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Background: Cancer is a leading cause of death, especially among women, with

cancers like breast, ovarian, and cervical cancer presenting unique diagnostic and

treatment challenges. Systemic inflammation plays a significant role in cancer

progression, affecting both tumor development and therapeutic outcomes.

Despite the established link between inflammation and cancer, comprehensive

studies on the prognostic value of the Aggregate Index of Systemic Inflammation

(AISI) in female cancer patients are lacking. This study explores the association

between AISI and mortality outcomes, including all-cause and cardiovascular

mortality, in female cancer patients.

Methods: This study analyzes data from the NHANES database and Dandong

Central Hospital. Kaplan-Meier survival curves andmultivariable Cox proportional

hazards regression analyses were used to assess the relationship between AISI

and all-cause and cardiovascular mortality. Restricted cubic spline plots and

subgroup analyses were applied to explore potential interactions.

Results: Elevated AISI levels were strongly associated with increased all-cause

and cardiovascular mortality. Patients in the highest AISI quartile demonstrated

significantly higher mortality risks compared to those in the lowest quartile. ROC

curve analysis indicated superior predictive performance of AISI over SII.

Restricted cubic spline plots revealed a linear relationship, with mortality risk

notably increasing when AISI levels were elevated.

Conclusion: AISI is a robust predictor of all-cause and cardiovascular mortality in

female cancer patients. Its ease of measurement and strong prognostic value

make it a valuable tool for risk assessment and management in this population.
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Introduction

In 2022, nearly 20 million new cancer cases were reported,

alongside 9.7 million cancer-related deaths. It is estimated that

approximately one in five individuals, regardless of gender, will

develop cancer in their lifetime, while roughly one in nine men and

one in twelve women are expected to succumb to the disease (1). A

recent study highlighted the disproportionate cancer mortality

among women, revealing that approximately one million children

lost their mothers to cancer in 2020. Nearly half of these maternal

deaths were attributed to breast or cervical cancer (2). Among

female patients, certain cancers, such as breast, ovarian, and cervical

cancers, have higher rates of occurrence. These types of cancer are

closely linked to women’s physiological characteristics and

hormonal environments, which makes their diagnosis and

treatment more complex (3). Therefore, improving cancer

treatment strategies to better meet the needs of female patients

can reduce the risk of complications and enhance long-term

survival outcomes (4, 5).

In recent years, growing evidence has shown that systemic

inflammatory responses play a critical role in the onset and

progression of cancer (6, 7). Inflammation is involved in various

stages of tumor development, including initiation, promotion,

malignant transformation, invasion, and metastasis. Furthermore,

inflammation has a significant impact on immune surveillance and

therapeutic responses (8). AISI has been widely used to explore the

link between inflammation and various diseases (9–11). As a

systemic inflammation indicator, AISI has emerged as a practical

and valuable tool. This biomarker is characterized by ease of

collection, rapid results, low cost, and high efficiency and

reliability, making it accessible through routine blood tests,

offering notable advantages for clinical application. Additionally,

the Systemic Immune-Inflammation Index (SII), another

immunoinflammatory marker, has been used to predict and

evaluate the prognosis of various solid tumors, including gastric

cancer, small-cell lung cancer, and ovarian cancer (12–15).

However, while AISI has been applied in studies of idiopathic

pulmonary fibrosis (IPF), COVID-19, hypertension, and certain

cancers (16–19), research on its prognostic value in female cancer

patients remains limited.
Abbreviations: NHANES, National Health and Nutrition Examination Survey;

AISI, Aggregate Index of Systemic Inflammation; BMI, Body Mass Index; NCHS,

National Center for Health Statistics; SII, Systemic Immune-Inflammation Index;

IPF, idiopathic pulmonary fibrosis; IRB, Institutional Review Board; NEU,

neutrophils; PLT, platelets; MON, monocytes; LYM, lymphocytes; NDI,

National Death Index; CBC, complete blood count; WBC, white blood cell;

MEC, mobile examination center; CAPI, computer-assisted personal interview;

ROC, receiver operating characteristic; HR, hazard ratio; TME, tumor

microenvironment; VEGF, vascular endothelial growth factor; NE, neutrophil

elastase; NETs, neutrophil extracellular traps; MPO, myeloperoxidase; TAMs,

tumor-associated macrophages; AUC, the area under the curve; NRI, Net

Reclassification Improvement; IDI, Integrated Discrimination Improvement;

NLR, neutrophil-lymphocyte ratio; PLR, platelet-lymphocyte ratio; CRP, C-

reactive protein
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Against this background, the present study aims to investigate

the potential association between AISI, a blood-based inflammatory

biomarker, and mortality outcomes (including all-cause mortality

and cardiovascular events) in female cancer patients. Additionally,

the study seeks to evaluate the comparative advantages of AISI and

SII in prognostic assessments, providing clinicians with a novel,

convenient, and reliable tool for risk assessment and management

strategies for female cancer patients.

