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Fusion feature-based hybrid
methods for diagnosing oral
squamous cell carcinoma in
histopathological images
Jiaxing Li*

Baoan Central Hospital of Shenzhen, Shenzhen, Guangdong, China
Objective: This study is experimental in nature and assesses the effectiveness of

the Cross-Attention Vision Transformer (CrossViT) in the early detection of Oral

Squamous Cell Carcinoma (OSCC) and proposes a hybrid model that combines

CrossViT features with manually extracted features to improve the accuracy and

robustness of OSCC diagnosis.

Methods:We employed the CrossViT architecture, which utilizes a dual attention

mechanism to process multi-scale features, in combination with Convolutional

Neural Networks (CNN) technology for the effective analysis of image patches.

Simultaneously, features were manually extracted by experts from OSCC

pathological images and subsequently fused with the features extracted by

CrossViT to enhance diagnostic performance. The classification task was

performed using an Artificial Neural Networks (ANN) to further improve

diagnostic accuracy. Model performance was evaluated based on classification

accuracy on two independent OSCC datasets.

Results: The proposed hybrid feature model demonstrated excellent

performance in pathological diagnosis, achieving accuracies of 99.36% and

99.59%, respectively. Compared to CNN and Vision Transformer (ViT) models,

the hybrid model was more effective in distinguishing between malignant and

benign lesions, significantly improving diagnostic accuracy.

Conclusion: By combining CrossViT with expert features, diagnostic accuracy for

OSCC was significantly enhanced, thereby validating the potential of hybrid

artificial intelligence models in clinical pathology. Future research will expand

the dataset and explore the model’s interpretability to facilitate its practical

application in clinical settings.
KEYWORDS
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1 Introduction

Cancer remains a leading cause of death globally, accounting for

approximately one in every six deaths. It is estimated that annual

cancer cases will reach 20 million (1–3). OSCC is highly invasive

and significantly affects patients’ quality of life and mental health.

Early detection and timely intervention are crucial for improving

survival rates and patient well-being (4, 5). However, the early

symptoms of OSCC are often subtle and resemble other common

oral lesions, frequently leading to misdiagnosis (6).

To overcome the challenges posed by OSCC, reliable diagnostic

methods are essential. Diagnostic techniques such as computed

tomography (CT), magnetic resonance imaging (MRI), and

ultrasound are commonly used, with histopathological biopsy

remaining the gold standard (7). Histopathological biopsy

involves obtaining tissue samples from the oral cavity and

examining them microscopically to produce pathological images,

which are vital for determining whether a lesion is benign or

malignant (8). However, visual examination by pathologists is not

only time-consuming but also inconsistent due to varying expertise

and environmental factors; hence, more efficient and reliable

methods are urgently needed to improve pathological image

identification and diagnostic precision.

The advent of deep learning has significantly advanced cancer

diagnosis research. In recent years, CNNs have been employed to

diagnose various cancer-related pathological images, including breast

cancer (9). The convolution operation, which is central to CNNs,

extracts local features using sliding convolutional kernels. However,

this approach limits the receptive field and hinders the modeling of

long-range dependencies. In OSCC pathological images, long-range

dependencies are crucial for recognizing tumor boundaries, detecting

changes in tissue structure, and understanding the distribution of

cancer cells across tissue (10). Consequently, CNNs face limitations

when processing OSCC pathological images (11).

Recent studies have shown that ViT models perform similarly

to CNNs in image analysis tasks (12–14). ViT models use self-

attention mechanisms to extract features at a broader scale, enabling

the effective modeling of longrange dependencies in pathological

images (15). ViTs have shown significant potential in medical image

analysis, demonstrating excellent performance in segmentation,

detection, classification, and reconstruction tasks (16). However,

the application of ViTs to OSCC pathological image diagnosis

remains underexplored. ViT models typically extract features

from fixed-size patches, limiting them to a single scale, whereas

OSCC pathological images contain rich multi-scale details,

including diverse cellular structures and tissue hierarchies.

Coarse-grained images offer a general view of tissue architecture,

whereas fine-grained images reveal detailed cellular information.

Effectively integrating these multi-scale features is essential for a

comprehensive understanding of OSCC pathological structures

(10). Furthermore, the complex tissue architectures and abundant

texture and color information in OSCC pathological images present

challenges in feature extraction and utilization.

CrossViT represents a significant improvement over standard

ViT models by integrating the benefits of both CNNs and ViTs.
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By incorporating image patches of different sizes and employing

cross-attention mechanisms to combine multi-scale information,

CrossViT excels in capturing both global and local structures in

pathological images (17). In OSCC image analysis, traditional

feature extraction techniques such as fuzzy color histograms

(FCH), gray-level co-occurrence matrices (GLCM), and local

binary patterns (LBP) have proven valuable in histopathological

research (18–20). FCH captures color information reflecting the

staining characteristics of cells and tissues. GLCM analyzes texture

patterns through statistical relationships of graylevel co-occurrence,

while LBP highlights local texture features, detecting morphological

changes at the cellular level. The effective integration of these

handcrafted features provides a deeper understanding of the

diversity and heterogeneity in OSCC pathological images, thereby

enhancing diagnostic accuracy and model robustness.

