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Cell-based immunotherapies, including CAR-T, CAR-NK, and TCR-T therapies,

represent a transformative approach to cancer treatment by offering precise

targeting of tumor cells. Despite their success in hematologic malignancies,

these therapies encounter significant challenges in treating solid tumors, such as

antigen heterogeneity, immunosuppressive tumor microenvironments, limited

cellular infiltration, off-target toxicity, and difficulties in manufacturing scalability.

CAR-T cells have demonstrated exceptional efficacy in blood cancers but face

obstacles in solid tumors, whereas CAR-NK cells offer reduced graft-versus-host

disease but encounter similar barriers. TCR-T cells expand the range of treatable

cancers by targeting intracellular antigens but require meticulous antigen

selection to prevent off-target effects. Alternative therapies like TIL, NK, and

CIK cells show promise but require further optimization to enhance persistence

and overcome immunosuppressive barriers. Manufacturing complexity, high

costs, and ensuring safety and efficacy remain critical challenges. Future

advancements in gene editing, multi-antigen targeting, synthetic biology, off-

the-shelf products, and personalized medicine hold the potential to address

these issues and expand the use of cell-based therapies. Continued research and

innovation are essential to improving safety, efficacy, and scalability, ultimately

leading to better patient outcomes.
KEYWORDS

cell-based immunotherapy, CAR-T, CAR-NK, TCR-T, solid tumors, tumormicroenvironment
1 Introduction

Cancer remains one of the most formidable challenges in modern medicine, with

conventional treatments such as radiation, chemotherapy, and surgery often hindered by

issues like lack of personalized approaches, significant adverse reactions, tumor heterogeneity,

and the development of drug resistance (1, 2). Cell therapy, tracing its origins to the 19th

century, has significantly evolved from the initial injections of animal materials to

sophisticated human cell-based treatments, most notably bone marrow transplants (3).
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Immunotherapy, a subset of cell therapy, enhances the body’s

immune system to recognize and combat cancer cells, showing

remarkable promise across various cancer types (4).

Key immune cells, including lymphocytes, macrophages, and

cytotoxic T cells, target tumor-specific antigens, driving the

development of therapies such as granulocyte colony-stimulating

factor, interferons, and investigational agents like IL-2 and

chemokines, which are advancing through clinical trials (5, 6).

While cell therapy offers precise tumor targeting, immune system

enhancement, and potential long-term anticancer effects, it also

faces challenges such as drug resistance, immune suppression,

adverse reactions, and risks like infections (7). Moreover, clinical

studies are still in early stages for many therapies, and the complex,

costly production processes limit widespread application (8). This

manuscript aims to provide a comprehensive overview of cell-based

immunotherapies, focusing on CAR-T, CAR-NK, and TCR-T

therapies, and discusses the challenges and future prospects in

their application to solid tumors, as shown in Figure 1.
2 CAR-based immunotherapy

CAR-T therapy has revolutionized the treatment of

hematologic malignancies, showing remarkable efficacy in diseases

like acute lymphoblastic leukemia and certain types of lymphoma

(9). However, its translation to solid tumors has proven much more

challenging. Similarly, Chimeric Antigen Receptor Natural Killer

(CAR-NK) cell therapy has emerged as a promising alternative,

leveraging the innate cytotoxic capabilities of NK cells to target

cancer cells. Unlike T cells, NK cells offer benefits such as a lower

risk of graft-versus-host disease and potentially fewer severe side

effects (10). Despite these advantages, CAR-NK therapy also faces

significant obstacles, particularly in treating solid tumors. This

section explores the primary challenges encountered by both

CAR-T and CAR-NK cell therapies in solid tumors, highlights

recent studies addressing these issues, and discusses potential

solutions currently under investigation.
2.1 Antigen heterogeneity and target
selection

Solid tumors exhibit significant antigen heterogeneity,

complicating the selection of suitable target antigens for CAR-T

cells. Unlike hematologic cancers with universally expressed targets

like CD19, solid tumors often lack such definitive markers,

increasing the risk of antigen escape (10). Recent studies

demonstrate that dual-targeting CAR-T cells, engineered to

recognize two different antigens, can reduce antigen escape (11).