The National Health and Nutrition Examination Survey

(NHANES) is a nationally representative cross-sectional survey

aimed at assessing the health and nutritional status of the U.S.

population. Utilizing a large, nationally representative dataset from

the NHANES database, this study examines the association between

the novel inflammatory biomarker AISI and all-cause as well as

cardiovascular mortality in female cancer patients.
Methods

Data source and study population

This study utilized two datasets: one derived from the NHANES

database and the other from inpatient data of Dandong Central

Hospital. Sample 1 comprises participants from the NHANES

database, covering the period from 1999 to 2023. NHANES is

organized and administered by the National Center for Health

Statistics (NCHS), utilizing a nationally representative, stratified,

multistage probability sampling method (20). The database is

managed and maintained by NCHS, with all participants

providing written informed consent, and the study received

approval from the NCHS Institutional Review Board (IRB).

Additional information is available at: http://www.cdc.gov/nchs/

nhanes/irba98.htm. Given that NHANES is a publicly available

dataset containing anonymous data, this study did not require

further ethical approval or informed consent. The study adhered

to ethical guidelines for the protection of human subjects’ safety and

privacy as outlined by relevant authorities and data administrators.

The study cohort comprised adult female participants diagnosed

with cancer, along with a general population sample. The exclusion

criteria were as follows: 1) All male participants and female

individuals under the age of 18; 2) participants with missing

hematologic laboratory test data on neutrophils (NEU), platelets

(PLT), monocytes (MON), or lymphocytes (LYM); 3) individuals

lacking covariate data; 4) individuals with incomplete or

undisclosed mortality data; and 5) participants without available

sample weight data. In total, 2,387 participants were included in the

analysis. The participant selection process is depicted in Figure 1.

Sample 2 includes electronic medical record data from female

patients diagnosed with cancer at our hospital between January

2022 and December 2023. The dataset records baseline

characteristics and laboratory test results at admission. Blood

samples were collected, processed, and analyzed following

standardized international biochemical laboratory protocols. This

study was conducted in accordance with the ethical guidelines

outlined in the 1964 Declaration of Helsinki and received

approval from the IRB; therefore, written informed consent was
frontiersin.org
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not required. The inclusion criteria were as follows: (1) absence of a

pathological report confirming cancer diagnosis; (2) incomplete

laboratory test or electronic medical record data; (3) presence of

underlying diseases that directly affect four key hematological

parameters, such as infections, liver cirrhosis, exogenous albumin

supplementation, or leukemia; (4) lack of complete follow-up

records. Ultimately, 116 participants were included, with the

detailed screening process illustrated in Supplementary Figure 1.
Cancer status and mortality

The diagnosis of cancer or malignant neoplasm was based on

responses to the following questions from the NHANES questionnaire

(MCQ220, MCQ230A, MCQ230B, MCQ230C): 1) Has a doctor or

other healthcare professional ever told you that you had cancer or a

malignant tumor? 2) If yes, what type of cancer was it?

NHANES data were linked with mortality data from the National

Death Index (NDI) through December 31, 2019, which is publicly

available. This linkage facilitated the determination of mortality

outcomes in the study population. To ensure accurate data

matching, a probabilistic matching algorithm was applied. Causes

of death were classified according to the International Classification

of Diseases, 10th Revision (ICD-10) (21). With the NCHS classifying

heart diseases (054–064) and all other causes (010) for our study (21).
AISI definition

AISI was derived using Beckman Coulter’s counting and

classification method, based on parameters from a complete blood

count (CBC). This method involves automated sample handling,

including dilution and mixing, with hemoglobin measurements
Frontiers in Oncology 03
conducted via a single-beam photometer. White blood cell (WBC)

classification was performed using VCS technology. CBC analysis of

blood samples was conducted at the NHANES mobile examination

center (MEC) using the Beckman Coulter DxH 800 device, which

also provided blood cell distribution data. According to previous

studies, the AISI formula is calculated as (NEU * PLT * MONO)/

LYM (22). Additionally, due to the left-skewed distribution of

inflammatory markers observed in regression analysis, a

logarithmic (ln) transformation of the AISI was applied.
Covariates

This study identified independent risk factors associated with

female cancer and incorporated them as covariates in the analysis.

