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Background: Aberrant hypermethylation of genomic DNA CpG islands (CGIs) is

frequently observed in human pancreatic cancer (PAC). A plasma cell-free DNA

(cfDNA)methylation analysis method can be utilized for the early and noninvasive

detection of PAC. This study also aimed to differentiate PAC from other

cancer types.

Methods: We employed the methylated CpG tandem amplification and

sequencing (MCTA-Seq) method, which targets approximately one-third of

CGIs, on plasma samples from PAC patients (n = 50) and healthy controls (n =

52), as well as from cancerous and adjacent noncancerous tissue samples (n =

66). The method’s efficacy in detecting PAC and distinguishing it from

hepatocellular carcinoma (HCC), colorectal cancer (CRC), and gastric cancer

(GC) was evaluated. Additionally, a methylation score and typing system for PAC

was also established.

Results: We identified a total of 120 cfDNA methylation biomarkers, including

IRX4, KCNS2, and RIMS4, for the detection of PAC in blood. A panel comprising

these biomarkers achieved a sensitivity of 97% and 86% for patients in the

discovery and validation cohorts, respectively, with a specificity of 100% in

both cohorts. The methylation scoring and typing systems were clinically

applicable. Furthermore, we identified hundreds of differentially methylated

cfDNA biomarkers between PAC and HCC, CRC, and GC. Certain

combinations of these markers can be used in a highly specific (approximately

100%) algorithm to differentiate PAC from HCC, CRC, and GC in blood.

Conclusions:Our study identified cfDNAmethylation markers for PAC, offering a

novel approach for the early, noninvasive diagnosis of PAC.
KEYWORDS

circulating cell-free DNA, DNA methylation, pancreatic cancer, early noninvasive
diagnosis, hepatocellular carcinoma, colorectal cancer, gastric cancer
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1 Introduction

In the realm of cancer research, alterations in DNAmethylation

have emerged as highly promising targets for the development of

potent diagnostic biomarkers (1–4). The analysis technologies for

DNA methylation can be generally classified into two main

categories: typing and profiling. Typing focuses on identifying

specific methylation patterns at particular loci, while profiling

aims to comprehensively map the methylation status across the

entire genome. To obtain more comprehensive and accurate

genomic insights, the majority of researchers, including our team,

place a high priority on profiling techniques (5–11). Globally,

pancreatic cancer (PAC) stands as the seventh leading cause of

cancer - related mortality (12). The early symptoms of PAC are

often rather subtle and nonspecific. They typically manifest as mild

abdominal pain, which can easily be mistaken for common digestive

issues, or as relatively minor problems with blood glucose control.

As a result, the majority of patients are unfortunately diagnosed at

an advanced stage, resulting in a 5-year survival rate of only 12%

(13). Currently, the most commonly clinically available biomarker

for PAC is the serum level of carbohydrate antigen 19-9 (CA19-9),

which lacks both diagnostic power and specificity in the early stage

of the disease (14, 15). Considering the relatively low incidence of

PAC in the general population, the risk of overdiagnosis during

screening efforts must be carefully considered (16). Overdiagnosis

can lead to unnecessary medical interventions, causing physical and

psychological harm to patients, as well as wasting valuable medical

resources (17–19). So, there is an urgent need to identify new

biomarkers or a panel of biomarkers to address the gaps in the early

diagnosis and treatment of PAC. Although previous studies have

explored the potential of circulating cell - free DNA (cfDNA) in

differentiating various cancer diseases, the research specifically

focused on PAC remains relatively limited (20–22). This limited

research on cfDNA in the context of PAC creates an opportunity for

further investigation to potentially uncover novel diagnostic and

prognostic markers for this deadly disease.