For instance, CAR-T cells targeting both HER2 and IL13Ra2 in

glioblastoma have shown improved efficacy (12). Tandem CARs,

which incorporate two antigen-binding domains within a single

molecule, also enhance the ability to target heterogeneous tumor

cells (13). Similarly, solid tumors present antigen heterogeneity

challenges for CAR-NK therapy. Dual-targeting CAR-NK cells have
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been engineered to target multiple antigens, thereby improving

therapeutic efficacy and reducing antigen escape. For example,

CAR-NK cells targeting both HER2 and EGFR in breast cancer

have shown enhanced efficacy compared to single-target cells (14).

Bispecific and trispecific CAR-NK cells, and universal CAR

platforms, offer flexibility to target different antigens without

generating new constructs (15).

CAR structural components impact efficacy, persistence, and

safety. The scFv is the antigen-binding domain, defining specificity

and affinity (16). High-affinity scFvs improve targeting but may

increase off-tumor toxicity. The hinge region connects scFv to the

transmembrane domain, influencing flexibility and stability (17). A

longer hinge aids clustering but may raise toxicity risk. The

transmembrane domain anchors the CAR, affecting stability and

expression. Co-stimulatory domains like CD28 and 4-1BB are key

for T cell activation and persistence. CD28 boosts initial activation

but may cause exhaustion and CRS. 4-1BB supports sustained

activation and long-term persistence but may slow early

responses. Combining these domains optimizes CAR efficacy and

safety (18).

Gene delivery methods are key to the efficiency, safety, and

scalability of CAR therapies. Viral vectors (e.g., lentiviruses,

retroviruses) provide high transduction efficiency and stable CAR

expression but carry risks like insertional mutagenesis and immune

responses (19). Lentiviral vectors are preferred for long-term

expression, though mutagenesis remains a concern. Non-viral

systems (e.g., Sleeping Beauty) offer high transfection efficiency

without genome integration, reducing mutagenesis risk, but have

lower efficiency than viral vectors, impacting production scale and

CAR consistency (20). Electroporation can induce cell stress and

reduce viability (21). Balancing efficiency, safety, and scalability is

crucial, especially for treating solid tumors.
2.2 Tumor microenvironment
immunosuppression

TME in solid tumors is highly immunosuppressive,

characterized by regulatory T cells (Tregs), myeloid-derived

suppressor cells (MDSCs), and inhibitory cytokines like TGF-b
and IL-10, which impair CAR-T cell function and persistence (22).

Recent studies have shown that armored CAR-T cells, engineered to

secrete pro-inflammatory cytokines such as IL-12 or IL-18, can

counteract immunosuppressive signals, improving CAR-T cell

efficacy (23). Additionally, combining CAR-T therapy with

checkpoint inhibitors like anti-PD-1 or anti-PD-L1 antibodies has

enhanced CAR-T cell activity within the TME (24). CAR-NK cells

also encounter similar immunosuppressive factors in the TME,

including Tregs, MDSCs, and inhibitory cytokines (25). To enhance

CAR-NK therapy, armored CAR-NK cells have been engineered to

secrete pro-inflammatory cytokines like IL-15 or express dominant-

negative receptors to counteract immunosuppressive signals in the

TME (26). Combining CAR-NK therapy with checkpoint inhibitors

has been shown to improve CAR-NK cell activity within the tumor

(27). Genetic modifications to produce supportive cytokines,
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chemokines, or receptors, and to eliminate immunosuppressive

cells like Tregs and MDSCs, are being explored to improve CAR-

NK cell function (28).

In hematologic malignancies, the TME supports CAR-T cell

expansion, activation, and persistence with cytokines like IL-2 and

IL-15, which promote T cell proliferation and long-term survival

(29). IL-2 enhances T cell expansion, while IL-15 supports memory T

cell formation (30). These cytokines enable effective CAR-T responses

and better outcomes in hematologic cancers. In contrast, solid tumors

have an immunosuppressive TME, dominated by cytokines like TGF-

b, IL-10, and IL-4, which hinder CAR-T and CAR-NK function (31).

