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The oncogene LAPTM4B (encoding lysosome-associated protein

transmembrane-4b), first cloned in hepatocellular carcinoma cells, is located

on chromosome 8q22.1 and encodes two isoforms, LAPTM4B-35 and

LAPTM4B-24. LAPTM4B proteins have four transmembrane structural domains

and are mainly distributed in lysosomal and endosomal membranes of cells.

Studies have shown that LAPTM4B is overexpressed in a variety of cancers, in

which the genetic polymorphism of LAPTM4B is associated with tumor

susceptibility. LAPTM4B also regulates various cell signaling pathways, interacts

with autophagy-related proteins and ceramides, and regulates the autophagy

process and the release of exosomes, which in turn affect the survival and drug

resistance of tumor cells. In conclusion, this paper summarizes recent research

on LAPTM4B, aiming to explore the role and potential mechanisms of LAPTM4B

in a variety of tumors.
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1 Introduction

Oncogenesis is a complex process characterized by the accumulation of genetic

mutations, which leads to dysregulation of cell proliferation, invasion, and metastasis, as

well as tumor recurrence, drug resistance, and ultimately poor patient prognosis (1).

Various therapeutic approaches targeting oncogenes have been developed; however, the

cure rate of cancer using these methods is not satisfactory. In recent years, the LAPTM4B

gene (encoding lysosome-associated protein transmembrane-4b) has been studied

intensively; however, the role and mechanism of LAPTM4B in a variety of tumors

remain unclear.
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LAPTM4B was initially identified in hepatocellular carcinoma

(HCC) tissues as potentially involved in hepatocyte proliferation or

differentiation, showing high expression in HCC tissue cells, but very

low expression in normal adult hepatocytes (2). The LAPTM4B gene

is located on chromosome 8q22.1 (3, 4) and encodes a protein

containing four transmembrane structural domains. Dual in-frame

ATG codons located 273 nucleotides apart on the LAPTM4B mRNA

initiate translation of two differentially sized protein variants, with

electrophoretic mobility corresponding to 35 kDa (LAPTM4B-35)

and 24 kDa (LAPTM4B-24) molecular weight markers (5).

LAPTM4B-35 differs from LAPTM4B-24 in that it contains an

additional 91 amino acid residues at the N-terminus of the proline-

rich structural domain (pentapeptide repeat-containing protein

(PPRP) (Figure 1). The PPRP plays a key role in the proliferative

and metastatic potential of tumor cells as a binding site for the SH3

structural domain of certain signaling molecules (Figure 2A) (6).

One study found that LAPTM4B mRNA expression was

upregulated 13 to 14-fold in the peripheral blood of patients with

breast, ovarian, prostate, and colon cancer (7). Previous study

evaluated the expression of LAPTM4B mRNA using northern

blotting, reverse transcription-PCR, and in situ hybridization (8).

However, further research remains to be carried out on LAPTM4B

and its relationship with carcinogenesis.
2 Genetic polymorphisms in LAPTM4B
are associated with tumor
susceptibility

In the normal population, LAPTM4B exhibits three genotypes

(^1/1, ^1/2, and ^2/2) and two alleles (LAPTM4B^1 and

LAPTM4B^2). The difference is that allele ^1 contains only a

single copy of the 19-bp sequence at the 5′-untranslated region

(UTR) of the first exon, whereas in allele ^2, this segment is

duplicated and tightly tandem repeated (9). These two alleles

constitute the LAPTM4B polymorphism. Studies have shown that
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the LAPTM4B polymorphism is associated with susceptibility to a

variety of solid tumors, such as HCC (9), breast cancer (10–12),

non-small cell lung cancer (13), gastric cancer (14), cervical cancer

(15), endometrial carcinoma (16), diffuse large b-cell lymphoma

(17, 18), gallbladder cancer (19), ovarian cancer (20), papillary

thyroid cancer (21), pancreatic cancer (22), and prostate cancer

(23). However, not all tumor susceptibility is associated with

LAPTM4B. For example, susceptibility to esophageal, rectal (24),

and nasopharyngeal cancers (25) is not associated with the genetic

polymorphism of LAPTM4B.