These covariates were selected based on prior research to minimize

potential confounding bias. Specifically, the included covariates

were age, race, education level, income-to-poverty ratio, body

mass index (BMI), smoking status, alcohol consumption, diabetes,

and hypertension. Demographic information, including age, race,

education level, and income-to-poverty ratio, was collected by

trained interviewers using the computer-assisted personal

interview (CAPI) system. Anthropometric measurements were

obtained by trained health technicians at the NHANES MEC, and

BMI was calculated as weight (kg) divided by height (m) squared.

Smoking status was categorized based on participants’

responses to two survey questions: “Have you ever smoked 100 or

more cigarettes?” and “Do you currently smoke?” Participants were

classified into three groups: never smokers, former smokers, and

current smokers. Never smokers were defined as individuals who

had never smoked 100 or more cigarettes and were not currently

smoking. Current smokers were those who had smoked 100 or

more cigarettes and were still smoking at the time of the survey,
FIGURE 1

Selection process for study cohorts.
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while former smokers were those who had smoked 100 or more

cigarettes in the past but had since quit. Alcohol consumption

was categorized according to self-reported drinking frequency into

four groups: heavy drinkers, moderate drinkers, light drinkers, and

non-drinkers. Heavy drinkers were defined as individuals

consuming four or more alcoholic beverages per day, moderate

drinkers as those consuming up to three drinks per day, light

drinkers as those who had consumed alcohol fewer than 12 times in

the past year, and non-drinkers as those who reported never

consuming alcohol.

Diabetes and hypertension diagnoses were determined using a

combination of questionnaire responses and laboratory data to

enhance diagnostic accuracy. The diabetes-related questionnaire

included questions such as: “Has a doctor ever diagnosed you with

diabetes?” “Do you take insulin?” and “Do you take oral hypoglycemic

medications?” Laboratory diagnostic criteria for diabetes were defined as

fasting blood glucose levels ≥7.0 mmol/L, HbA1c ≥6.5%, or oral glucose

tolerance test (OGTT) blood glucose levels ≥11.1 mmol/L. Similarly,

hypertension was diagnosed based on multiple blood pressure

measurements ≥130/80 mmHg or a self-reported physician diagnosis.
Statistical analysis

To ensure the sample’s national representativeness, MEC

weights from the NHANES sampling design were applied

following the NHANES weighting guidelines. Continuous

variables were reported as weighted means with their

corresponding standard errors, while categorical variables were

expressed as frequencies and weighted proportions. The chi-

square test was employed to evaluate differences in categorical

variables, and the Kruskal-Wallis test was utilized to compare

continuous variables across AISI quartiles (Q1–Q4).

Multivariable Cox proportional hazards regression analysis was

conducted to investigate the relationship between AISI and

mortality, with adjustments made for demographic characteristics

(Model 2) and all covariates (Model 3). Hazard ratios (HRs) and

95% confidence intervals (CIs) were calculated to quantify the

strength of these associations. Kaplan-Meier survival curves were

constructed to visualize survival probabilities across different AISI

quartiles, and statistical significance of the differences was assessed.

Additionally, we generated the receiver operating characteristic

(ROC) curves for AISI and SII in relation to both all-cause and

cardiovascular mortality rates to assess their predictive performance

in female cancer patients. To further explore these relationships, we

employed restricted cubic spline methods to visually demonstrate

the potential linear association between AISI and both all-cause and

cardiovascular mortality rates. For a more in-depth analysis, we

conducted threshold analysis to examine the association between

AISI and mortality rates. Subgroup analysis was performed to assess

the potential impact of other variables on these relationships,

thereby validating the robustness of our findings. Finally, we

implemented mediation analysis to investigate the mediating

effect of AISI on the relationship between cancer and both all-

cause and cardiovascular mortality in female patients.
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All statistical tests were two-sided, with a p-value of less than

0.05 considered indicative of statistical significance. Data analysis

was performed using IBM SPSS Statistics version 25.0 and R

version 4.3.1.
Results

Study population and baseline
characteristics

Between 1999 and 2023, a total of 142,310 participants from the

NHANES database were included in this study. After excluding

individuals who did not meet the study criteria or had incomplete

data, the final cohort comprised 2,387 female cancer patients and

25,109 individuals from the general population (Figure 1). The mean

age of participants was 62 ± 15 years. Baseline characteristics are

summarized in Table 1. Significant differences were observed across

groups in terms of age, race, education level, hypertension, and diabetes

according to the quartiles of AISI (p < 0.05). Supplementary Table 1

presents the clinical characteristics of the patients in Sample 2. The

study population is predominantly concentrated around the age of 60.
Mortality outcomes

During the 20-year follow-up period, Kaplan-Meier survival

curves indicated 678 cases of all-cause mortality and 136 cases of

cardiovascular mortality. Higher quartiles of AISI were associated

with reduced survival rates, highlighting an independent association

between elevated AISI levels and increased all-cause and

cardiovascular mortality among adult female cancer patients in

the United States (Figure 2).
Comparison of predictive performance:
AISI vs. SII

Furthermore, ROC curves were employed to compare the

predictive performance of SII and AISI in female cancer patients.