This study aims to develop a novel algorithm to improve the

accuracy of early oral cancer diagnosis by leveraging an integrated

feature extraction approach that combines deep learning with

traditional handcrafted features.

Contributions of This Study:
1. To effectively address the complex cellular structures and

diverse spatial arrangements characteristic of OSCC

pathological images, this study employs the CrossViT

network. By leveraging its dual-branch architecture, the

CrossViT network is capable of extracting multi-scale

global and fine-grained features, thereby enhancing its

ability to accurately recognize and analyze critical

pathological characteristics.

2. To manage the challenges posed by intricate tissue

architectures and abundant texture and color information

in OSCC pathological images, this study incorporates a

Handcrafted Feature Fusion Method. This approach

in t eg ra t e s LBP , FCH, and GLCM to ex t r a c t

comprehensive features, significantly improving the

model’s capability to discriminate between variations in

color and texture. When combined with the deep features

extracted by CrossViT, this method significantly enhances

the mode l ’ s d i agnos t i c c apab i l i t y fo r OSCC

pathological images.

3. Considering the limited availability of OSCC pathological

data, transfer learning techniques are adopted during

training to mitigate the model’s reliance on the OSCC

dataset and to improve its generalizability.
The remainder of this paper is organized as follows. Section 2

details the dataset and experimental methodology. Section 3

presents the experimental results. Section 4 discusses system

performance, and Section 5 concludes the study.
2 Materials and methods

This study was conducted as an experimental investigation. The

overall experimental procedure proceeded as follows. First, the
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dataset used in this research was introduced, and data augmentation

was performed on the original pathological images to enhance both

image quality and diagnostic accuracy. Next, as illustrated in

Figure 1, two experimental systems were established. The first

system employed a CrossViT model with transfer learning,

leveraging multi-scale feature extraction to capture the detailed

characteristics in each image and thereby improve classification

performance. The second system employed a handcrafted feature

fusion approach: features such as FCH, GLCM, and LBP were

initially extracted and subsequently combined with the multi-scale

features generated by the CrossViT model. In the final step, an

ANN classifier was utilized for image classification. By integrating

the advantages of deep learning and traditional feature extraction

techniques, this hybrid framework aimed to further enhance

classification accuracy and efficiency.

After the experiments concluded, we described the specific

implementation details and operational procedures and discussed

the evaluation metrics used for result analysis. Finally, this study

evaluates the feasibility of the proposed systems for the early

diagnosis of OSCC by comparing their outcomes with those

obtained from various mainstream models.
2.1 Datasets

This study utilizes OSCC pathological datasets that have been

carefully reviewed and annotated by expert pathologists. After

thorough screening, two high-quality datasets with large sample

sizes were selected for the experiments: the Ashenafi-OSCC dataset

(21) and the Rahman-OSCC dataset (22).

2.1.1 Ashenafi-OSCC dataset
The Ashenafi-OSCC dataset is a publicly available collection of

OSCC tissue histopathological images. It consists of a total of 5,192
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biopsy slide images, each magnified 100 times or 400 times under a

microscope. These images have been meticulously reviewed and

annotated by experienced pathologists, ensuring their high quality

and reliability.

The dataset is categorized into two classes: normal tissue and

OSCC tissue. Of these, 2,494 images represent normal tissue, while

2,698 images depict OSCC tissue. The images showcase a wide

range of pathological features of tissue structure, offering rich visual

data for training and evaluating machine learning models. Figure 2a

presents some sample images from the dataset, illustrating its

diversity and representativeness.

2.1.2 Rahman-OSCC dataset
The Rahman-OSCC dataset is another public resource

containing OSCC tissue histopathological images. What sets this

dataset apart is that the images have different resolutions. The

dataset is divided into two groups, each processed under different

magnification levels of the microscope.

The first group consists of 528 biopsy slide images magnified

100 times, including 89 images of normal tissue and 439 images of

OSCC tissue. Figure 2b shows some images from this group,

highlighting the pathological differences between normal and

diseased tissues.

The second group contains 696 biopsy slide images magnified

400 times, with 201 images of normal tissue and 495 images of

OSCC tissue. The 400x magnification provides finer details of

cellular structures and tissue layers, as shown in Figure 2c,

displaying some images from this group.

Both groups of images have been confirmed and annotated by

experienced pathologists, ensuring their high quality and accuracy.

The multi-resolution nature of the Rahman-OSCC dataset makes it

particularly suitable for studying pathological features at different

scales, which is of great significance for developing and testing

multi-scale image analysis methods. Researchers can use these
FIGURE 1

The overall architecture of the proposed workflow for the early diagnosis of OSCC consists of two systems: The first system extracts image features
using the CrossViT model and a multi-scale Transformer encoder, after performing linear projection of the image. The features are then processed
through the Cross Attention mechanism. The second system extracts handcrafted features, such as FCH, GLCM, and LBP, and fuses them with the
features extracted by the CrossViT model. Finally, the fused features are classified using an ANN classifier, enabling early diagnosis of OSCC.
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images to train and validate deep learning models, thereby

improving the accuracy of OSCC diagnosis and classification.
2.2 Data augmentation

To mitigate the risks of overfitting and bias in model training,

stemming from the limited size of the training dataset and imbalanced

annotations, this study applied multi-scale data augmentation

techniques. These techniques included horizontal and vertical

flipping, random rotations of ±15 degrees, and random adjustments

to contrast, brightness, and saturation. Such augmentation strategies

not only expanded the diversity of the dataset but also enhanced the

model’s adaptability to various image transformations.