A Chinese population-based mate analysis study found that

carriers of allele ^2 had a significantly increased risk of cancer

compared with those carrying allele ^1 only (for ^1/2, odds ratio

(OR) = 1.55, 95% confidence interval (CI) 1.367–1.758; ^2/2, OR =

2.093,95% CI 1.666–2.629; ^1/2+^2/2, OR = 1.806,95%CI

1.5272.137). Carrying a ^2/2 pure homozygote was significantly

associated with cancer risk compared to genotypes carrying the ^1

allele (OR = 1.714, 95% CI 1.408–2.088). Allele ^2 was a risk factor

for tumorigenesis (OR = 1.487, 95%CI 1.3391.651) (26). It is

noteworthy that activator protein-4 (AP4) is the only factor

predicted to bind within the 19-bp polymorphic region of the

LAPTM4B^1 and LAPTM4B^2 promoters (27). Thus, the

LAPTM4B gene polymorphisms correlate with a variety of solid

tumors; however, the exact mechanism is not clear and thus more

in-depth studies are needed.
3 Function of LAPTM4B in tumor cell
regulation

3.1 LAPTM4B promotes proliferation and
metastatic invasion of multiple tumor cells

Increased expression of LAPTM4B-35 and LAPTM4B-24

affects the invasion, metastasis and chemotherapy resistance in a

variety of tumor cells, e.g., gastric, breast, colon, ovarian, liver,
FIGURE 1

Comparison of LAPTM4B-24 (24kDa) and LAPTM4B-35 (35kDa) protein structures, highlighting key domains and residues relevant to their
cellular functions.
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pancreatic, cervical, prostate, lung, endometrial, and gallbladder

cancers (28–43). LAPTM4B with Interacting proteins and potential

functions (Table 1).

In nude mouse experiments, after xenografting HCC cells stably

overexpressing LAPTM4B into the nude mice, the growth of HCC

tumor cells was significantly faster than that of the control group,

whereas nude mice xenografted with HCC cells stably knocked

down for LAPTM4B showed lower growth rates than those of the

control group. In addition, a 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay revealed that the slow

growth rate of HCC cells with stable knockdown of LAPTM4B was

reversed after transfection with a plasmid expressing the LAPTM4B

protein (73).
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Knocking down LAPTM4B in Hela cells and non-small cell lung

cancer attenuated cell growth, according to cell counting kit 8

(CCK8) assays (45). In gallbladder cancer, an MTT assay and flow

cytometry experiments also confirmed that overexpression of

LAPTM4B promoted the proliferation of gallbladder cancer cells.

In addition, LAPTM4B promotes cancer cell migration by regulating

epithelial mesenchymal transition (EMT) (50), protein kinase B

(AKT) phosphorylation (5), and matrix metalloprotein (MMP)

release (51). Meanwhile, the role of LAPTM4B in promoting cell

migration and invasion might be mediated by the PPRP motif of

LAPTM4B, a sequence that can interact with proteins containing an

SH3 structural domain; thus, participating in multiple signaling

pathways to regulate cell migration and invasion (6).
FIGURE 2

Role and regulatory mechanism of LAPTM4B in tumors. (A) Overexpression of LAPTM4B leads to overexpression of MMP-2, MMP-9, CDK12, and
HIF-1a, and the PPRP motif of LAPTM4B can interact with these signaling proteins (containing SH3 structural domains) to promote cell invasive
metastasis. (B) The AP4-LAPTM4B-c-myc axis forms a positive feedback regulatory loop. (C) Cells with high levels of LAPTM4B expression exhibit
increased clearance of ceramide from late endosomes, thereby increasing cellular sensitivity to ceramide-induced apoptosis. (D) LAPTM4B interacts
with the E3 ubiquitin ligase Nedd4 and inhibits the binding of Hrs to ubiquitylated EGFR, thereby affecting the endosomal sorting and lysosomal
degradation of EGFR, ultimately promoting cell proliferation and chemoresistance. (E) LAPTM4B activates the PI3K/AKT signaling pathway through its
PPRP motif. Active AKT phosphorylates GSK3b, which attenuates c-Myc phosphorylation, leading to c-Myc accumulation. Active AKT also
phosphorylates Forkhead box O4, which in turn affects P27 gene transcription. (F) LAPTM4B interacts with and stabilizes inactive EGFR in
endosomes, thereby recruiting ATG5 to dissociate Beclin 1 from the RUBICON - Beclin 1 complex, which triggers autophagy. (G) LAPTM4B regulates
autophagy through the EGFR signaling pathway. (H) The role of LAPTM4B in mTORC1 activation through recruitment of leucine transporters to
lysosomes. (I) LAPTM4B is a determinant of the sphingolipid profile and membrane properties of small extracellular vesicles (sEVs). LAPTM4B
depends on its third transmembrane structural domain, containing the sphingolipid interacting motif (SLim), to be efficiently sorted into the luminal
vesicles (ILVs) of multivacuolar endosomes (MVEs), which are released into the extracellular space as sEVs.
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In the previously mentioned positive feedback pathway found in

