation. A radiologist (H.C.)

with three years of experience in rectal cancer diagnosis performed the

initial region of interest (ROI) delineation. All segmentations were

manually drawn along the inner tumor capsule boundary on axial

T2WI by experienced radiologists, excluding peritumoral edema,
FIGURE 1

Flowchart depicting patient selection and grouping.
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adjacent vessels, lymph nodes, and normal rectal walls to minimize

contamination from surrounding tissues. For interobserver

reproducibility assessment, 50 randomly selected cases from the

training cohort were independently segmented by the same

radiologist (H.C.) and another radiologist (M.H.) with 14 years of

rectal cancer imaging experience. Reproducibility was evaluated using

a two-way random absolute agreement intraclass correlation

coefficient (ICC), where values >0.75 indicated good consistency,

0.50–0.75 moderate consistency, and <0.50 poor consistency.
Feature extraction and habitat analysis

We used PyRadiomics (v3.0) to extract quantitative features

from the ROI encompassing the entire tumor. First, we performed

Z-score normalization on T2W images and applied a re-

segmentation strategy with a 3-sigma restriction for both ADC

and T2WI. For texture analysis, we discretized the images into 16

bins based on the comprehensive training dataset, using a 2.5-D
Frontiers in Oncology 04
merge strategy. We then extracted multiple feature categories,

including first-order, shape, gray-level co-occurrence matrix,

gray-level run length matrix, gray-level size zone matrix, gray-

level dependence matrix, and neighboring gray tone difference

matrix features. Additionally, we applied a wavelet transform with

a coif1 filter to derive higher-dimensional features. In total, 1684

radiomics features were extracted.

In addition, we used K-means, an unsupervised clustering

method, to segment the entire tumor ROI based on combined

T2WI and ADC map data. Voxel values from these parametric

maps were used to cluster the tumor into subsegments. The optimal

number of clusters (K) for K-means was determined using the

Calinski-Harabasz (CH) Score (20) (Appendix 1). For each

segment, we extracted volume, volume ratio, and first-order

features from the corresponding regions of each parametric map.

During habitat feature extraction, a 3-sigma restriction was applied

within the tumor ROI to exclude voxels with signal characteristics

inconsistent with viable tumor tissue (e.g., luminal air or fecal

residues). These features were used to assess tumor heterogeneity.
TABLE 1 The imaging protocol of MR sequences.

Machine Sequences Protocol

Machine1 T2WI TR 4200ms TE 92ms Thickness 3.5mm

Slices 20 Bandwidth 200Hz/Px FOV 200mm

FOV phase 100% Matrix 384×288 Averages 2

concatenations 1

DWI TR 8100ms TE 61ms Thickness 3.5mm

Slices 20 Bandwidth 2000Hz/Px FOV 240mm

FOV phase 88% Matrix 100×100 scan time 186s

B-values 50,600,1200s/mm2 Averages 1,2,3

Machine2 T2WI TR 4280ms TE 92ms Thickness 3.5mm

Slices 20 Bandwidth 200Hz/Px FOV 200mm

FOV phase 100% Matrix 384×288 Averages 2

concatenations 1

DWI TR 7000ms TE 50ms Thickness 3.5mm

Slices 20 Bandwidth 2272Hz/Px FOV 200mm

FOV phase 100% Matrix 100×100 scan time 203s

B-values 50,600,1200s/mm2 Averages 1,3,4

Machine3 T2WI TR 4100ms TE 96ms Thickness 3.0mm

Slices 30 Bandwidth 200Hz/Px FOV 200mm

FOV phase 100% Matrix 320×224 Averages 2

concatenations 2

DWI TR 8400ms TE 93ms Thickness 3.0mm

Slices 30 Bandwidth 1158Hz/Px FOV 260mm

FOV phase 85% Matrix 160×120 scan time 260s

B-values 0,800,1200s/mm2 Averages 4,4,4
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Model building