TGF-b promotes regulatory T cells and myeloid-derived suppressor

cells, limiting immune responses (32). To overcome this, armored

CAR-T and CAR-NK cells are engineered to secrete pro-

inflammatory cytokines like IL-12 or IL-18, counteracting TGF-b
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and IL-10, and enhancing immune activation (33). Combining

checkpoint inhibitors, like anti-PD-1/PD-L1, further boosts CAR

therapy efficacy in solid tumors.
2.3 Limited trafficking and infiltration into
solid tumors

Efficient trafficking of CAR-T cells into solid tumors is impeded

by physical barriers like the dense extracellular matrix (ECM) and

abnormal vasculature, as well as the absence of appropriate

chemokine gradients (34). Recent strategies to improve CAR-T cell

infiltration include engineering CAR-T cells with chemokine

receptors (e.g., CCR2b, CXCR1) to enhance homing and

penetration into tumors (35). Additionally, expressing matrix-
FIGURE 1

Mechanisms of myeloid, NK, TCR, and CAR-based cell therapies in TME.
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degrading enzymes like heparanase facilitates the breakdown of ECM

components, enabling deeper tumor penetration (36). Localized

delivery of CAR-T cells directly to the tumor site can bypass

systemic trafficking barriers, increasing efficacy while reducing

toxicity (37). Similarly, the infiltration of CAR-NK cells into solid

tumors is hindered by physical barriers like the dense ECM and

abnormal vasculature. Engineering CAR-NK cells with chemokine

receptors like CCR2 or CXCR1 to enhance tumor homing has been

shown to improve trafficking (38). The use of matrix-degrading

enzymes like heparanase also facilitates deeper penetration into

tumors (39). Localized delivery of CAR-NK cells directly to the

tumor site can help bypass systemic barriers, increasing the

concentration at the target site and reducing toxicities.
2.4 On-target, off-tumor toxicity

Many antigens expressed on solid tumors are also present at low

levels on normal tissues, leading to potential off-target toxicity when

CAR-T cells target these antigens (40). Recent studies have focused

on enhancing the specificity of CAR-T cell therapy to minimize off-

tumor toxicity. One approach involves the use of synthetic Notch

(SynNotch) receptors, which require the simultaneous recognition

of two antigens to activate CAR-T cell cytotoxicity, thus increasing

specificity for tumor cells (41). Another strategy employs inhibitory

CARs (iCARs), which are engineered with inhibitory receptors that

detect antigens expressed on normal tissues, preventing CAR-T

cells from attacking healthy cells (42). CAR-NK cells also face the

challenge of off-target toxicity due to antigens expressed on both

tumors and normal tissues. SynNotch receptors, which require the

recognition of two antigens to activate CAR-NK cell cytotoxicity,

enhance specificity for tumor cells (43). Inhibitory CARs (iCARs)

have also been developed for CAR-NK cells, helping prevent them

from attacking healthy tissues (44). Together, these strategies

improve the safety and precision of CAR-NK cell therapy in

treating solid tumors.
2.5 Persistence and exhaustion of CAR-T
and CAR-NK cells

CAR-T cells often face limited persistence and functional

exhaustion within the hostile tumor microenvironment,

diminishing their long-term efficacy against solid tumors (45).

Recent advancements focus on enhancing CAR-T cell persistence

and functionality. Engineering CAR-T cells to adopt a memory

phenotype improves their longevity and anti-tumor activity (46).

Additionally, metabolic reprogramming enhances CAR-T cell

fitness, enabling them to thrive in nutrient-deprived and hypoxic

conditions typical of solid tumors (47). Similar to CAR-T cells,

CAR-NK cells can exhibit limited persistence and become

exhausted within the tumor microenvironment. To address this,

CAR-NK cells have been engineered to adopt a memory-like

phenotype or to express cytokines like IL-15, improving their
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longevi ty and se l f - renewal capaci ty (48) . Metabol ic

reprogramming ensures CAR-NK cells thrive in the harsh

conditions of solid tumors (49). Optimizing co-stimulatory

domains such as 2B4 or DAP12 and combining CAR-NK therapy

with checkpoint inhibitors like PD-1 can help prevent exhaustion

and sustain activity within the TME (50).
2.6 Antigen loss and tumor escape
mechanisms

Tumors can develop resistance to CAR-T cell therapy by

downregulating or mutating the target antigen, leading to relapse

(51). Strategies like sequential targeting, where CAR-T cells

targeting different antigens are administered in succession, have

been proposed to reduce the likelihood of antigen escape (52).