HCC, overexpression of LAPTM4B inhibited the phosphorylation of

MYC proto-oncogene, BHLH transcription factor (c-myc), leading to

its accumulation, and subsequent upregulation of AP4. In turn, AP4

upregulated the transcription of the LAPTM4B gene by binding to its

promoter, thereby promoting HCC cell proliferation, migration, and
Frontiers in Oncology 04
invasion (Figure 2B) (27, 73, 74). Meanwhile, LAPTM4B knockdown

inhibited tumor cell migration and invasion, possibly by

downregulation of related proteins such as matrix metalloprotein 2

(MMP-2), matrix metalloprotein 9 (MMP-9), cell cycle-dependent

protein kinase 12 (CDK12) and Hypoxia-inducible factor 1-alpha

(HIF-1a) (Figure 2A) (45).
TABLE 1 LAPTM4B with Interacting proteins and potential functions.

References(s) Interacting/Regulatory
partners

Cancer type
LAPTM4B
Expression

Function/
Bio significances

(32–35, 39, 41) –
STAD, COAD, OV, PAAD,
PRAD, UCEC

↑ Invasion and metastasis

(19, 44) – GBC ↑
Cell proliferation
Invasion and metastasis

(13, 38) – NSCLC ↑ Cell proliferation

(6)
PPRP motifs and SH3
structural domains

Cervical cancer ↑
Invasion and metastasis
Chemotherapy resistance

(45) MMP-2, MMP-9, CDK12, HIF-1a Cervical cancer ↑
Invasion and metastasis
Chemotherapy resistance

(46) LAT1-4F2hc, mTORC1 Cervical cancer – Autophagy

(47) P-gp Cervical cancer –
Chemotherapy resistance
Anti-apoptosis

(48) ATG3 HCC ↑
Autophagy
Anti-apoptosis

(48, 49) Sp1, creb-1 and 19-bp gene sequence HCC ↑ –

(5, 50, 51) EMT, AKT, MMP HCC ↑ Invasion and metastasis

(27) AP4, c-myc HCC ↑
Cell proliferation
Invasion and metastasis

(52) SULF2 HCC ↓
Cell proliferation
Autophagy

(53) EGFR, Beclin 1, Vps34 NPC – Autophagy

(54) Caspase-3 SCC – Anti-apoptosis

(55) TM3, Ceramide SCC – Autophagy

(56) Slim SCC – Exosome release

(54) Caspase-3 BRCA ↑
Chemotherapy resistance
Anti-apoptosis

(47) PI3K/AKT BRCA -
Chemotherapy resistance
Anti-apoptosis

(57) Nedd4 BRCA ↑ Chemotherapy resistance

(58) PIPKIgi5, SNX5 BRCA ↑
Cell proliferation
Chemotherapy resistance

(59) Ceramide NB – Exosome release

(52) HOXB4 – ↑ Cell proliferation

(53, 60–72) HCAL HCC, OS, LUNG, BRCA, PRAD ↓
Cell proliferation
Invasion and metastasis
STAD, Stomach Cancer; COAD, Colon adenocarcinoma; OV, Ovarian Cancer; PAAD, Pancreatic adenocarcinoma; PRAD, Prostate adenocarcinoma; UCEC, Uterine Corpus Endometrial
Carcinoma; GBC, gallbladder cancer; NSCLC, non-small cell lung cancer; LUNG, Lung Cancer; HCC, Hepatocellular carcinoma; NPC, Nasopharyngeal carcinoma; SCC, Squamous cell
carcinoma; BRCA, Breast Cancer; OS, Osteosarcoma; NB, neuroblastoma .
↑, ↓ These two symbols indicate whether LAPTM4B expression is upregulated or decreased in this tumor.
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3.2 LAPTM4B inhibits apoptosis

In gallbladder cancer cells, overexpression of LAPTM4B showed

a tendency to inhibit apoptosis, especially under Epirubicin

treatment (44). In contrast, doxorubicin-induced apoptosis was

significantly increased in LAPTM4B knockdown breast cancer

cells, suggesting that LAPTM4B might play a role in inhibiting

cell survival in breast cancer (75).