By utilizing these data augmentation methods, the study aimed to

significantly improve the model’s generalization ability and reduce the

risk of overfitting. Horizontal and vertical flipping allow the model to

learn features in different orientations, while random rotations help the

model adjust to changes in viewpoint. Furthermore, random

adjustments to contrast, brightness, and saturation simulate real-

world variations in lighting and image quality. The integration of

these augmentation techniques ultimately improves the model’s

robustness under different conditions, ensuring more reliable

performance in practical applications.
2.3 CrossViT

The CrossViT model used in this study is based on the

architecture of the ViT. In the traditional ViT model, the input

image is divided into multiple uniform-sized image patches of size

P×P, allowing feature extraction at a single scale. However, OSCC

lesions often exhibit multi-scale features, which poses a limitation

for ViT when dealing with such complex characteristics. The

CrossViT model in this study addresses this issue by employing a
Frontiers in Oncology 04
dual-branch structure combined with a cross-attention mechanism,

which facilitates the integration of multi-scale features. This multi-

scale feature extraction mechanism enables a more effective capture

of the complex information in OSCC images, thereby improving

diagnostic accuracy.

Specifically, CrossViT divides the OSCC image into small and

large patches through its dual-branch structure. Each branch

contains its own CLS (classification) token, which captures global

information from its respective patch size. These CLS tokens

interact with the image patches from the other branch through

the cross-attention module. The CLS token of the large patch

branch can access information from the small patch branch, and

vice versa. Once these CLS tokens are passed into the fully

connected layer, the interaction between the large and small

patches is completed, and the results of each branch are

generated. Finally, the results from all branches are combined to

produce the final output. Figure 3 illustrates the overall architecture

of CrossViT as applied to OSCC pathological images.

2.3.1 Dual-branch structure
CrossViT adopts a dual-branch structure, with each branch

responsible for processing image patches of different sizes, enabling

the capture of features at various scales. The smaller branch processes

smaller image patches, primarily focusing on capturing fine-grained

details within the images. This branch consists of a linear embedding

layer, multiple Transformer blocks, and a feedforward neural network

(FFN) head, which helps identify small features and subtle changes in

the images. The larger branch processes larger image patches, capturing

more global information. Similar to the smaller branch, it also includes

a linear embedding layer, multiple Transformer blocks, and an FFN

head, providing broader contextual information that supports a better

understanding of the overall tissue structure and major features of the

images. By combining the outputs from both branches, CrossViT

effectively integrates detailed information with global context, thereby

excelling in complex image analysis tasks.
FIGURE 2

Sample histopathological images of OSCC: All images were stained using the Hematoxylin and Eosin (HE) staining method. Hematoxylin stains the
cell nuclei, highlighting their structure, while Eosin stains the cytoplasm and connective tissue in pink or red, which helps distinguish normal from
malignant tissues. (a) Ashenafi-OSCC Dataset: The mixed resolution enables the model to learn multi-scale features. (b) Rahman-OSCC Dataset
(magnified 100x): At 100x magnification, the overall structure of the OSCC histopathological image can be better observed, making it suitable for
feature extraction related to shape and texture. (c) Rahman-OSCC Dataset (magnified 400x): At 400x magnification, cellular and nuclear changes in
OSCC histopathological images can be observed more clearly, making it more suitable for cellular-level analysis.
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2.3.2 Patch embedding layer
The input image is divided into two different sizes of patch (I) and

mapped to new dimensions through linear transformation, forming

embedding vectors as shown in Equation 1. Each branch’s patches

include a CLS token (xcls) to integrate image information for

classification, and positional encoding (xpos) is added, as shown in

Equation 2. The main function of the linear patch embedding layer is to

convert the two-dimensional image patches into one-dimensional

vector representations, making them suitable for subsequent

processing by the Transformer modules. Through this conversion, the

model can better capture features within the images while preserving

spatial information. Additionally, the classification token (CLS token) is

used to capture global image information during the final feature fusion

and classification stages, and positional encoding ensures that the model

can understand the spatial position of each patch in the original image.