Features with ICCs below 0.75 were excluded, and the

remaining features were deemed stable. The selected features were

normalized using the Z-score method in the training set. Following

normalization, the Pearson correlation coefficient was applied with

a threshold of 0.9 to evaluate collinearity between feature pairs,

thereby reducing feature space dimensionality. The least absolute

shrinkage and selection operator (LASSO) method was then used to

identify the most predictive features from the training set. A

radiomics score (Radscore) was calculated for each patient as a

linear combination of the selected features, weighted by their

respective coefficients. Two models were developed: one utilizing

habitat features (ModelHabitat) and the other employing radiomics

features (ModelRadiomics). The Radscore, representing the combined

radiomic results for each patient, was computed as follows:

Radscore=∑Ni=1wi·ci+b, where N denotes the number of

features, wi represents the feature weight, ci is the value of the ith

feature, and b is the bias term (5) (Figure 2).
Statistical analysis

Statistical analyses were performed using R software (version

4.4.1). A stepwise logistic regression based on the Akaike

information criterion was used to identify significant clinical

variables and develop the clinical model. The LASSO method

from the “glmnet” package was applied to construct the habitat

and radiomics models, yielding the habitat score and radiomics

score. All individual models (ModelRadiomics, ModelHabitat)

employed LASSO regression with 10-fold cross-validation for

feature selection and regularization. Logistic regression was used

to integrate ModelRadiomics, the clinical combined habitat model

(ModelClinic+Habitat), and the clinical combined radiomics model

(ModelClinic+Radiomics). Model performance was evaluated using the

area under the receiver operating characteristic (ROC) curves and
Frontiers in Oncology 05
the mean area under the curve (AUC). Sensitivity, specificity,

positive predictive value (PPV), and negative predictive value

(NPV) were calculated based on the maximum Yorden Index of

the training cohort. The DeLong test was used to compare model

performance, and decision curve analysis (DCA) was performed to

assess net benefit rates across prediction thresholds. A two-tailed P-

value <0.05 was considered statistically significant.
Results

Characteristics of the study sample

A total of 181 patients diagnosed with LARC were included in

this retrospective study based on the selection criteria, among

whom 60 exhibited a good treatment response. The patients were

randomly divided into a training set (n = 127, including 42 good

responders) and a test set (n = 54, including 18 good responders).

No significant differences in clinical characteristics were observed

between the training and test sets (P > 0.05), as shown in Table 2.
Feature screening

The extracted features were analyzed using the LASSO

algorithm for dimensionality reduction of eigenvalues. Features

with non-zero coefficients were selected for subsequent analyses

(Appendix 2). The clinical model incorporated maximum tumor

length, MRI-N stage, CEA levels, therapy, and MRF.
Performance of the models and model
comparison

The AUC for ModelClinic was 0.788 in the training set and 0.656

in the testing set. In the testing set, ModelClinic demonstrated a
FIGURE 2

Workflow for establishment of the models.
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TABLE 2 Characteristics of patients in the training and test sets (n = 181).

Characteristic Training set (n=127) Test sett (n=54) P value

Age(yrs),mean ± SD 60.59 ± 9.71 58.98 ± 10.29 0.318

Gender, n(%) 0.191

Man 88 (69.29) 32 (59.26)

Female 39 (30.71) 22 (40.74)

Location,n(%) 0.691

Low 41 (32.28) 14 (25.93)

Median 68 (53.54) 32 (59.26)

High 18 (14.17) 8 (14.81)

T,n(%) 0.348

T3 80 (62.99) 30 (55.56)

T4 47 (37.01) 24 (44.44)

N,n(%) 0.676

N0 16 (12.60) 5 (9.26)

N1 31 (24.41) 16 (29.63)

N2 80 (62.99) 33 (61.11)

Thickness(mm),mean ± SD 18.95 ± 7.35 18.63 ± 6.87 0.783

Length(mm),mean ± SD 50.98 ± 17.09 53.57 ± 21.92 0.394

EMVI,n(%) 0.89

Positive 79 (62.20) 33 (61.11)

Negative 48 (37.80) 21 (38.89)

MRF,n(%) 0.503

Positive 78 (61.42) 36 (66.67)

Negative 49 (38.58) 18 (33.33)

CEA,n(%) 0.525

Positive 64 (50.39) 30 (55.56)

Negative 63 (49.61) 24 (44.44)