In human squamous cell carcinoma and breast cancer cells,

stable overexpression of LAPTM4B induced sensitivity to caspase-3

activation in response to treatment with anthracyclines or paclitaxel

(54). In contrast, tumor cells depleted for LAPTM4B were protected

against anthracycline- or paclitaxel-induced Poly (ADP-ribose)

polymerase (PARP) cleavage. These results suggested that

LAPTM4B might influence cell sensitivity to chemotherapeutic

compounds and cell death mechanisms depending on its

expression level and the different ways in which the ceramide

region is compartmentalized. Cells with high LAPTM4B

expression exhibited increased clearance of ceramide from late

endosomes (LEs), thereby increasing cell sensitivity to ceramide-

induced apoptosis. At the same time, stabilization of late endosomal

membranes rendered the cells insensitive to lysosome-mediated cell

death (Figure 2C) (54). In addition, LAPTM4B depletion leading to

the accumulation of sphingolipids in LEs is a potential mechanism

to induce increased lysosomal membrane permeability (LMP),

leading to cell death (54).
3.3 LAPTM4B is associated with tumor
drug resistance

In recent years, there has been remarkable progress in research

on LAPTM4B in cancer chemotherapy resistance, revealing its

complex and multifaceted mechanism of action. For example,

LAPTM4B knockdown breast cancer cells showed an effective

increase in sensitivity to chemotherapeutic drugs such as

doxorubicin and zoerythromycin. In addition, LAPTM4B

knockdown cell lines treated with doxorubicin showed a

significant increase in the localization of doxorubicin in the

nucleus, suggesting that LAPTM4B might be associated with the

nuclear localization of chemotherapeutic drugs (76).

In Hela cells, LAPTM4B overexpression increased the efflux of

chemotherapeutic drugs, such as paclitaxel and cisplatin, whereas

LAPTM4B knockdown increased the efficacy of these drugs. The

study revealed that LAPTM4B promotes chemotherapy resistance

via an interaction with the ATP-dependent membrane efflux

transporter protein P-glycoprotein (P-gp) (47). The study

revealed that LAPTM4B is not only involved in chemoresistance

by affecting drug efflux, but also promotes chemoresistance of

cancer cells by activating the phosphatidylinositol 4,5-

bisphosphate 3-kinase (PI3K)/AKT signaling pathway and

regulating intracellular signaling networks (77–81). In addition,

LAPTM4B promotes chemotherapy resistance via an interaction

with the ATP dependent membrane efflux transporter protein P-

glycoprotein (P-gp) (47).
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A recent finding has revealed that LAPTM4B might promote

AKT signaling by specifically blocking epidermal growth factor

receptor (EGFR) degradation, which provides a novel explanation

for its role in chemoresistance. This mechanism involves the

interaction of LAPTM4B with the E3 ubiquitin ligase neural

precursor cell expressed developmentally down-regulated protein

4 (Nedd4), which inhibits the binding of hepatocyte growth factor-

regulated tyrosine kinase substrate (Hrs or endosomal sorting

complexes required for transport (ESCRT)-0 subunit) to

ubiquitylated EGFR, thereby affecting the endosomal sorting and

lysosomal degradation of EGFR (57). In addition, LAPTM4B

interacts with the PIP kinase phosphatidylinositol-4-phosphate 5-

kinase type 1 gamma (PIPKIgi5) to antagonize the function of

LAPTM4B in EGFR sorting by generating phosphatidylinositols

(PtdIns) (4, 5), P2 signaling, and recruiting sorting nexin 5 (SNX5)

(Figure 2D) (58). In addition, AP4 reduces the chemosensitivity of

HCC cells through LAPTM4B. AP4 inhibited paclitaxel- and

doxorubicin-induced caspase-3-dependent apoptosis by increasing

the expression of LAPTM4B. Moreover, AP4 regulates LAPTM4B,

and activates the PI3K/AKT signaling pathway and glycogen

synthase kinase 3 beta (GSK3b), leading to c-myc accumulation,

which amplified the effect of the PI3K/AKT pathway on the drug

resistance of hepatocellular carcinoma cells (27).