Xpatch = Linear(patch(I)) (1)
Frontiers in Oncology 05
X0 = ½Xcls,Xpatch� + Xpos (2)
2.3.3 Transformer encoder
After positional encoding, the CLS token and patches of

different sizes are fed into the Transformer encoder. Each

encoding layer consists of multihead self-attention (MSA) and a

feedforward neural network (FFN). The multi-head self-attention

mechanism (MSA) enhances the model’s capability by focusing

simultaneously on information from multiple positions, allowing it

to capture complex image features. The feedforward neural network

(FFN), composed of two linear transformations and a nonlinear

activation function, further processes and extracts feature

information, enabling the model to capture more complex and

abstract features. Through multiple layers of Transformer encoders,

the model incrementally enhances feature representations, thereby

improving classification accuracy.
FIGURE 3

The CrossViT framework for histological diagnosis of OSCC: CrossViT consists of multiple Transformer encoder layers, which perform feature fusion
through the Cross Attention mechanism. Initially, the input image is processed through several Transformer encoders, followed by the Cross
Attention module for fusing features at different scales. Finally, after processing by the linear projection layer, the output is passed to the MLP head
for OSCC histopathological image classification.
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In the k-th layer, the input feature is represented as xk−1. After layer

normalization (LayerNorm), the intermediate feature representation

ykis obtained through the multi-head self-attention mechanism (MSA),

as shown in Equation 3. Subsequently, the intermediate feature

representation ykundergoes layer normalization (LayerNorm) and a

feed-forward neural network (FFN) to obtain the final feature

representation xk, as shown in Equation 4.

Yk = Xk−1 + MSA(LayerNorm(Xk−1)) (3)

Xk = Yk + FFN(LayerNorm(Yk)) (4)
2.3.4 Cross-attention
We concatenate the CLS token xclsl from the large branchwith

the patch tokens xpatchs from the small branch to generate the input

x
0
l . This input is then fed into the cross-attention mechanism,

followed by a residual connection to obtain the updated CLS

token zclsl , as shown in Equations 5, 6. The design of the cross-

attention module enables the integration of features from different

branches on a global scale. The CLS token from the large-scale

branch enhances the representation of detailed features by accessing

information from the small-scale branch. Similarly, the CLS token

from the small-scale branch integrates global information by

accessing features from the large-scale branch, thereby enriching

the expression of global features. This bidirectional feature

interaction mechanism allows the model to simultaneously

leverage local details and global information, resulting in a more

comprehensive understanding of image content.

x
0
l = ½fl(xclsl )   xpatchs ��� (5)

zclsl = softmax
(LN(x

0
l )Wq)(LN(x

0
l)Wk)

Tffiffiffiffiffi
dk

p
 !

LN(x
0
l )Wv (6)
2.3.5 Feature fusion and classification
The CLS tokens (zclsl , zclss ) obtained after multi-scale feature

fusion represent the feature expressions of the large-scale and small-

scale branches, respectively. These CLS tokens are then

independently processed through their respective classification

heads. The large-scale branch’s CLS token, zcls
0

l , effectively

captures global information, while the small-scale branch’s CLS

token, zclss , focuses more on extracting detailed information. After

obtaining the results from both branches, the model fuses the results

by summing and averaging them to obtain the final fused logits, as

shown in Equation 7. This approach ensures a balanced

representation of both global and detailed features in the final

classification result, resulting in a more accurate and comprehensive

prediction.

logits =
1

2
(Linear(zclsl ) + Linear(zclss )) (7)
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2.4 Transfer learning

In this study, when applying deep learning techniques to the

classification of oral pathological images, we encounter the issue of

overfitting due to the limited size of the datasets. Even with the use

of data augmentation techniques to enhance sample diversity, this

problem remains difficult to fully overcome. Existing research has

demonstrated that the use of transfer learning techniques can

significantly improve model performance on small datasets, often

surpassing the performance of models trained directly on these

limited datasets.

Transfer learning involves transferring the learned weights from

a model trained on a large dataset to a model being trained on a

smaller, target dataset. This method leverages the knowledge

acquired from pre-training on large datasets, thus reducing the

risk of overfitting when training on smaller datasets and

accelerating the model’s convergence during the training process.

In this study, we employed the CrossViT model and compared

its performance with that of the ViT model and six high-

performance CNN models: ResNet50, ResNet101, VGG16,

VGG19, EfficientNetB0, and EfficientNetB7 (23–25). All models

were pre-trained, meaning they were initially trained on the

ImageNet dataset to obtain initial weights, which were then

applied to our small dataset for further training and fine-tuning.

By employing transfer learning methods, we aim to better address

the overfitting challenges posed by small datasets and improve

model performance in oral pathology image classification. Transfer

learning not only enhances the generalization capability of the

models but also accelerates the training process, enabling high-

performance classification even on limited datasets. Comparing the

performance of different pre-trained models allows us to select the

most suitable one to further improve the accuracy and robustness of

OSCC pathological image classification.
2.5 Artificial neural network based on
feature fusion

This section proposes a hybrid feature extraction method that

combines deep features extracted by CrossViT with expert-crafted

features, followed by classification using an ANN algorithm. The

specific steps of this method are as follows: First, the augmented

OSCC dataset is input into the CrossViT model for feature

extraction, obtaining 384-dimensional and 768-dimensional

features from each branch, respectively. Second, additional

features are extracted using FCH, LBP, and GLCM. The FCH

algorithm extracts 768 color features, LBP extracts 26 texture

features, and the GLCM extracts 24 texture features. These

features are then fused, resulting in a total of 818 features.