AFP 2.79 ± 1.64 2.74 ± 1.27 0.836

CA199 64.91 ± 238.62 69.61 ± 184.79 0.897

CA724 4.71 ± 11.71 8.85 ± 19.66 0.081

CA125 10.92 ± 5.70 12.56 ± 6.33 0.089

Differentiation,n(%) 0.519

Poor 3 (2.36) 3 (5.56)

Medium-high 124 (97.64) 51 (94.44)

Therapy 0.782

with radiation therapy 63 (49.61) 28 (51.85)

without radiation therapy 64 (50.39) 26 (48.15)
F
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Only variables with a P value less than 0.05 were considered significant. EMVI (extramural vascular invasion), MRF, mesorectal fascia; CEA, carcinoembryonic antigen; AFP, alpha-fetoprotein;
CA125, carbohydrate antigen 125; CA724, carbohydrate antigen 724; CA199, carbohydrate antigen 199.
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predictive accuracy of 0.648, sensitivity of 0.722, specificity of 0.611,

PPV of 0.481, and NPV of 0.815. For ModelRadiomics, the AUC

values were 0.827 in the training set and 0.619 in the testing set. In

the testing set, ModelRadiomics exhibited a predictive accuracy of

0.630, sensitivity of 0.611, specificity of 0.639, PPV of 0.458, and

NPV of 0.767. ModelHabitat, utilizing T2 and ADC maps with

clustering at K = 3, achieved the highest AUC in the test set. The

whole-tumor ROI was classified into three regions: high-T2-signal,

low-T2-signal and high-ADC-value, and low-T2-signal and low-

ADC-value (Figure 3). Tumors with poor response to LARC

primarily displayed low-T2-signal and high-ADC-value regions,

whereas those with good response exhibited high-T2-signal and

low-ADC-value regions. ModelHabitat yielded an AUC of 0.815 in

the training set and 0.636 in the test set, with predictive accuracy,

sensitivity, specificity, PPV, and NPV values of 0.704, 0.389, 0.861,

0.583, and 0.738, respectively, as summarized in Table 3

and Figure 4.

The AUC values for ModelClinic+Radiomics were 0.938 in the

training set and 0.532 in the testing set. In the test set, ModelClinic

+Radiomics demonstrated a predictive accuracy of 0.611, sensitivity

of 0.389, specificity of 0.722, PPV of 0.412, and NPV of 0.703. For

ModelClinic+Habitat, the AUCs were 0.896 in the training set and

0.710 in the testing set. In the test set, ModelClinic+Habitat

achieved a predictive accuracy of 0.741, with a sensitivity of

0.556, specificity of 0.833, PPV of 0.625, and NPV of 0.789, as

detailed in Table 3 and Figure 4.

The DeLong test showed no significant difference in

performance between ModelClinic and the other models (P > 0.05)

in the test set. Furthermore, decision curve analysis (DCA)

indicated that ModelClinic+Habitat provided a net benefit increase of

0.05–0.12 over the clinically relevant threshold probability range of

0.2–0.8 compared to alternative models (Figure 5).
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Discussion

The study aimed to develop a model that integrates habitat

analysis and clinical features to accurately predict the efficacy of

nCRT for LARC. Habitat analysis served as a key component by

enabling quantitative assessment of the spatial-temporal

heterogeneity across the entire tumor, effectively providing a

“virtual biopsy”.

In recent years, radiomics techniques for high-throughput

extraction of quantitative image features from medical images have

become a prominent research focus (21). In this study, the radiomics

model achieved an AUC of 0.619, accuracy of 0.630, sensitivity of

0.611, specificity of 0.639, PPV of 0.458, and NPV of 0.767 on the test

set. Tumors represent complex ecosystems comprising diverse

subpopulations of tumor cells that continuously adapt to selective

pressures within the tumor microenvironment (TME), including

hypoxia, acidity, and regional cytokine heterogeneity. The TME

facilitates tumor growth, contributing to ITH. ITH plays a critical

role in enabling tumors to evade immune surveillance and develop

therapeutic resistance, which is closely associated with tumor

progression and prognosis (22).