This finding highlights the complexity of LAPTM4B-mediated

regulation of cell signaling and chemotherapeutic drug sensitivity,

providing insights and research directions to develop more effective

therapeutic strategies in the future. These findings lay a foundation

for a more comprehensive understanding of the critical role of

LAPTM4B in cancer chemoresistance.
4 Molecular regulatory mechanisms of
LAPTM4B

4.1 Transcriptional regulation of LAPTM4B
in tumor cells

The LAPTM4B gene is located on chromosome 8q.22.1, a

region that contains the MYC oncogene (82). LAPTM4B was

found to be a direct target gene of AP4 (49), a member of the

basic helix-loop-helix leucine zipper (bHLH-LZ) family of

transcription factors, which exclusively forms a homodimer that

binds to the E-box motif CAGCTG (83). AP4 directly binds to the

19-bp sequence of the promoter of the LAPTM4B gene to induce

transcription (27). AP4 promotes HCC cell proliferation, migration,

and invasion through activation of the PI3K/AKT signaling and

caspase-dependent pathways and reduces chemosensitivity through

LAPTM4B. Activation of AKT leads to phosphorylation of GSK3b,

followed by attenuated c-myc phosphorylation and degradation. In

addition, another downstream target of activated AKT, the p27

transcription factor Forkhead box O4 (FOXO4), is phosphorylated,

thereby losing its function as a transcription factor (Figure 2E) (73).

In addition, sp1 transcription factor and cAMP-responsive

element-binding protein-1 (creb-1) are associated with the high

expression of LAPTM4B in HCC. The transcription factor sp1 acts
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upstream of the 19-bp sequence of LAPTM4B, and creb-1 acts

downstream of the 19-bp sequence to increase the expression of

LAPTM4B (49, 84). A mechanistic analysis has shown that

sulfhydryl sulfone (SULF2)-induced repression of the LAPTM4B

gene in HCC cells resulted in decreased autophagosome formation,

decreased fusion of autophagosomes with lysosomes, and increased

lysosomal membrane permeability. Interference with autophagic

flux through inhibition of the SULF2-LAPTM4B axis resulted in

decreased LMP, cell viability, and colony formation (85).

Notably, LAPTM4B was identified as a potential downstream

target gene of the homology frame transcription factor homeobox

4 (HOXB4), and its high expression pattern in hematopoietic stem

cells and low expression pattern in mature hematopoietic cells

might play an important role in stem cell self-renewal and

maintenance (52).

Many transcripts function as endogenous competing RNAs

(ceRNAs) by competitively binding to common microRNAs

(miRNAs) (86, 87). In a study of HCC, knockdown of the long

noncoding RNA (lncRNA)HCAL significantly inhibited the mRNA

and protein expression of LAPTM4B in cellular and animal

experiments (60). It was also observed that HCAL depletion

significantly reduced the luciferase activity of a LAPTM4B

construct. In addition, HCAL downregulation significantly

shortened the half-life of LAPTM4B mRNA. These results

indicated that LAPTM4B was a target gene of HCAL. Moreover,

by constructing luciferase vectors co-expressing HCAL and

LAPTM4B, it was found that partial ectopic expression of HCAL

significantly reduced the expression of LAPTM4B. Upregulation of

HCAL could eliminate this inhibition, suggesting that HCAL

regulates the expression of LAPTM4B by acting as a ceRNA and

by competitively binding to common microRNAs (miR-15a, miR-

196a, and miR-196b). Moreover, LAPTM4B overexpression

partially rescued the HCAL knockdown-induced inhibition of cell

migration and invasion, suggesting that HCAL regulates cell
Frontiers in Oncology 06
proliferation, migration, and invasion of HCC cells by modulating

LAPTM4B expression (Figure 3) (60).

LAPTM4B was found to promote RhoA protein stability in

osteosarcoma (OS) cells by inhibiting RhoA ubiquitination and

RhoA proteasome degradation, which in turn was important in

stress fiber regulation (61). Western blotting experiments and dual

luciferase assays confirmed that miR-128 and miR-137 directly target

LAPTM4B mRNA to regulate protein expression. In addition, miR-

137 correlated significantly and negatively with LAPTM4B as one of

the most down-regulated miRNAs in OS (61, 88, 89). This suggested

that the regulation of miR-137 targeting LAPTM4Bmight be involved

in OS progression. Similarly, in lung cancer cells, miR-27b-3p can

directly target LAPTM4BmRNA and inhibit the protein expression of

LAPTM4B to inhibit the growth and metastasis of lung cancer cells

(62). In breast cancer, miR-132-3p was found to bind directly to the 3’-

UTR of the LAPTM4B gene and acted at the post-transcriptional level

to negatively regulate the expression of LAPTM4B (63). In addition,

miR-188-5p could also inhibit the expression of LAPTM4B by binding

to its 3’-UTR region, thus inhibiting cell proliferation and invasion in

prostate cancer (Figure 2) (64).
4.2 LAPTM4B regulates autophagy

Research over recent years has found autophagy initiation

requires the involvement of LAPTM4B. In the environment of

metabolic stress, the maturation of autophagic vesicles and

autophagic flux can be inhibited by targeting the LAPTM4B gene

using small interfering RNAs (siRNAs) (48, 65, 76). Nevertheless,

the exact mechanism of LAPTM4B’s role in autophagy is

incompletely understood.