The FCH algorithm is particularly suited for color feature

extraction in pathological images. By incorporating fuzzy logic,
frontiersin.org
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FCH accounts for the similarity between colors and applies

fuzzification to the color features, which enhances robustness to

color variations and staining differences, thereby improving the

accuracy of color feature extraction.

The LBP plays a vital role in pathological image analysis by

generating binary codes that reflect local texture patterns. It does

this by comparing the grayscale value of each pixel with that of its

neighboring pixels, thereby capturing microscopic texture features

of cells and tissues within pathological images.

The GLCM is key to extracting macroscopic texture features. It

computes statistical features such as contrast, entropy, and

homogeneity by analyzing the spatial co-occurrence probability of

pixel pairs at different grayscale levels. These features describe the

macroscopic texture properties of tissues, which are often altered in

pathological conditions. Changes in tissue structure caused by

diseases can lead to significant modifications in the macroscopic

texture, making GLCM a crucial tool for identifying structural

changes in tissues and aiding disease diagnosis and staging.

Finally, the deep features extracted by CrossViT are fused with

the handcrafted features. Each branch of the CrossViT model

extracts 1,202 and 1,586 features from each pathological image,

respectively. These combined features are then input into an ANN

for classification. Figure 4 illustrates the architecture of this hybrid

method for the pathological diagnosis of the two OSCC datasets.

CrossViT extracts deep features from images, which are combined

with handcrafted features, such as GLCM, and then input into the

ANN algorithm for classification.
2.6 Experiment

2.6.1 Implementation details
This experiment was developed and implemented using the

Python programming language. The testing environment was
Frontiers in Oncology 07
configured as follows: On the hardware side, the system was

equipped with an NVIDIA GeForce RTX 3090 GPU, an Intel i7

CPU, and 32GB of RAM, enabling large-scale data processing and

efficient training of deep learning models. On the software side, the

experimental environment ran on a 64-bit Windows 10 operating

system with Python version 3.8, utilizing mainstream deep learning

frameworks such as PyTorch 2.2.2. This configuration ensured the

efficiency and stability of data processing and model training,

providing a solid foundation for the successful execution of

the experiment.

2.6.2 Data partitioning
In this study, the Ashenafi-OSCC dataset is divided into

training, validation, and testing sets with a ratio of 70%, 15%, and

15%, respectively. This split ensures that the model can effectively

learn the features of the OSCC data during training, fine-tune its

hyperparameters during validation, and finally assess its

performance on the test set. The training set is used for learning

the model parameters, the validation set is used for model tuning

and selection, and the test set is used to evaluate the model’s

generalization performance.

For the Rahman-OSCC dataset, a different approach is adopted,

wherein images of various magnifications are mixed into the test set

to assess the model’s performance across different magnification

levels. This mixed test set design provides a comprehensive

evaluation of the model’s adaptability and robustness in real-

world scenarios. Specifically, the mixed test set includes images

magnified at both 100x and 400x, allowing for the evaluation of the

model’s stability and accuracy when handling images with varying

resolutions and levels of detail.

By employing this approach, we aim to achieve a thorough

understanding of the model’s performance, providing a reliable and

effective technological solution for OSCC diagnosis. Our

experimental design not only focuses on the overall accuracy of
FIGURE 4

Fusion features for diagnosing OSCC histopathological images.
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the model but also emphasizes its robustness under different

conditions, ensuring its applicability in practical clinical settings.
2.7 Statistical analysis

All statistical analyses in this study were performed using the

Python programming language, primarily utilizing libraries such as

timm, matplotlib, and scikit-learn for data processing, model

training, and evaluation. To comprehensively assess the

performance of the OSCC pathological image classification

model, the dataset was randomly divided into a training set,

validation set, and test set. The training set was used for model

training, the validation set for model tuning, and the test set for

model evaluation.

In this study, to comprehensively evaluate the model’s

performance, we employed various evaluation metrics including

Accuracy, Sensitivity, Specificity, Precision, Area Under the Curve

(AUC), Kappa coefficient, and F1 score, to reflect the model’s

classification ability from different perspectives. Accuracy

measures the overall proportion of correctly classified samples,

but it may be influenced by class imbalance. Sensitivity and

Specificity assess the model’s ability to correctly identify positive

and negative samples, respectively. Higher sensitivity indicates a

lower miss rate, while higher specificity indicates a lower false

positive rate. Precision reflects the accuracy of the model in

predicting positive samples, with higher precision meaning fewer

false positives. The AUC value reflects the model’s overall ability to

distinguish between positive and negative samples across different

thresholds, with values closer to 1 indicating better model

performance. The Kappa coefficient evaluates the consistency of

the classification results with random predictions, where a higher

Kappa value indicates stable and reliable classification ability. The

F1 score is the harmonic mean of precision and sensitivity,

particularly suitable for imbalanced datasets, and it provides a

comprehensive reflection of the model’s detection capability for

positive samples. By analyzing these metrics together, we are able to

gain a deep and comprehensive understanding of the model’s

classification performance, which facilitates effective optimization
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and improvement. In Equations 8-14, the terms TP, FP, TN, and FN

represent true positives, false positives, true negatives, and false

negatives, respectively. The mentioned metrics are defined as

follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Sensitivity =
TP

TP + FN
(9)

Specificity =
TN

TN + FP
(10)

Precision =
TP

TP + FP
(11)

AUC =
Z 1

0
TPR(FPR) d(FPR) (12)

Kappa =
po − pe
1 − pe

(13)

F1   =   2 ·
Precision · Recall
Precision + Recall

(14)
3 Results

3.1 Comparative analysis

This section discusses the performance of the transfer learning-

based CrossViT model, mainstream CNN models, the ViT model,

and the untrained CrossViT model in diagnosing OSCC datasets.