Universal CAR platforms that allow for quick retargeting to new

antigens as tumor evolution occurs enhance therapy adaptability

(53). Multi-targeted approaches and real-time antigen monitoring

further improve the durability and efficacy of CAR-T cell therapy in

solid tumors (54). Similarly, antigen loss or mutation can lead to

resistance to CAR-NK cell therapy. Sequential targeting of different

antigens or using universal CAR platforms to quickly retarget to

evolving antigens can help overcome antigen escape (55, 56). Multi-

targeted approaches and real-time antigen monitoring also ensure

the continuous effectiveness of CAR-NK cell therapy against

heterogeneous tumors (57).
2.7 Manufacturing and scalability issues

The manufacturing and scalability of CAR-T and CAR-NK cell

therapies remain significant barriers to their widespread adoption,

particularly for solid tumor indications that require sophisticated

engineering (58). Both therapies face challenges related to the

complexity and cost of personalized production. For CAR-T cells,

the process involves isolating and genetically modifying a patient’s T

cells, which is time-consuming, costly, and requires specialized

facilities. This personalized approach limits the scalability of CAR-T

therapy, making it difficult to expand its use, particularly in resource-

constrained settings (59). In contrast, CAR-NK cells offer potential

advantages in scalability. Recent studies have focused on improving the

accessibility of CAR-NK therapy through innovative manufacturing

approaches (60). One promising development is the creation of off-the-

shelf CAR-NK cells, which are derived from healthy donors or induced

pluripotent stem cells (iPSCs) (61). Unlike autologous CAR-NK cells,

which require personalized production, off-the-shelf CAR-NK cells can

be manufactured in bulk and stored for immediate use, significantly

reducing production time and costs (62). This shift towards off-the-

shelf CAR-NK cells enhances the efficiency and responsiveness of the

therapy, making it more accessible and cost-effective compared to

autologous CAR-T cell therapies. Furthermore, automated

manufacturing platforms have been developed to improve scalability

and consistency for both CAR-T and CAR-NK cells (63). These
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platforms utilize closed-system processes to minimize contamination

risks, ensure high-quality products, and streamline workflows, making

large-scale production more feasible. This is particularly important for

CAR-NK cells, as the demand for off-the-shelf products could place

considerable strain on production capabilities (64). By addressing the

logistical and technical challenges of large-scale production, these

innovations make both CAR-T and CAR-NK cell therapies more

sustainable and accessible, particularly for treating solid tumors and

other malignancies (65, 66).
2.8 Safety and toxicity: CRS and
neurotoxicity in CAR-T vs. CAR-NK

CAR-T therapy has proven highly effective in treating

hematologic malignancies[304]; however, it is associated with

significant safety concerns, particularly cytokine release syndrome

(CRS) and immune effector cell-associated neurotoxicity syndrome

(ICANS) (67). CRS occurs as a result of massive cytokine release

from activated T cells, primarily interleukin-6 (IL-6), and

interferon-gamma (IFN-g) , which are cr i t ica l in the

pathophysiology of this adverse event (68). IL-6, in particular,

plays a central role by driving fever, hypotension, and organ

dysfunction (69), while IFN-g can amplify the inflammatory

response by inducing further cytokine release and immune cell

activation (70). ICANS, which manifests as neurological toxicities

such as encephalopathy, confusion, and seizures, is believed to be

primarily triggered by the effects of cytokines on the blood-brain

barrier and central nervous system (CNS) inflammation. To

mitigate these risks, clinical management strategies have been

developed. Tocilizumab, an IL-6 receptor antagonist, is

commonly used to treat CRS by blocking the effects of IL-6,

reducing the severity of the syndrome (71). Additionally,

corticosteroids are often employed to manage severe cases of CRS

and ICANS, by suppressing the inflammatory response and

stabilizing the patient’s condition (72). In contrast, CAR-NK cell

therapy, an emerging alternative to CAR-T, has demonstrated a

reduced risk of both CRS and ICANS (73). This is largely attributed

to the innate properties of NK cells, which have a transient

persistence in the body and distinct cytokine profiles compared to

T cells. NK cells generally produce lower levels of pro-inflammatory

cytokines, such as IL-6, which significantly lowers the likelihood of

CRS and neurotoxic effects (74). Furthermore, the shorter lifespan

of NK cells in vivo means that they do not persist long enough to

induce the prolonged cytokine-driven inflammation seen with

CAR-T cells (75). As a result, CAR-NK therapy has been

associated with fewer and less severe instances of both CRS and

ICANS, offering a promising approach with a better safety profile in

the treatment of solid tumors and hematologic malignancies (76).