As shown in Figure 3, AISI demonstrated superior predictive ability

for both all-cause and cardiovascular mortality. Specifically, the area

under the curve (AUC) for AISI predicting all-cause mortality was

0.5918, while the AUC for SII was slightly lower at 0.5693. Similarly,

for cardiovascular mortality, AISI showed a higher AUC of 0.6030

compared to SII’s AUC of 0.5847. In addition, we calculated the Net

Reclassification Improvement (NRI) and Integrated Discrimination

Improvement (IDI) to further evaluate the improvement in

classification and risk stratification with AISI compared to SII. As

shown in Supplementary Table 2, the NRI and IDI analyses

confirmed that AISI provided a significantly better reclassification

of patients’ mortality risks, particularly in identifying high-risk

individuals. The Harrell’s Concordance Index also indicated a

higher concordance between AISI’s predictions and actual

mortality events, further supporting its superior predictive ability.
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Regression analysis of AISI and mortality
risk

Proportional hazards regression analysis identified a positive

correlation between AISI levels and mortality. This association

remained robust after adjusting for various covariates across

Models 2 and 3. Specifically, each one-unit increase in AISI was

associated with a 35% increase in the risk of all-cause mortality

(95% CI: 1.20–1.51) and a 48% increase in the risk of cardiovascular

mortality (95% CI: 1.14–1.94). Additionally, the data from Sample 2
Frontiers in Oncology 05
yielded similar findings. Cox regression analysis was performed on

the Sample 2 population, and the results further demonstrated a

positive association between AISI and all-cause mortality in female

cancer patients (1.57 [1.12, 2.21]). For detailed results, please refer

to Supplementary Table 3. Compared to patients in the lowest AISI

quartile (Q1), those in the highest quartile (Q4) exhibited

significantly higher risks for both all-cause and cardiovascular

mortality. Furthermore, patients in the third AISI quartile (Q3)

demonstrated an elevated risk of cardiovascular mortality relative to

those in Q1. These findings underscore a strong association between
TABLE 1 Baseline characteristics of the study cohort.

Study variables Total
(n=2387)

Quartiles of AISI

P valueQ1: <5.17
(n = 597)

Q2: 5.17-5.60
(n = 595)

Q3: 5.60-6.04
(n = 600)

Q4: >6.04
(n = 595)

Age, years 62.75 ± 15.74 60.88 ± 14.95 61.33 ± 15.58 64.19 ± 15.86 64.59 ± 16.23 <0.001

Race <0.001

Mexican 221 (9.26%) 60 (10.05%) 60 (10.08%) 51 (8.50%) 50 (8.40%)

Hispanic 142 (5.95%) 41 (6.87%) 36 (6.05%) 32 (5.33%) 33 (5.55%)

Non-Hispanic white 1623 (67.99%) 351 (58.79%) 412 (69.24%) 423 (70.50%) 437 (73.45%)

Non-Hispanic black 282 (11.81%) 110 (18.43%) 59 (9.92%) 65 (10.83%) 48 (8.07%)

Other/multiracial 119 (4.99%) 35 (5.86%) 28 (4.71%) 29 (4.83%) 27 (4.54%)

Education level, n (%) 0.006

Never attended high school 638 (26.73%) 190 (31.83%) 155 (26.05%) 156 (26.00%) 137 (23.03%)

High school and above 1749 (73.27%) 407 (68.17%) 440 (73.95%) 444 (74.00%) 458 (76.97%)

Poverty-to-income ratio, n (%) 0.906

Poor (≤1) 459 (19.23%) 121 (20.27%) 112 (18.82%) 113 (18.83%) 113 (18.99%)

Not poor (>1) 1928 (80.77%) 476 (79.73%) 483 (81.18%) 487 (81.17%) 482 (81.01%)

Smoking status, n (%) 0.572

Never 138 (5.78%) 35 (5.86%) 37 (6.22%) 36 (6.00%) 30 (5.04%)