Habitat imaging, based on Darwinian evolutionary dynamics,

clusters tumor cell populations with similar characteristics as

indicated by quantitative imaging markers to better depict ITH

(23). The resulting subregions reflect diverse environmental

selective pressures and cellular adaptive variations within the

tumor. This approach establishes a clear and predictable

association between macroscopic tumor features observed on

imaging and the molecular, cellular, and microenvironmental

characteristics of the microscopic cancer cell population (24–26).

Our findings demonstrate that habitat imaging is useful for

predicting the efficacy of neoadjuvant therapy in LARC.
FIGURE 3

Habitat imaging of patients with and without pathologic complete response (pCR) following neoadjuvant chemoradiotherapy. (a, e) Hematoxylin-
eosin staining (×10). (b, g) Habitat imaging. (c, h) T2WI. (d, i) ADC map. (e, j) Voxel distribution in regions of interest (ROIs) on T2WI and ADC maps
(K = 3). Part 1 stands for region of high-T2-signal; part 2 stands for region of low-T2-signal and high-ADC-value; part 3 stands for region of low-T2-
signal and low-ADC-value region areas. In tumors without pCR, the predominant regions exhibited low-T2-signal and high-ADC-value
characteristics.
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In this study, habitat analysis incorporated first-order imaging

histological features derived from T2WI and ADC maps. Our

results demonstrate that tumor regions exhibiting low ADC and

high T2WI values are more likely to respond favorably to treatment,

whereas areas with high ADC and low T2WI values tend to show

poorer response to nCRT. High ADC values typically reflect

necrotic tissue with low cellularity, while low ADC values

correspond to viable tumor regions with high cellular density

(27). This correlation arises because densely proliferating tumor

cells reduce extracellular space, restricting water molecule diffusion

and consequently lowering ADC values. Conversely, necrotic tumor

tissue often exists in hypoxic environments with slow metabolic

activity, rendering it less susceptible to chemotherapeutic agents

(27). Additionally, elevated T2 signal intensity may indicate

increased tumor vascularity or edema, potentially improving drug

delivery and contributing to better treatment outcomes.

Habitat models constructed solely with first-order histogram

features offer a more accurate representation of biological

characteristics than whole-tumor models. Incorporating texture

features requires additional image processing steps, such as image

discretization and texture-specific parameters (e.g., texture
Frontiers in Oncology 08
calculation direction), making texture features sensitive to a wider

range of variables. In contrast, first-order histogram features

depend only on voxel intensity (28), enhancing their intrinsic

stability, robustness, and reproducibility while reducing

susceptibility to noise and variations in image acquisition

parameters (29). A hybrid model combining clinical and habitat

features was also developed to improve interpretability and

radiologist acceptance For comparative purposes, secondary

feature selection was intentionally omitted in the combined

models (ModelClinic+Radiomics and ModelClinic+Habitat) to maintain a

standardized framework. Although this approach allowed some

overfitting in ModelClinic+Radiomics it objectively demonstrated that

ModelClinic+Habitat(train AUC 0.896, test AUC 0.710) inherently

generalizes better than ModelClinic+Radiomics (train AUC 0.938, test

AUC 0.532) under identical modeling conditions. The pronounced

overfitting in ModelClinic+Radiomics highlights the superior

robustness and translational reliability of the habitat-based

approach, reinforcing its value as a stable predictor in our

experimental design.

The DeLong test showed no statistically significant differences

between models in the test set (P > 0.05). MadelHabitat provides
TABLE 3 Results of ROC curve analysis for predicting the efficacy of nCRT in LARC utilizing the following models: clinic, habitat, radiomics, clinic
+radiomics, clinic+habitat.