The upregulation or mutation of LAPTM4B and EGFR in a

variety of cancers has attracted much attention because of their

association with cancer cell proliferation, survival, drug resistance,
FIGURE 3

lncRNA-miRNA regulation of LAPTM4B gene expression in cancer.
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and poor prognosis (5, 66). LAPTM4B regulates autophagy through

direct activation of ATG3 (encoding autophagy related 3)

transcription or through the EGFR pathway, either active or

inactive. Research into LAPTM4B in HCC has shown that after

silencing of LAPTM4B, the expression levels of many genes

changed, including a significant change in the expression of

ATG3 (48). In addition, overexpression of LAPTM4B led to an

increase in the mRNA and protein levels of ATG3. The results also

showed that LAPTM4B promoted the growth of HCC under

normal conditions, increased cell survival by upregulating the

expression of ATG3 under starvation conditions, inhibited

apoptosis, and induced autophagy under starvation (48). In

addition, under starvation stress conditions, knockdown of

LAPTM4B resulted in the blockage of autophagosome-lysosome

fusion and autophagic lysosome formation. In addition, depletion

of LAPTM4B also led to an increase in the number of

autophagosomes, but a decrease in autophagic flux, suggesting

that LAPTM4B plays a critical role in the later stages of

autophagy (48, 76).

LAPTM4B participates in autophagy through the EGFR

pathway. It was found that inactive EGFR co-localized with

LAPTM4B in early and late endosomes, and in cells under serum-

free conditions, the two molecules interacted and stabilized each

other (65). As an endosomal protein, LAPTM4B regulates inactive

EGFR accumulation in endosomes and inhibits EGF-stimulated

luminal sorting and lysosomal degradation of EGFR to promote

active EGFR signaling. Specifically, on the one hand, LAPTM4B is

required for endosomal accumulation of inactive EGFR and

autophagy, and is a cofactor for inactive EGFR-driven autophagy.

Inactive EGFR in endosomes interacts with and stabilizes

LAPTM4B to recruit ATG5 to dissociate Beclin1 from the

RUBICON-Beclin1 complex to trigger autophagy (Figure 2F). On

the other hand, the expression level of LAPTM4B correlated

positively with the level of active EGFR (65). It was also found

that LAPTM4B and Beclin1 co-localize in the cytoplasm, where

Beclin1 interacts with the N-terminal and C-terminal structural

domains of LAPTM4B and competes with EGFR to bind

LAPTM4B, which in turn facilitates the initiation of autophagy

(53, 67). Therefore, it can be hypothesized that LAPTM4B competes

with EGFR to interact with Beclin1 to antagonize autophagy

inhibition (68). In nasopharyngeal carcinoma, it was found that

LAPTM4B and EGFR form stable endosomes in radioresistant cells

and that LAPTM4B interacts with Beclin 1 to promote the initiation

of autophagic flux, possibly by promoting the formation of a

phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3,

also known as Vps34) complex with Beclin 1 (53). However, in

gastric cancer, it has been proposed that Beclin 1 interacts with both

the N- and C-terminus of LAPTM4B and that this interaction is not

dependent on the Vps34 complex (67). In addition, LAPTM4B

might regulate autophagy through other EGFR signaling pathways,

including PI3K/AKT/mechanistic target of rapamycin kinase

(mTOR), EGFR-RAS, EGFR-signal transducer and activator of

transcription 3 (STAT3) (Figure 2G). PI3K, AKT, and mTOR are

downstream molecules in the EGFR signaling pathway, and
Frontiers in Oncology 07
activated EGFR phosphorylates PI3K and AKT, which activates