Former 1487 (62.30%) 376 (62.98%) 357 (60.00%) 389 (64.83%) 365 (61.34%)

Current smoker 762 (31.92%) 186 (31.16%) 201 (33.78%) 175 (29.17%) 200 (33.61%)

Alcohol use, n (%) 0.065

Never 479 (20.07%) 101 (16.92%) 123 (20.67%) 120 (20.00%) 135 (22.69%)

Mild 411 (17.22%) 105 (17.59%) 93 (15.63%) 107 (17.83%) 106 (17.82%)

Moderate 1350 (56.56%) 365 (61.14%) 337 (56.64%) 338 (56.33%) 310 (52.10%)

Heavy 147 (6.16%) 26 (4.36%) 42 (7.06%) 35 (5.83%) 44 (7.39%)

Hypertension, n (%) 1273 (53.33%) 286 (47.91%) 305 (51.26%) 330 (55.00%) 352 (59.16%) <0.001

Diabetes mellitus, n (%) 446 (18.68%) 107 (17.92%) 95 (15.97%) 107 (17.83%) 137 (23.03%) 0.013

BMI, kg/m2 29.22 ± 6.80 29.08 ± 6.76 28.77 ± 6.17 29.34 ± 6.72 29.68 ± 7.46 0.122

Laboratory tests

Neutrophil count, 109/L 4.36 ± 1.79 3.08 ± 1.65 3.89 ± 1.07 4.52 ± 1.17 5.95 ± 1.78 <0.001

Lymphocyte count, 109/L 2.30 ± 7.53 3.16 ± 14.97 2.12 ± 0.74 2.04 ± 0.77 1.87 ± 0.76 0.014

monocytes count, 109/L 0.56 ± 0.22 0.44 ± 0.24 0.51 ± 0.13 0.58 ± 0.15 0.70 ± 0.25 <0.001

Platelet count, 109/L 255.35 ± 69.83 214.80 ± 58.30 245.63 ± 57.45 264.22 ± 61.70 296.81 ± 74.07 <0.001
fro
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FIGURE 3

ROC curves were utilized to assess the differences in predictive abilities of SII and AISI for all-cause (A) and cardiovascular (B) mortality in female
cancer patients. ROC receiver operating characteristic curve, AUC area under the curve.
FIGURE 2

Kaplan-Meier survival curves for all-cause mortality (A) and cardiovascular mortality (B) stratified by AISI quartiles, adjusted for age, race, education,
poverty-to-income ratio, hypertension, diabetes, BMI, alcohol use, and smoking.
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higher AISI quartiles and increased risks of all-cause and

cardiovascular mortality. AISI may serve as a valuable indicator

for assessing patient mortality risk, particularly for cardiovascular

events. The independent positive correlation between AISI,

analyzed as both a continuous and categorical variable, and

mortality is further supported by detailed effect sizes presented

in Table 2.
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Linear relationship between AISI and
mortality

Restricted cubic spline plots revealed a clear linear relationship

between AISI and both all-cause and cardiovascular mortality

(linear P < 0.05, Figure 4). This analysis was adjusted for all

covariates. Notably, when AISI reached a value of 5.61, the
TABLE 2 HRs (95% CIs) for all-cause and cardiovascular mortality according to different types of AISI data in cancer patients from NHANES (1999–
2023) among U.S. Adult females.

AISI Model1* Model2* Model3*

HR (95% CI) p
value

HR (95% CI) p
value

HR (95% CI) p
value

All-cause mortality

Continuous
data

1.50(1.34,1.69) <0.0001 1.37(1.22,1.54) <0.0001 1.35(1.20,1.51) <0.0001

Quartiles Q1 Reference Reference Reference

Q2 1.11(0.87,1.41) 0.3907 1.06(0.84,1.35) 0.6231 0.95(0.75,1.21) 0.6851

Q3 1.46(1.17,1.83) 0.001 1.24(0.98, 1.56) 0.0689 1.21(0.96,1.53) 0.1025

Q4 1.82(1.46,2.27) <0.0001 1.61(1.29,2.02) <0.0001 1.52(1.22,1.91) 0.0003

Cardiovascular mortality

Continuous
data

1.81(1.39,2.35) <0.0001 1.56(1.20,2.03) 0.0008 1.48(1.14,1.94) 0.0035

Quartiles Q1 Reference Reference Reference

Q2 1.35(0.75,2.42) 0.3188 1.24(0.69,2.24) 0.4716 1.05(0.58,1.91) 0.8774

Q3 2.29(1.34,3.93) 0.0025 1.85(1.07,3.20) 0.0268 1.74(1.01,3.01) 0.0477

Q4 2.55(1.49,4.35) 0.0006 2.12(1.23,3.63) 0.0066 1.84(1.06,3.19) 0.0295
fro
CI, Confidence Interval; HR, Hazard Ratio; AISI, The aggregate index of systemic inflammation.
*Model 1, non-adjusted. Model 2, adjusted for age, education, poverty-to-income ratio and race. Model 3, adjusted for age, race, education, poverty-to-income ratio, hypertension, diabetes,
alcohol use, smoking and BMI.
FIGURE 4