Model AUC (95%CI) Accuracy Sensitivity Specificity PPV NPV F1-Score

Clinic

Train Set
0.788

(0.704, 0.872)
0.740

0.786
0.718 0.579 0.871 0.667

Test Set
0.656

(0.502, 0.810)
0.648

0.722
0.611 0.481 0.815 0.575

Habitat

Train Set
0.815

(0.736, 0.894)
0.787 0.690 0.835 0.674 0.845 0.681

Test Set
0.636

(0.472, 0.799)
0.704 0.389 0.861 0.583 0.738 0.466

Radiomics

Train Set
0.827

(0.756, 0.898)
0.701 0.905 0.600 0.528 0.927 0.666

Test Set
0.619

(0.458, 0.780)
0.630 0.611 0.639 0.458 0.767 0.521

Clinic+Radiomics

Train Set
0.938

(0.893, 0.982)
0.874 0.952 0.835 0.741 0.973 0.833

Test Set
0.532

(0.366, 0.699)
0.611 0.389 0.722 0.412 0.703 0.398

Clinic+Habitat

Train Set
0.896

(0.837, 0.954)
0.803 0.952 0.729 0.635 0.969 0.761

Test Set
0.710

(0.559, 0.861)
0.741 0.556 0.833 0.625 0.789 0.617
AUC, area under the curve; CI, confidence interval; nCRT, neoadjuvant chemoradiotherapy; ROC, receiver operating characteristic; LARC, locally advanced rectal cancer; PPV, Positive
predictive value; NPV, Negative predictive value.
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unique value by offering interpretable spatial heterogeneity insights,

such as identifying subregions associated with treatment resistance.

DCA demonstrated that ModelClinic+Habitat yielded higher clinical

net benefit across the threshold probability range of 0.2–0.8

compared to alternative models, supporting its practical utility

despite the absence of statistical significance. In the test cohort,

ModelClinic+Habitat achieved a specificity of 0.833 and an AUC of

0.710. The high specificity indicates robust performance in correctly

identifying patients with favorable treatment responses

(minimizing false negatives), which is clinically important for

preventing undertreatment. For example, when the model

predicts a positive response, clinicians can be 83.3% confident

that treatment intensification may not be necessary. Although the

AUC of 0.710 reflects moderate overall discriminative ability, its
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integration with DCA confirms meaningful clinical utility: within

the 0.2–0.8 threshold range, the model may reduce 5–12

unnecessary treatments per 100 patients using the habitat-guided

strategy—particularly valuable for avoiding overtreatment in likely

responders or undertreatment in non-responders.
Limitations

This study has several limitations. First, it is a single-center

retrospective study with a relatively small sample size, and the

developed model has not undergone external validation. However,

our models trained with data from various MRI machines may

exhibit greater robustness and generalizability due to exposure to a
FIGURE 4

Receiver operating characteristic curves for models predicting the efficacy of nCRT in LARC on the training (A) and test (B) sets, where ADC+T2WI
represents the ModelRadiomics).
FIGURE 5

Decision curve analysis evaluating the performance of the prediction models on both the training (A) and test (B) sets.
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broader spectrum of variability in imaging protocols, hardware

characteristics, and scanner-related artifacts. Additionally, our

habitat analysis focused on stable first-order histogram features

from fundamental sequences (T2WI and ADC), which are less

susceptible to variability than higher-order texture features.

Nevertheless, external validation in a multi-center cohort is

essential to confirm the model’s real-world applicability. Future

work will prioritize such validation and explore harmonization

techniques to improve generalizability. Second, the model

incorporated only T2WI and ADC sequences, prioritizing clinical

translatability and stability. While multi-parametric habitat models

integrating IVIM or DCE-MRI could enhance tumor

microenvironment characterization, their omission was due to

practical considerations in this retrospective study. Future

research should integrate these advanced sequences to develop

more comprehensive models. Lastly, despite sample size

constraints and class imbalance, our approach included rigorous

safeguards: feature stability (ICC >0.75), LASSO regularization for

model complexity control, and AUC-based performance

evaluation. Future validation in larger, prospectively balanced

cohorts will incorporate advanced imbalance-handling strategies

to improve clinical utility.
Conclusion

Our findings indicate that baseline MRI habitat imaging reveals

tumor heterogeneity, suggesting differential treatment responses

across various tumor regions. Notably, areas with specific imaging

markers exhibit a higher likelihood of favorable response to nCRT.

Compared to conventional radiomics models, our integrated

habitat imaging and clinical feature model demonstrates

improved interpretability and enhanced clinical utility, as

evidenced by DCA within critical decision thresholds. Although

the habitat model achieved clinically useful performance (AUC

0.710) rather than diagnostic superiority, its capacity to delineate

spatially distinct tumor subregions provides actionable insights

beyond traditional radiomics. This approach holds promise as a

valuable tool for personalized treatment decision-making in locally

advanced rectal cancer.
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