We employed various popular CNN and ViT models pre-trained on

large datasets, including ViT, ResNet50, ResNet101, VGG16,

VGG19, EfficientNetB0, and EfficientNetB7. These models were

pre-trained on large datasets like ImageNet and have demonstrated

excellent performance in various image classification tasks.
TABLE 1 Diagnostic results of models on Ashenafi-OSCC dataset.

Model Accuracy Sensitivity Specificity Precision AUC Kappa F1

ResNet50 (Transfer Learning) 0.9705 0.9718 0.9692 0.9693 0.9969 0.9409 0.9706

ResNet101 (Transfer Learning) 0.9820 0.9744 0.9897 0.9896 0.9982 0.9641 0.9819

VGG16 (Transfer Learning) 0.9718 0.9564 0.9871 0.9868 0.9977 0.9435 0.9714

VGG19 (Transfer Learning) 0.9718 0.9615 0.9820 0.9817 0.9970 0.9435 0.9715

EfficientNetB0 (Transfer Learning) 0.9756 0.9667 0.9846 0.9843 0.9978 0.9512 0.9754

EfficientNetB7 (Transfer Learning) 0.9769 0.9590 0.9949 0.9947 0.9974 0.9538 0.9765

ViT (Transfer Learning) 0.9820 0.9769 0.9871 0.9870 0.9988 0.9641 0.9820

CrossViT 0.9730 0.9641 0.9820 0.9817 0.9973 0.9461 0.9728

CrossViT (Transfer Learning) 0.9859 0.9744 0.9974 0.9974 0.9981 0.9718 0.9858
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Table 1 shows the classification results of these models on the

AshenafiOSCC dataset, while Table 2 presents their performance on

the RahmanOSCC dataset. The untrained CrossViT model

performs exceptionally well in accuracy, sensitivity, and

specificity, while the transfer learning-based CrossViT model

outperforms other models in terms of accuracy, specificity, and

precision. This indicates that CrossViT plays a significant role in

processing OSCC pathological images, and transfer learning

significantly enhances the classification performance of the

CrossViT model.
3.2 Results of mixing deep features and
handcrafted features

In this section, after extracting deep features using the

CrossViT model, we combine them with expert features such as

LBP, GLCM, and FCH extracted using the Handcrafted Feature

Fusion Method, and use an ANN classifier for final classification.

Subsequently, we evaluate the model’s performance using various

tools, including the Best Performance of Validation and

Confusion Matrix.
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3.2.1 Best validation performance
The cross-entropy used in this experiment is an important tool

for evaluating the model’s performance in OSCC histopathological

image classification. It measures the error rate between the

predicted output and the actual output. Cross-entropy is

represented in different colors to indicate the model ’s

performance at different stages: blue represents the training stage,

green represents the validation stage, and the dashed line represents

the best performance. The x-axis of the image indicates the training

epochs, while the y-axis represents the cross-entropy loss. A lower

cross-entropy loss indicates that the model’s predictions are

closer to the true labels, and the model performs better.

Additionally, the smaller the gap between training loss and

validation loss, the more stable the model’s performance and the

better its generalization ability.

Figure 5 shows the cross-entropy of the model on the Ashenafi-

OSCC dataset. The algorithm based on transfer learning, combined

with LBP, FCH, GLCM, and CrossViT features, reached the

minimum error of 0.0265483 at the 69th epoch, while the

CrossViT algorithm based solely on transfer learning reached the

minimum error of 0.0625181 at the 46th epoch. The algorithm

combining hybrid features exhibited lower cross-entropy values in
TABLE 2 Diagnostic results of models on Rahman-OSCC dataset.

Model Accuracy Sensitivity Specificity Precision AUC Kappa F1

ResNet50 (Transfer Learning) 0.9762 0.9882 0.9298 0.9819 0.9969 0.9265 0.9851

ResNet101 (Transfer Learning) 0.9821 0.9818 0.9835 0.9957 0.9985 0.9464 0.9887

VGG16 (Transfer Learning) 0.9787 0.9893 0.9380 0.9840 0.9971 0.9345 0.9867

VGG19 (Transfer Learning) 0.9762 0.9850 0.9421 0.9850 0.9969 0.9272 0.9850

EfficientNetB0 (Transfer Learning) 0.9788 0.9829 0.9655 0.9892 0.9978 0.9417 0.9860

EfficientNetB7 (Transfer Learning) 0.9787 0.9807 0.9711 0.9924 0.9976 0.9360 0.9865

ViT (Transfer Learning) 0.9796 0.9839 0.9655 0.9892 0.9965 0.9438 0.9866

CrossViT 0.9779 0.9850 0.9552 0.9861 0.9977 0.9391 0.9855

CrossViT (Transfer Learning) 0.9837 0.9861 0.9759 0.9925 0.9988 0.9551 0.9893
FIGURE 5

Optimal performance evaluation of the Ashenafi-OSCC dataset based on the following features: (a) LBP, GLCM, FCH, and CrossViT; (b) CrossViT.
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both the training and validation stages, with the two curves showing

smaller differences. This indicates that the algorithm demonstrates

super ior per formance and bet ter s tab i l i ty in OSCC

histopathological image classification.