The reduced risk of CRS/ICANS with CAR-NK therapy makes it an

attractive option, particularly for patients who may be at high risk

for these toxicities with CAR-T cells (77). Ongoing clinical trials

continue to explore ways to optimize CAR-NK cell therapy and

further reduce safety concerns, making it a compelling alternative to

traditional CAR-T therapies.
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3 TCR-T cell therapy

TCR- T cell therapy is an innovative form of adoptive cell

therapy that leverages the specificity of TCRs to recognize and

target tumor antigens presented by Major Histocompatibility

Complex (MHC) molecules (78). Unlike CAR-T cells, which

recognize antigens in an MHC-independent manner, TCR-T cells

can target intracellular antigens, thereby expanding the range of

potential targets. This section explores the primary strategies for

TCR-T cell therapy, including targeting tumor antigens, viral

antigens, the KRAS gene, and immune checkpoints. Each

subsection discusses the challenges, recent advancements, and

potential solutions, supported by relevant studies from the

past decade.
3.1 Targeting tumor antigens

Targeting tumor-specific antigens (TSAs) and tumor-associated

antigens (TAAs) is central to TCR-T cell therapy. TSAs are unique

to cancer cells, while TAAs are overexpressed in tumors. Challenges

include antigen selection, MHC restriction, tumor heterogeneity,

and immune tolerance to certain antigens, which limit the therapy’s

efficacy (79). Recent advancements focus on improving specificity

and efficacy. High-affinity TCRs, such as those targeting NY-ESO-1,

have shown enhanced anti-tumor activity (80). Neoantigen

targeting, where TCRs target tumor-specific mutations, has also

shown promise (81). Universal TCRs that recognize multiple HLA

types are being developed to expand treatment eligibility.

Innovative strategies include multi-antigen targeting to overcome

tumor heterogeneity and immune escape, and universal TCR

platforms using CRISPR/Cas9 to create broadly applicable TCR-T

cells. Personalized TCR-T therapy, enabled by next-generation

sequencing (NGS), allows customization for individual patients,

improving precision and effectiveness (82). These strategies

collectively enhance the potential of TCR-T cell therapy in

targeting a wide range of tumors with improved specificity and

reduced risk of immune escape.
3.2 Targeting viral antigens

Targeting viral antigens with TCR-T cell therapy involves

engineering TCR-T cells to recognize antigens from oncogenic

viruses like Epstein-Barr Virus (EBV), Human Papillomavirus

(HPV), and Hepatitis B Virus (HBV), which are linked to various

cancers (83). Challenges include ensuring consistent high-level

expression of viral antigens on tumor cells, immune evasion by

viruses that downregulate antigen presentation or inhibit T cell

function, and potential off-target effects on normal cells with latent

infections (84). Additionally, the limited number of suitable

antigens for TCR targeting restricts the range of targets for

therapy. To improve efficacy and safety, several strategies are

being explored. These include enhancing antigen presentation by

combining TCR-T cell therapy with agents that upregulate MHC
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expression or block viral immune evasion (85). The development of

dual-specific TCRs, which recognize both viral and tumor antigens,

can enhance specificity and reduce immune escape (86). Safety

mechanisms like inducible suicide genes can control TCR-T cell

elimination in cases of severe toxicity, thereby reducing harm to

normal tissues (87). These approaches aim to improve the precision,

safety, and therapeutic potential of TCR-T cell therapies targeting

viral antigens (88).
3.3 Targeting KRAS gene

KRAS is a frequently mutated oncogene in cancers such as

pancreatic, colorectal, and lung cancers (89). Targeting KRAS

mutations with TCR-T cell therapy offers promise, but challenges

include mutation specificity, HLA restriction, tumor heterogeneity,

and avoiding off-target effects on normal tissues (90). Designing

TCRs that differentiate mutant from wild-type KRAS peptides and

ensuring TCR-T cells target only tumor cells without causing toxicity

are key issues. Recent studies show progress in KRAS-targeted TCR-

T therapies. For example, TCR-T cells targeting KRAS G12D in

pancreatic cancer have demonstrated preclinical efficacy (91). High-

affinity TCRs for the KRAS G12V mutation have also shown

improved anti-tumor activity with fewer off-target effects (92).