Association between AISI and all-cause mortality (A) and cardiovascular mortality (B) in participants with female cancer, adjusted for age, race,
education, poverty-to-income ratio, hypertension, diabetes, BMI, alcohol use, and smoking. The shaded areas represent the 95% CI.
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hazard ratio (HR) for both all-cause and cardiovascular mortality

was 1, indicating a threshold at which the risk of mortality

transitions from low to high. AISI levels exceeding this threshold

were significantly associated with a poorer prognosis among female

cancer patients. We also applied RCS curves to the Sample 2

population to visualize the results and determined that an AISI

level of 5.6 resulted in an AISI risk ratio equal to 1. (See

Supplementary Figure 2 for details).
Subgroup analysis

Subgroup analyses were conducted to evaluate the influence of

other covariates on the association between AISI and mortality

(Figure 5). Hazard ratio (HR) of 1 based on Cox proportional

hazards regression analysis was used as the reference point for the

threshold. By categorizing AISI into low- and high-risk groups

based on the threshold associated with the lowest risk, the analysis

revealed that female cancer patients with elevated AISI levels (AISI

> 5.61) exhibited a significantly higher risk of all-cause mortality

compared to those with lower AISI levels (HR = 1.58, 95% CI: 1.26–

1.99). These findings suggest that elevated AISI levels serve as a

strong predictor of increased mortality risk.
Mediation analysis

Finally, the results of the mediation analysis showed that AISI

did not play a mediating role in the effect of cancer on all-cause

mortality and cardiovascular mortality in female patients (Table 3).
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In this retrospective cohort study, we employed two datasets to

investigate the association between AISI and both all-cause and

cardiovascular mortality in female cancer patients. The study’s

primary finding revealed a robust, positive correlation between

AISI—analyzed both as a continuous variable and categorized

into quartiles—and mortality outcomes in this population. This

relationship persisted even after adjusting for a range of potential

confounding factors. Notably, when compared with the previously

established SII, AISI exhibited superior predictive accuracy for

mortality risk in female cancer patients. Subgroup analyses

further underscored that elevated AISI levels were strongly linked

to a heightened risk of all-cause mortality. However, in the studied

cohort, covariates such as age, hypertension, diabetes, smoking,

alcohol consumption, and body mass index did not significantly

influence the relationship between AISI and mortality (all P-values

> 0.05). Moreover, no significant interactions were observed

between AISI and these covariates, indicating that AISI may serve

as a robust independent predictor of mortality in this patient

population, with minimal confounding from other established

risk factors. By addressing a critical research gap, our findings

highlight the potential utility of AISI as a valuable prognostic

marker for assessing disease severity and clinical outcomes in

female cancer patients.

Inflammation significantly contributes to cancer development

and progression through multiple biological pathways. Growing

evidence underscores a strong association between inflammation

and cancer progression, as demonstrated in recent studies (23–26).

In the context of female cancers, chronic inflammation and
FIGURE 5

Subgroup analysis of the associations between AISI and all-cause and cardiovascular mortality, adjusted for age, race, education, poverty-to-income
ratio, hypertension, diabetes, BMI, alcohol use, and smoking.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1552341
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2025.1552341
sustained immune activation have been identified as critical factors

driving disease progression (27). AISI, a composite biomarker of

systemic inflammation, is constructed using key inflammatory

components, including neutrophils, platelets, monocytes,

and lymphocytes.

Inflammation and immune cells within the tumor

microenvironment (TME) play a pivotal role in influencing the

growth and progression of cancer cells (28, 29). Among these,

neutrophils are the most abundant immune cells in the TME and

have a dual role in tumor biology. Elevated neutrophil counts

suppress the secretion of tumor necrosis factor-a, which

subsequently increases circulating levels of vascular endothelial

growth factor (VEGF). The overexpression of VEGF facilitates

tumor angiogenesis, thereby accelerating tumor growth and

metastasis (30). Moreover, neutrophils secrete various

inflammatory mediators, including matrix metalloproteinase-9,

neutrophil elastase (NE), and interleukin-8, all of which

contribute to tumor proliferation and metastasis (31, 32).