We previously developed methylated CpG tandem

amplification and sequencing (MCTA-Seq), a high-throughput

platform capable of investigating thousands of CpG islands

(CGIs) in a single blood-based experiment (23). In this study, we

applied MCTA-Seq to analyses 168 clinical samples, comprising 66

tissue samples and 102 plasma samples from patients with PAC and

healthy controls. Our findings have the potential to advance the

development of cfDNA methylation biomarkers and enhance the

clinical detection of PAC.
2 Materials and methods

2.1 Study design and patient cohorts

Patients and healthy controls were carefully recruited from the

Department of Surgery at Beijing Shijitan Hospital, Capital Medical

University, China. All patients had a definite postoperative

pathological diagnosis, and all normal healthy controls were

normal people who had no history of malignant tumors. The
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study protocol was approved by the Ethics Committee of Beijing

Shijitan Hospital (No. IIT2024-133-002). The Ethics Committee’s

review was comprehensive, covering all aspects of the study, from

the recruitment of participants to the handling and storage of

samples, and the subsequent data analysis. This approval was

essential to ensure that the study was conducted in an ethical

manner, protecting the rights and well - being of all participants.

Prior to their inclusion in the study, all participants were fully

informed about the nature, purpose, and potential risks and benefits

of the study. They were provided with detailed written materials

explaining the procedures involved in the collection of samples,

which included blood draws, tissue biopsies (if applicable), and how

these samples would be used in subsequent analyses. Ultimately, we

collected a total of 51 plasma samples and 66 tissue samples from

patients, along with 52 plasma samples from healthy controls.

Rigorous quality control measures were implemented to ensure

the reliability of our data (24–26). Specifically, any sample with a

total molecular count of less than 10,000 was excluded from further

analysis. In line with these criteria, only one patient’s plasma sample

failed to meet the threshold and was thus excluded from the study.

Subsequently, the remaining 102 plasma samples were

randomly partitioned into two groups according to a 6:4 ratio.

Cohort I, which consisted of 30 patient cases and 31 healthy

controls, was designated as the discovery set. This set was

primarily used to explore and identify potential biomarkers or

patterns related to the research objective. On the other hand,

Cohort II, comprising 20 patient cases and 21 healthy controls,

served as the validation set. Its purpose was to independently verify

the findings obtained from the discovery set, thereby enhancing the

robustness and generalizability of our research results.
2.2 Sample DNA MCTA-Seq library
preparation, and data processing

The tissue samples, each weighing approximately 20 milligrams,

were immediately cryopreserved at -80°C following a thorough

rinse with isotonic saline. Concurrently, 5 to 10 milliliters of blood

were collected and subjected to centrifugation at 4°C within a 6-

hour window. DNA extraction and MCTA-Seq library preparation

were subsequently performed according to previously described

methods (23). The prepared libraries were sequenced via the

Illumina HiSeq platform by Novogene Corporation, with a

sequencing depth of 0.5 gigabytes per nanogram of circulating

cell-free DNA for plasma samples or 2 gigabytes for each tissue

sample, yielding 150-base pair-end reads. The sequencing data were

processed as previously described (27, 28).
2.3 Discovery of plasma methylation
biomarkers via genome-wide
expression profiling

Building upon the methodologies of previous studies, we

established criteria for the selection of tumor-specific methylation

biomarkers for the diagnosis of PAC. These criteria include (1)
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significant differential hypermethylation in PAC tissues compared

with noncancerous tissues (P < 0.01); (2) proximity to CGCGCGG

motifs, with the biomarkers located less than 60 base pairs away; (3)

a high methylation level of at least 10 methylated alleles per million

mapped reads (MEPM); and (4) a low background methylation

frequency in normal plasma, which should be less than 5% to ensure

specificity. To validate these markers, we employed Monte Carlo

cross-validation, which involved randomly dividing the cohorts into

training and test sets 1000 times, and then quantifying the number

of mCGCGCGG-CpG sites exhibiting positive methylation values.