3.2.2 Confusion matrix
The confusion matrix used in this experiment is an important

tool for evaluating the model ’s performance in OSCC

histopathological image classification. The matrix is represented

in a four-cell format, recording the correctly classified (TP and TN)

and incorrectly classified (FP and FN) images in the dataset. The

correctly classified images are located on the main diagonal of the

matrix, while the incorrectly classified images are in the other cells.

Figure 6 shows the confusion matrix generated when evaluating

the model on the OSCC dataset. Class 1 represents normal tissue,

and Class 2 represents malignant tissue. In the Ashenafi-OSCC

dataset, the algorithm based on transfer learning combined with

LBP, FCH, GLCM, and CrossViT features achieved an overall

accuracy of 99.36%, while the CrossViT algorithm based solely on

transfer learning achieved an overall accuracy of 98.59%. In the

Rahman-OSCC dataset, the algorithm based on transfer learning
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combined with LBP, FCH, GLCM, and CrossViT features achieved

an overall accuracy of 99.59%, while the CrossViT algorithm based

solely on transfer learning achieved an overall accuracy of 98.37%.

The handcrafted features extracted from the CrossViT model

and the Handcrafted Feature Fusion Method significantly improve

the diagnostic performance of OSCC histopathological images.

Table 3 shows the classification performance of the model on

two datasets.

In the Ashenafi-OSCC dataset, the algorithm based on transfer

learning combined with LBP, FCH, GLCM, and CrossViT features

achieved an accuracy of 99.36%, specificity of 99.49%, sensitivity of

99.23%, precision of 99.49%, AUC of 99.92%, F1 score of 99.36%,

and Kappa value of 98.72%. In comparison, the CrossViT algorithm

based solely on transfer learning achieved an accuracy of 98.59%,

specificity of 99.74%, sensitivity of 97.44%, precision of 99.74%,

AUC of 99.81%, F1 score of 98.58%, and Kappa value of 97.18%.

In the Rahman-OSCC dataset, the algorithm based on transfer

learning combined with LBP, FCH, GLCM, and CrossViT features

achieved an accuracy of 99.59%, specificity of 99.66%, sensitivity of

99.57%, precision of 99.89%, AUC of 99.95%, F1 score of 99.73%,

and Kappa value of 98.87%. In contrast, the CrossViT algorithm
FIGURE 6

Confusion matrix evaluation of the Ashenafi-OSCC and Rahman-OSCC datasets based on the following features: (a) Ashenafi-OSCC dataset with
LBP, GLCM, FCH, and CrossViT; (b) Ashenafi-OSCC dataset with CrossViT; (c) Rahman-OSCC dataset with LBP, GLCM, FCH, and CrossViT;
(d) Rahman-OSCC dataset with CrossViT.
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based solely on transfer learning achieved an accuracy of 98.37%,

specificity of 97.59%, sensitivity of 98.61%, precision of 99.25%,

AUC of 99.88%, F1 score of 98.93%, and Kappa value of 95.51%.

By effectively balancing global features and local information,

the ANN algorithm based on the hybrid features demonstrates

exceptional accuracy in diagnosis. Additionally, the error

classification data shows that the hybridfeature-based ANN

algorithm excels in stability and robustness. It achieves higher

precision with lower false-positive and false-negative rates. This

stability is crucial for early diagnosis of OSCC, as it reduces the risk

of misdiagnosis.
4 Discussion

The OSCC diagnostic method presented in this study employs

transfer learning techniques and integrates LBP, FCH, GLCM, and

CrossViT features. It achieved accuracy rates of 99.36% and 99.59%

on the AshenafiOSCC and Rahman-OSCC datasets, respectively,

demonstrating significant advantages over existing pathological

image classification methods worldwide. Bishal et al. (26)

proposed a CNN model incorporating a specific loss function,

which reduced processing time and enhanced diagnostic accuracy;

following dataset training, an overall accuracy of 96.5% was

ultimately achieved. Traditional CNN approaches, such as the

lightweight CNN model proposed by Jubair et al. (27), achieved

an accuracy of 85.0% in OSCC pathological image classification.

However, this method primarily relies on local feature extraction

and fails to effectively capture multi-scale information and the

global context within pathological images. Similarly, Welikala

et al. (28) used ResNet-101 for image classification, but despite

achieving an F1 score of 87.07%, its performance in object detection

was limited. Therefore, traditional CNN models have certain

limitations when it comes to extracting multi-scale features.