Conversely, neutrophils also exhibit antitumor properties by

releasing neutrophil extracellular traps (NETs), which mediate

tumor cell destruction through components such as histones, NE,

and myeloperoxidase (MPO) (33–35). Richardson et al. further

demonstrated a correlation between NETs released by activated

neutrophils and poor prognosis in patients with colorectal

cancer (36).
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lymphocytopenia, highlighting a potential weakening of cell-

mediated adaptive immune responses (37). Lymphocytes, as key

mediators of immune surveillance and immunoediting, play a

critical role in antitumor immunity, with their infiltration into

TME serving as a fundamental requirement for effective immune

responses against tumors (38). Tumor-infiltrating lymphocytes are

strongly associated with improved survival across various cancers,

whereas low lymphocyte counts or inadequate infiltration are linked

to poorer survival outcomes (39). Specifically, lymphocytopenia has

been identified as an independent prognostic factor for both overall

survival and progression-free survival in patients with metastatic

breast cancer (40). Moreover, interactions between CD8+ cytotoxic

T lymphocytes and CD4+ helper T lymphocytes are essential for

inducing tumor cell apoptosis via immune-mediated antitumor

mechanisms (41). Overall, diminished lymphocyte counts may

reflect weak or insufficient tumor-specific immune responses,

underscoring the critical importance of lymphocytes in

cancer immunology.

Monocytes are widely recognized as protumorigenic cells,

serving as major sources of chemokines and cytokines within

TME, thereby driving tumor progression and metastasis (42, 43).

Tumor-secreted CCL5 and CXCL8 also play roles in recruiting

monocytes, neutrophils, and other leukocytes, which can

differentiate into TAMs and tumor-associated neutrophils

(TANs), both of which can assume pro-tumorigenic roles (44).

Furthermore, tumor cells can drive the substantial accumulation of

tumor-promoting myeloid immune cells within the tumor

microenvironment. For instance, myeloid-derived suppressor cells

(MDSCs), tumor-associated macrophages (TAMs), and regulatory

T cells have been identified as the predominant tumor-promoting

immune cells in the tumor microenvironment (45). Studies, such as

those conducted by Bingle et al. (46), have demonstrated that

macrophage density is strongly associated with poor clinical

prognosis in various solid tumors. Additionally, research has

revealed that TAMs promote tumor cell migration, invasion, and

angiogenesis while simultaneously suppressing antitumor immune

responses, thus facilitating tumor dissemination and metastasis (47,

48). Consistent with these findings, elevated peripheral monocyte

levels have been correlated with poor prognoses across multiple

cancer types (49–51).

Platelets, beyond their conventional roles in hemostasis and

wound healing, are actively involved in all stages of tumor

progression. Recent studies highlight the critical role of platelets

within TME. Platelets interact with TME components via

membrane proteins and secrete cytokines that regulate tumor

growth, metastasis, and invasion (52). During hematogenous

metastasis, platelets shield tumor cells, enhance their survival, and

facilitate immune evasion, thereby promoting ectopic metastasis

(53). Additionally, the interaction between tumor cells and platelets

triggers platelet activation, elevates platelet counts, and increases the

risk of thrombosis in cancer patients (54). Elevated platelet counts

have been identified as adverse prognostic indicators across various

cancer types (54, 55). Furthermore, Nicholas et al. (56)

demonstrated that the heightened cardiovascular risk observed in
TABLE 3 Mediation analysis of the association between Female cancer
patients and the risk of all cause and cardiovascular mortality mediated
by AISI.

Non-adjusted b (95%CI)
P-value

Adjust II b(95%CI)
P-value

AISI

All-cause mortality

Direct
effect

0.171 (0.154, 0.190) <0.0001 0.013 (0.004, 0.023) 0.002

Indirect
effect

0.002 (0.001, 0.003) 0.002 0.001 (-0.0002, 0.002) 0.104

Total
effect

0.173 (0.156, 0.192) <0.0001 0.014 (0.005, 0.024) 0.002

PM, % 1.2 5

P-value 0.002 0.106

Cardiovascular mortality

Direct
effect

0.027 (0.018, 0.037) <0.0001 -0.008 (-0.013,
-0.004) <0.0001

Indirect
effect

0.001 (0.0001, 0.001) 0.002 0.0002 (-0.00004,
0.0003) 0.104

Total
effect

0.028 (0.018, 0.038) <0.0001 -0.008 (-0.013,
-0.003) <0.0001

PM, % 2.2 -2

P-value 0.002 0.104
Crude model: we did not adjust other covariant.
Model II on AISI: we adjusted age, race, education, poverty-to-income ratio, hypertension,
diabetes, alcohol use, smoking and BMI.
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female cancer patients is influenced by multiple factors, including