mTOR and then negatively regulates autophagy (69). EGFR family

members activate the RAS/mitogen activated protein kinase

(MAPK) pathway, which in turn activates RAF. Activated RAF

further promotes autophagy (70–72). In addition, the RAS signaling

pathway might promote autophagy by upregulating the expression

of ATG5 and ATG7 (90, 91). EGFR inhibits autophagy by

interacting with the anti-autophagy proteins B-Cell CLL/

lymphoma 2 (Bcl-2) and Beclin 1 (92, 93). In addition, EGFR

signaling inhibits autophagy by interacting with Protein Kinase R

(PKR) through the SH2 structural domain of cytoplasmic STAT3

(94, 95).
4.3 LAPTM4B regulates the mTORC1
signaling pathway

It has been proposed that ceramide sensitizes cancer cells to

chemotherapy-induced death (96–98). Nevertheless, cells deficient

in acidic ceramidase (ASAH1) and LAPTM4B had higher ceramide

levels than cells deficient in ASAH1 alone. However, at this point

the cells are desensitized to drug-induced apoptosis and the pro-

apoptotic effect through the accumulation of ceramide on the

endoplasmic reticulum (ER), which was counteracted by

LAPTM4B silencing after deletion of ceramide transfer protein

(CERT), resulting from the reduction of ceramide reaching the

ER after LAPTM4B silencing (54).

Studies of the interaction of LAPTM4B with ceramide have

revealed that the third transmembrane region (TM3) of LAPTM4B

contains a ceramide-binding site that consists of a sphingolipid-

binding motif and a neighboring aspartic acid residue (99, 100)

(Figure 1). By interacting with this motif, ceramide regulates the

conformation of LAPTM4B, making it more likely to bind to the

amino acid transporter protein heavy chain 4F2hc, thereby affecting

the mechanistic target of rapamycin complex 1 (mTORC1)

signaling pathway (54). In contrast, aspartic acid residues in the

transmembrane region provide LAPTM4B with functional

flexibility, allowing LAPTM4B to reduce TM3 bending in the

presence of ceramide, thereby facilitating its binding to 4F2hc.

This binding enhances mTORC1 activity to promote cellular

nutrient signaling (46, 55).

In studies on the binding of LAPTM4B to the leucine transporter

protein (L-type amino acid transporter 1 (LAT1)-4F2hc), LAPTM4B

was able to recruit LAT1-4F2hc to lysosomes, as determined by mass

spectrometry analysis and immunoprecipitation experiments. The

localization of LAT1-4F2hc to the lysosome by LAPTM4B resulted in

Leu entry (101, 102). In contrast, knockdown of LAPTM4B reduced

the lysosomal localization of LAT1-4F2hc, indicating its critical role

in Leu entry. Moreover, LAPTM4B promotes Leu uptake into

lysosomes by recruiting LAT1-4F2hc to lysosomes and activating

the lysosomal membrane protease (V-ATPase) inside lysosomes

(inside-out activation) (103), which leads to Ragulator, RagA/B-

GTP, and mTORC1 activation via Rheb-GTP, which in turn

stimulates mTORC1 activation (Figure 2H) (46).
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4.4 LAPTM4B regulates ceramide-induced
exosome release

Exosomes are nanosized extracellular vesicles that originate

from endosomes. They release endocytic vesicles (intraluminal

vesicles (ILVs)) into the extracellular space through the fusion of

multivesicular bodies (MVBs) with the plasma membrane (104).

Exosomes can carry proteins, lipids, and RNA, being involved in

intercellular molecular communication and waste removal (105).

It was found that in neuroblastoma cells, LAPTM4B binds to

ceramide and facilitates the translocation of MVBs to the plasma

membrane, which in turn increases the release of exosomes.

Exogenous ceramide can enter neuroblastoma cells via the

endocytosis pathway and induces exosome secretion. It was found

that knockdown of LAPTM4B completely inhibited the ceramide-

mediated increase in exosome release. In addition, ASAH1 causes

ceramide to accumulate intracellularly and increases exosome

production in a LAPTM4B-dependent manner (106). LAPTM4B

also binds to ceramides of long-chain fatty acids through their

sphingolipid-binding structural domain, accelerating the transport

of MVBs to the plasma membrane and enhancing exosome

secretion (59). Studies found that LAPTM4B contains a

functional sphingolipid interaction motif (SLim) in its third

transmembrane structural domain (TM3) (55, 99), and that SLim

acts to efficiently sort LAPTM4B into the membrane of ILVs for

extracellular release. These studies also revealed that LAPTM4B was

secreted from human cells in small extracellular vesicles (sEVs)

both in vivo and in vitro. LAPTM4B regulates the glycosphingolipid

and ether lipid composition of sEVs in a SLim-controlled manner

and modulates EV membrane properties (Figure 2I) (56). In

addition, exosomes isolated from HCC cell culture supernatants

contained LAPTM4B (107).
5 Potential of LAPTM4B as a
therapeutic target

Although multiple molecularly targeted agents have been

developed, some targeted therapies might be ineffective; therefore,

additional targets, such as LAPTM4B, are needed to treat cancer.