With the emergence of ViT models, researchers have sought to

extract global features of images through self-attention

mechanisms, achieving promising results. For instance, Wang

et al. (29) achieved an accuracy of 98.12% in breast cancer

classification using the ViT model, showcasing the potential of

ViT in analyzing complex pathological images. Shin et al. (30) also
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applied the ViT model for Alzheimer’s disease image classification,

further validating the potential of ViT in medical imaging

applications. However, despite ViT’s ability to effectively manage

long-range dependencies, multiscale features and complex tissue

structures in OSCC pathological images still pose challenges.

Specifically, Khedr et al. (31) proposed a ViT model for bladder

cancer prediction, which performed well, but there is still room for

improvement in handling complex tissue structures.

To address this challenge, Chen et al. (17) introduced the

CrossViT model, which employs a cross-attention mechanism to

link features at different scales, significantly enhancing the feature

extraction capabilities for pathological images. Abd et al. (32)

combined CrossViT with the Growth Optimizer algorithm,

achieving a 5% improvement in accuracy for breast cancer

detection, further highlighting the advantages of CrossViT in

pathological image analysis. Building on this concept, our study

combines CrossViT with handcrafted features such as LBP, FCH,

and GLCM, fully leveraging the benefits of multiple feature

extraction methods. Camalan et al. (33) utilized a pre-trained

Inception-ResNet-V2 model on the OSCC dataset and generated

heatmaps to enhance model interpretability, which aligns with our

strategy of capturing both fine details and global information using

CrossViT. Our approach not only improves the model’s ability to

capture image details but also strengthens its understanding of

complex textures and diverse tissue structures, leading to enhanced

accuracy and robustness in OSCC diagnosis.

Compared with mainstream models and various similar studies

conducted worldwide, the proposed model demonstrates significant

advantages in diagnostic accuracy for OSCC pathological images.

Overall, this study presents a novel diagnostic approach that

effectively addresses the challenges of capturing multi-scale and

global features by integrating multiple handcrafted features with an

advanced CrossViT architecture and leveraging transfer learning.

The proposed method achieved high accuracy rates of 99.36% and

99.59% on the Ashenafi-OSCC and Rahman-OSCC datasets,

respectively, which are markedly superior to those of existing

traditional CNN and ViT models worldwide. In addition to its

outstanding performance in detail extraction and recognition of

complex tissue structures, the method offers an efficient, robust, and

competitive alternative for OSCC diagnosis.
TABLE 3 Classification results with different feature combinations on the Ashenafi-OSCC and Rahman-OSCC datasets. Ashenafi-OSCC dataset
Rahman-OSCC dataset.

Ashenafi-OSCC dataset Rahman-OSCC dataset

CrossViT + LBP + FCH + GLCM CrossViT CrossViT + LBP + FCH + GLCM CrossViT

Accuracy 0.9936 0.9859 0.9959 0.9837

Sensitivity 0.9923 0.9744 0.9957 0.9861

Precision 0.9949 0.9974 0.9989 0.9925

Specificity 0.9949 0.9974 0.9966 0.9759

AUC 0.9992 0.9981 0.9995 0.9988

Kappa 0.9872 0.9718 0.9887 0.9551

F1 0.9936 0.9858 0.9973 0.9893
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However, despite the excellent performance of our model in

terms of accuracy and stability, the inherent interpretability issues

of deep learning models remain unresolved. Complex architectures,

such as the fusion of CrossViT with handcrafted features, lack

transparency in their internal decision-making processes, making it

challenging to understand and trace the rationale behind their

judgments. This limitation may undermine clinical confidence in

the model’s outputs for medical diagnosis. Consequently, future

research should focus on enhancing the model’s interpretability

while preserving its high-performance advantages, thereby

providing clearer and more rational support for clinical

decision-making.
5 Conclusion

Histopathological examination remains the gold standard for

diagnosing OSCC. However, due to factors such as the examiner’s

experience, environmental conditions, and resource availability,

manual diagnosis is limited in terms of cost, efficiency, and

accuracy. This study aims to develop an auxiliary diagnostic tool

that integrates multiple algorithms and deep learning models,

helping experts improve diagnostic accuracy and lower

misdiagnosis rates. Based on a comparison of three methods, the

following conclusions were drawn:
Fron
1. The first method, based on transfer learning using CNN

and ViT models, exhibited clear limitations in diagnostic

accuracy and precision.

2. The second method, based on the transfer learning-based

CrossViT model, demonstrated superior performance in

classifying OSCC datasets, with accuracy and other

performance metrics surpassing those of traditional CNN

and ViT models.

3. The third method, which combines transfer learning with a

Handcrafted Feature Fusion Method to extract LBP, FCH,

GLCM, and CrossViT features, achieved the best

performance in terms of diagnostic accuracy and other

key performance metrics for OSCC pathological image

diagnosis, significantly outperforming the other methods.
This study developed an auxiliary diagnostic tool that integrates

multiple algorithms and deep learning models, helping experts
tiers in Oncology 12
improve OSCC diagnostic accuracy and lower misdiagnosis rates.

Future research should focus on enhancing model interpretability

to further strengthen its applicability in clinical settings.
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