Combining KRAS-targeted TCR-T cells with MEK inhibitors has

exhibited synergistic effects, addressing resistance mechanisms in

KRAS-mutant tumors. Potential solutions to enhance KRAS-

targeted TCR-T therapy include multi-antigen targeting to address

tumor heterogeneity, universal TCR platforms for broader patient

applicability, and advanced gene editing techniques like CRISPR/

Cas9 to improve TCR specificity and reduce off-target effects. These

strategies could significantly improve the precision, efficacy, and

scalability of KRAS-targeted therapies (93).
3.4 Targeting immune checkpoints

Targeting immune checkpoints in TCR-T cell therapy aims to

enhance anti-tumor activity by modulating inhibitory pathways

within the tumor microenvironment. Challenges include the need

to target multiple checkpoints simultaneously, safety concerns such

as autoimmunity, and tumor resistance through alternative

inhibitory pathways (94). Persistent antigen exposure can also

lead to T cell exhaustion, reducing therapeutic efficacy. Recent

advancements focus on overcoming these challenges. Strategies

include engineering TCR-T cells to secrete PD-1 blocking

antibodies or express dominant-negative PD-1 receptors, thereby

preventing exhaustion (95). Combining TCR-T therapy with

CTLA-4 blockade or dual checkpoint blockade (e.g., PD-1 and

TIM-3) has shown improved efficacy (96). Armored TCR-T cells

expressing checkpoint inhibitors or pro-inflammatory cytokines

like IL-12 create a more favorable tumor environment (97).

Potential solutions include engineering armored TCR-T cells,
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employing synthetic biology approaches to modulate checkpoint

pathways, and utilizing combination therapies with other

immunotherapies, such as checkpoint inhibitors or cytokine

therapies. These strategies enhance anti-tumor responses and

efficacy, making TCR-T cell therapies more robust and effective

against immune-evasive tumors (98).
4 Other immunotherapy approaches

These alternative immunotherapies—Tumor-Infiltrating

Lymphocyte (TIL), Natural Killer (NK), and Cytokine-Induced

Killer (CIK) cell therapies—are promising strategies in the

treatment of various malignancies (99). While TIL therapy

harnesses tumor-specific T cells to directly target cancer, NK cell

therapy benefits from the innate immune system’s ability to

recognize and kill tumors without MHC restriction. CIK cell

therapy combines the properties of both T cells and NK cells,

showing broad potential in eliminating a variety of cancers (100).

However, challenges such as enhancing cell persistence, overcoming

immunosuppressive microenvironments, and optimizing treatment

protocols remain areas for further research and development.
4.1 Tumor-infiltrating lymphocyte therapy

Tumor-Infiltrating Lymphocyte (TIL) therapy is an adoptive

cell therapy where T cells are isolated from a patient’s tumor,

expanded ex vivo, and reinfused to attack cancer cells (101). TILs,

especially CD8+ cytotoxic T lymphocytes (CTLs), recognize tumor

antigens on cancer cell surfaces. TIL therapy has shown promising

results in melanoma, with durable responses in patients who did not

respond to conventional therapies (102). The process involves

extracting tumor tissue, isolating TILs, expanding them with

agents like interleukin-2 (IL-2), and reinfusing them to enhance

the immune response against cancer (103). While effective in

melanoma, challenges persist in improving TIL persistence and

efficacy in other solid tumors due to the immunosuppressive tumor

microenvironment (104). Recent studies have explored gene-editing

techniques to enhance TIL function, highlighting the potential and

the need for further advancements to optimize TIL therapy’s clinical

outcomes (105). Future directions include enhancing TIL survival,

improving their infiltration into tumors, and combining TIL

therapy with other immunomodulatory treatments to overcome

resistance mechanisms (106).
4.2 NK cell therapy

NK cells are innate immune cells capable of recognizing and killing

cancer cells without prior sensitization (107). Unlike T cells, NK cells

do not require antigen presentation viaMHCmolecules, enabling them

to target a wider range of tumors, including those with low or absent
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MHC expression (108). NK cell therapy involves expanding and

activating NK cells ex vivo, followed by reinfusion to target cancer

cells (109). It has been explored for various cancers, including

hematological malignancies (e.g., leukemia, lymphoma) and solid

tumors (e.g., non-small cell lung cancer, ovarian cancer) (110).

A key challenge in NK cell therapy is enhancing their persistence

and function within the immunosuppressive tumor microenvironment

(111). Strategies to overcome this include genetic modification to

enhance NK cell activity, cytokine support (e.g., IL-15), and

combining NK cell therapy with other immune therapies like

checkpoint inhibitors (112). Recent studies have shown progress in

NK cell therapy. Rubio et al. demonstrated that NK cells engineered

with a chimeric antigen receptor (CAR) targeting CD19 exhibited

enhanced anti-tumor activity in B-cell malignancies (113).