EGFR tyrosine kinase inhibitors (EGFR-TKIs) block the cellular

functions mediated by EGFR kinase signaling in non-small cell lung

cancer, but they also activate inactive EGFR in autophagy, which

may provide a survival advantage and induce TKI resistance in

cancer (108). Thus, co-targeting EGFR and other molecules might

be a promising strategy to overcome TKI resistance in cancer.

LAPTM4B, an oncoprotein that promotes active EGFR signaling in

cancer cells and is required for the autophagy process induced by

inactive EGFR, might represent a synergistic targeting molecule in

cancer therapy (109).

Inhibiting LAPTM4B activates AKT signaling and inhibits

cancer cell proliferation (73). Disrupting the interaction between

LAPTM4B and SH3 domain-containing proteins controls cancer

invasion and metastasis (6). Expression of LAPTM4B reduces the

output of advanced endosomal ceramide and promotes apoptosis in
Frontiers in Oncology 08
cancer cells (54). LAPTM4B promotes drug release through the

efflux pump P-gp, which stimulates multi-drug resistance in cancer

cells (47). Thus, it is evident that LAPTM4B plays a key role in

tumors and offers possibilities for cancer therapy.

A study reported the design and synthesis of the far infrared/near

infrared (FR/NIR) fluorescent lamp probe DBT-2EEGIHGHHIISVG,

which specifically displays the LAPTM4B protein in cancer cells and

tumor-bearing mice. The probe DBT-2EEGIHGHHIISVG enables

the targeted visualization of LAPTM4B in human HCC cells, and

selective and high-contrast imaging of LAPTM4B protein-expressing

tumor tissues in live mice, which has the potential tomake LAPTM4B

useful in the treatment of HCC (110).

Ethylglyoxal bisthiosemicarbazon (ETS) specifically killed HCC

cells by inhibiting the phosphorylation of the Tyr285 of LAPTM4B-

35, which is involved in the activation of the PI3K/AKT signaling

pathway induced by LAPTM4B-35 overexpression (111). In

addition, ETS reversed the effect of LAPTM4B-35 overexpression

on the levels of c-myc, B-Cell CLL/lymphoma 2 Bcl-2, BCL2-

associated X protein (Bax), cyclinD1, and p-AKT molecules in

HCC cells, marking LAPTM4B-35 as a candidate for targeted

therapy in HCC (112).
6 Conclusion and prospective

The important role of LAPTM4B in cancer biology is

increasingly recognized. LAPTM4B is overexpressed in a variety

of tumors and affects cell proliferation, migration, invasion, and

drug resistance. Its genetic polymorphisms have been associated

with susceptibility to several cancers, highlighting its potential as a

biomarker in cancer risk assessment. The ability of LAPTM4B to

modulate key signaling pathways, such as PI3K/AKT and EGFR,

and affect autophagy and chemoresistance, and its ability to interact

with autophagy-associated proteins and ceramides, further

illustrates the complexity of the role of LAPTM4B in tumor cell

survival. In addition, LAPTM4B’s interaction with the P-gp efflux

pump enhances chemoresistance, while its modulation of

autophagy and apoptotic processes highlights its potential as a

therapeutic target. Tumor growth and sensitivity to chemotherapy

can be modified by altering LAPTM4B expression, making it a

promising target for innovative cancer therapies.

However, the exact molecular mechanisms by which LAPTM4B

affects cancer progression remain a focus of future research.

Understanding the role of LAPTM4B in different types of cancer is

essential to develop targeted therapies. Investigating polymorphisms

in the gene will also allow for personalized treatment strategies based

on individual genetic profiles. The development of LAPTM4B

inhibitors or modulators could provide new avenues for cancer

treatment, especially for tumors that have not responded to

conventional treatments. Combining LAPTM4B-targeted therapies

with existing therapies could improve efficacy and overcome drug

resistance. In addition, the potential use of LAPTM4B as a diagnostic

marker warrants further exploration. Techniques to visualize

LAPTM4B expression in vivo could facilitate early cancer detection

and monitoring of treatment responses.
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In conclusion, the multiple roles of LAPTM4B in tumorigenesis

present both challenges and opportunities. Improving our

understanding of this protein might lead to major breakthroughs

in cancer therapy and holds promise for improved outcomes for

patients with drug-resistant cancers.
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