chronic inflammation, oxidative stress, metabolic dysregulation,

clonal hematopoiesis, gut dysbiosis, hormonal alterations, and

cellular senescence. These exacerbated immune-inflammatory

responses not only accelerate cancer progression but also

contribute to irreversible cardiovascular damage, significantly

increasing mortality and the incidence of adverse cardiovascular

events (57). Thus, mitigating the overactivation of immune-

inflammatory pathways may help delay cancer progression and

reduce associated cardiovascular risks.

Our study presents several key strengths. First, the cohort

analysis is based on 15 cycles of the US NHANES from 1999 to

2023, which utilizes a rich dataset and spans a long survey period,

thereby ensuring the robustness and reliability of the results.

Second, to further validate the research findings, we utilized

clinical data from Dandong Central Hospital as a validation set,

thereby enhancing the external validity of the results and improving

the generalizability and applicability of the conclusions. Third,

Numerous studies have demonstrated that conventional

inflammatory markers, such as the neutrophil-lymphocyte ratio

(NLR), platelet-lymphocyte ratio (PLR), and C-reactive protein

(CRP), possess strong prognostic predictive capabilities in cancer

patients (58–63). However, AISI is considered to offer a more

comprehensive reflection of the systemic inflammatory status

compared to traditional markers, particularly excelling in the

prediction of poor prognosis. A study involving patients with IPF

found that AISI demonstrated the highest prognostic value among

various inflammatory markers, significantly outperforming NLR

and PLR (19). This advantage is primarily attributed to AISI’s

incorporation of monocyte count, which is more sensitive to

inflammatory responses, thereby providing a more accurate

assessment of the systemic inflammatory state. Finally, our study

is the first to systematically investigate the relationship between the

inflammation biomarker AISI and both all-cause and

cardiovascular mortality in female cancer patients. Our aim is to

identify novel prognostic indicators for the elevated mortality risk

in this population, providing clinicians with a new tool for

identifying high-risk individuals. Not only that, but we employed

multiple analytical approaches, including Cox proportional hazards

regression, subgroup analysis, and Kaplan-Meier survival curves, all

of which further substantiate the effectiveness of AISI as a reliable

predictor of mortality risk in female cancer survivors.
Limitations

While our study provides significant insights, it is important to

recognize its limitations. First, the use of cross-sectional laboratory

data restricts our ability to accurately assess longitudinal changes or

responses to interventions. To address this limitation, dynamic

monitoring of AISI levels could offer a more comprehensive

understanding of temporal fluctuations in immune-inflammatory

status. Second, we lacked access to detailed clinical information on

cancer patients, including TNM staging and tumor size. Although
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tumor stratification was performed, and confounding factors were

controlled, residual confounding by unmeasured variables remains

a possibility. Factors such as treatment regimens and genetic

variations, which were not included in the NHANES dataset, may

influence the stability of our results. Future clinical cohort studies

are necessary to validate our findings and examine the potential

impact of these variables. Third, the reliance on household

interviews and questionnaires in the NHANES dataset introduces

risks of reporting inaccuracies and recall bias. Although rigorous

validation processes are employed by agencies like the NCHS, these

inherent limitations cannot be completely eliminated.
Conclusions

By investigating the characteristics of the inflammatory

biomarkers AISI in female cancer patients, we found that AISI is

linearly positively correlated with both all-cause mortality and

cardiovascular mortality in this population. AISI is not only a

valuable prognostic biomarker, but its simplicity, ease of

measurement, and cost-effectiveness also underscore its broad

potential for clinical application. High-risk patients, as

determined by AISI levels, can benefit from enhanced

cardiovascular disease monitoring and intervention, which may

ultimately reduce mortality risk. It is recommended that AISI be

incorporated into the routine screening process for female cancer

patients. Furthermore, when combined with other clinical

indicators, AISI can contribute to the development of

personalized health management strategies. For instance, if AISI

exceeds 5.61, intensified cardiovascular disease interventions should

be considered, and cancer treatment regimens may be adjusted

accordingly. Therefore, our study highlights the potential clinical

value of the inflammation biomarker AISI in predicting the

prognosis of female cancer patients.
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