For further refinement of these biomarkers to differentiate PAC

from other malignancies, such as hepatocellular carcinoma (HCC),

colorectal cancer (CRC), and gastric cancer (GC), we refined our

selection criteria: (1) significant differential methylation between

the two types of tumor tissues (P < 0.01, fold change >2); (2) a

minimum of 5MEPM values in tumor tissues; and (3) a consistently

low methylation frequency in normal plasma across the different

cancer types, with the threshold set at less than 5%.
2.4 Construction of the methylation
scoring and typing system

Consensus clustering is a method for class discovery that aims

to identify unknown clusters composed of items sharing similar

intrinsic features, as described in study (29–35). In our research, all

PAC tissue samples were subjected to clustering analysis. The

optimal number of clusters was determined by examining the

cumulative distribution function (CDF). Similarly, plasma

samples were also analyses via an unsupervised clustering

algorithm. To pinpoint the most significant features among

plasma methylated biomarkers and mitigate the risk of

overfitting, we employed least absolute shrinkage and selection

operator (LASSO) regression (36, 37). All these identified features

were subsequently incorporated into a logistic regression analysis.

The methylation score was calculated via the following formula:

Methylation   score =  o (Coefi� Ai)

In this formula, Coefi denotes the regression coefficient of the

logistic model for each biomarker, i represents the individual

biomarker, and Ai signifies the MEPM value.
2.5 Establishment of a tumor type classifier

In alignment with previous studies, for each plasma sample

under evaluation, we conducted an assessment of both PAC-specific

and non-PAC diagnostic panels. The diagnostic process proceeded

as follows: samples were classified as non-cancerous only when both

the PAC panel and the non-PAC panel yielded negative results. A

positive result from either panel led to the classification of the

sample as cancerous, with the specific cancer type determined by

the panel that tested positive. The non-PAC panel specifically

identifies HCC, CRC, and GC, with diagnostic criteria established

in prior research (28). In instances where multiple panels returned
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positive results, a secondary evaluation was performed, prioritizing

the panel with the highest percentage of positively methylated CpG

sites to determine the final diagnosis. If the above process results in

an indeterminate outcome—where two or more panels exhibit an

equal proportion of positively methylated CpG sites—a definitive

diagnosis cannot be established. While this scenario is theoretically

possible, it is exceptionally rare in practice. The selection of

biomarkers and the establishment of their cut-off values were

guided by tissue analysis results and validated using an

independent cohort of normal plasma samples. This methodology

was implemented to reduce the risk of bias and enhance the

reliability of the diagnostic process.
2.6 Statistical analysis

For our analysis, we utilized custom R scripts and R packages to

construct a variety of visualizations and statistical measures. These

include principal component analysis (PCA) for dimensionality

reduction, heatmaps for data representation, box plots for

distribution analysis, and scatter plots for exploring relationships

between variables. Additionally, we employed circle plots and

uniform manifold approximation and projection (UMAP) for

advanced visualization techniques. To quantify the performance of

our diagnostic models, we calculated the area under the curve (AUC).

For unsupervised clustering, we applied algorithms to identify natural

groupings within the data. P < 0.05 was set as the benchmark for

determining statistical significance in our study (38–41).
3 Results

3.1 Identification of possible tissue and
plasma candidates

We applied MCTA-Seq to detect methylation in the tissues and

plasma of PAC patients to screen for cancer-specific diagnostic

biomarkers. For the tissue samples, we included 33 pairs of PAC

tissues and matched adjacent noncancerous tissues. A difference

analysis between cancerous and noncancerous tissues identified 4615

differentially methylated CpG sites in cancer (two-tailed Mann-

Whitney U-test, false discovery rate < 0.05, mean methylation fold

change > 2). PCA also revealed that most (31 of 33) of the PAC

cancerous tissues were distinguished from the noncancerous tissues

(Figure 1A). These results indicate that methylation changes

significantly during the carcinogenesis of PAC, which is consistent

with our previous studies in other tumors (27, 28).