Additionally, Miller et al. reported promising results in NK cell

therapy for acute myeloid leukemia (AML), highlighting its growing

potential in cancer immunotherapy (114). Future advancements focus

on improving NK cell persistence, enhancing their cytotoxicity, and

integrating NK cell therapies with other treatment modalities to

maximize therapeutic efficacy (115).
4.3 CIK cell therapy

CIK cell therapy is an adoptive immunotherapy approach where

T cells are expanded with cytokines, such as IL-2 and IFN-g, to
generate highly cytotoxic lymphocytes capable of targeting and killing

tumor cells (116). CIK cells are a heterogeneous population, including

T cells and NK-like cells, with potent anti-tumor effects (117). They

can recognize and eliminate tumor cells without antigen-specific

activation, showing promise in treating both hematologic and solid

tumors, such as non-small cell lung cancer, hepatocellular carcinoma,

and colorectal cancer (118). However, challenges remain in

optimizing cell expansion, enhancing persistence, and overcoming

the immunosuppressive tumor microenvironment (119). Recent

studies highlight the potential of CIK therapy. CIK cells, combined

with chemotherapy, improved survival in advanced non-small cell

lung cancer patients (120). Future research aims to enhance CIK cell

proliferation, improve their trafficking to tumor sites, and integrate

CIK therapy with other immunomodulatory treatments to enhance

their anti-tumor efficacy.
5 The status of immunotherapy for
cell-based treatment

5.1 Challenges

Despite significant progress, cell-based immunotherapies face

numerous challenges. Manufacturing and scalability remain major

obstacles, as personalized therapies like CAR-T and TCR-T cells are

complex and costly to produce. This necessitates the development

of universal cell platforms and automated manufacturing processes
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for broader scalability. The immunosuppressive TME poses another

significant hurdle, requiring innovative strategies such as

engineering cells to secrete pro-inflammatory cytokines, express

dominant-negative receptors, and combine with checkpoint

inhibitors to enhance their efficacy. Safety and toxicity issues,

including managing on-target, off-tumor effects and severe

toxicities like CRS and neurotoxicity, are crucial concerns that

necessitate the incorporation of safety switches and improved

target specificity. Additionally, resistance mechanisms present

ongoing challenges, as tumors can develop resistance through

antigen loss, upregulation of alternative checkpoints, and

metabolic adaptations. This drives the exploration of multi-

targeted and combination therapies to counteract these adaptive

strategies. Addressing these multifaceted challenges is essential for

the continued advancement and widespread adoption of cell-based

immunotherapies in cancer treatment.
5.2 Future prospects

The future of cell-based immunotherapy is highly promising,

driven by ongoing research aimed at enhancing specificity and

efficacy through advanced gene editing, multi-antigen targeting,

and synthetic biology approaches. Efforts are also focused on

expanding the applications of these therapies to encompass a

broader range of solid tumors and other malignancies, thereby

increasing their therapeutic impact across diverse cancer types.

Improving accessibility is another critical objective, with the

development of off-the-shelf products and strategies to reduce

manufacturing costs making these advanced treatments more

widely available to patients. Furthermore, the integration of

personalized medicine, leveraging genomic and proteomic data,

allows for the tailoring of therapies to individual patient profiles,

thereby enhancing treatment outcomes and ensuring more precise

and effective cancer management. These advancements collectively

pave the way for more robust, versatile, and patient-centric cell-

based immunotherapies in the fight against cancer.
6 Conclusion

Cell-based immunotherapies, including CAR-T, CAR-NK, and

TCR-T therapies, demonstrate immense potential in cancer treatment,

particularly excelling in hematologic malignancies with significant

clinical successes. These therapies enhance treatment efficacy by

precisely targeting and eliminating tumor cells. However, their

application in solid tumors faces several challenges, such as antigen

heterogeneity, immunosuppressive tumor microenvironments,

limited cell infiltration, off-target toxicity, cell persistence, and

manufacturing scalability. Despite ongoing challenges, the future of

cell-based immunotherapies in cancer treatment remains promising.

Continued research and innovation are crucial to overcoming issues

related to safety, efficacy, and scalability, ultimately providing more
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precise and personalized treatment options for cancer patients. By

addressing these challenges, cell-based immunotherapies can fulfill

their potential in transforming cancer care and improving patient

outcomes on a global scale.
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