Expanding our investigation to plasma samples, we examined a

total of 30 patient plasma samples and 31 normal control plasma

samples in the discovery cohort. A comparison between the plasma of

patients and controls revealed 1323 upregulated and 2619

downregulated methylated CpG sites (false discovery rate < 0.05,

mean methylation fold change >2, two-tailed Mann–Whitney U-test)

(Figure 1B). In general, the mCGCGCGG-CpGs that are differentially

methylated in both tissues and plasma are most likely to be included
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in the final diagnostic panel. For mCGCGCGG-CpGs that are

differentially methylated only in tissues or plasma, the reason may

be their different genomic locations. The demographic data of the

above participants are presented in Supplementary Table S1, of the

online Data Supplement. All MCTA-Seq data analyses were based on

the fully methylated molecule (FMM) algorithm (27). Among the

biomarkers identified, several have been recognized as potential

diagnostic indicators for PAC, including IRX4, PRKCB, and

CLEC11A. A significant portion of these biomarkers, however, were

newly identified in our study, such as MMP2, NAT8L, and GFRA4

(Figures 1C, D). These novel markers demonstrate a superior signal-

to-raise ratio compared with previously known markers, suggesting

their enhanced potential for accurate PAC diagnosis.
3.2 Establishment and evaluation of the
PAC classifier

In clinical practice, the ability to differentiate between benign

and malignant lesions at the earliest possible stage is critically

important, as it directly influences the choice of treatment

strategy. Given the significance of this issue, there is an urgent
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need to develop a reliable classifier capable of accurately identifying

patients with PAC. Leveraging PAC tissues and normal plasma

samples from our previous study (GSE124600) as an independent

dataset, we employed a method called additive positivity to select

candidate biomarkers. This approach involved counting the

number of mCGCGCGG-CpGs with positive methylation values.

To ensure robustness, we randomly divided the discovery

cohort into training and test sets 1,000 times using Monte Carlo

cross-validation. Through this process, a panel of 120

mCGCGCGG-CpGs demonstrated the best classification

performance (Figure 2A). The Brier score, which quantifies the

likelihood of prediction error, decreased progressively as more

biomarkers were included in the fre0 group, reaching its lowest

point between 100 and 150 markers. Detailed information about the

120 mCGCGCGG-CpGs included in the classifier is provided in

Supplementary Table S2 of the online Data Supplement. These

mCGCGCGG-CpGs exhibit hypermethylation in both tissues and

plasma of cancer patients compared to normal tissues and control

plasma, ensuring high sensitivity in model detection (Figure 2B).

The total methylation values of the 120 mCGCGCGG-CpGs in

PAC tissues ranged from 247 to 9,232, with a median of 2,243, while

in normal tissues, the range was 10 to 800, with a median of 268.
FIGURE 1

MCTA-Seq screened methylated cfDNA biomarkers for PAC. (A) Principal component analysis revealed that PAC cancer tissues have different DNA
methylation patterns than adjacent normal tissues. (B) Volcano plot showing differentially methylated CpG sites in the plasma of PAC patients and
the control group. The q value indicates the false discovery rate. MMP2-6658_1_1 (C) and NAT8L-19637_3_1 (D) are representative CpG site
biomarkers. ***P < 0.001; ****P < 0.0001; two-tailed MWW test.
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Notably, the number of positively methylated mCGCGCGG-CpGs

in the plasma of PAC patients ranged from 9 to 103 (median: 34),

compared to 0 to 10 (median: 2) in controls. This significant

difference underscores the potential of this classifier for screening

high-risk populations for PAC. The development of this classifier

represents a promising step toward early and accurate detection of

PAC, which is crucial for improving patient outcomes through

timely and appropriate treatment interventions.

To assess the diagnostic performance of the 120-mCGCGCGG-

CpGs panel, we analyzed positive counts and AUC values in both the

discovery and validation cohorts. In the discovery cohort (Figure 3A),

the positive counts of the 120 mCGCGCGG-CpGs were significantly

higher in patients with both early-stage (stages I&II) and advanced-

stage (stages III&IV) PAC compared to controls. The median counts

were 0 for controls, 37 for stages I&II, and 31 for stages III&IV (P <

0.0001, two-tailed Mann–Whitney U-test). Receiver operating

characteristic (ROC) curve analysis showed that the 120-

mCGCGCGG-CpGs panel achieved an AUC value of 0.99 (95%

CI, 0.99-1.00) for all-stage samples, outperforming CA19-9, which

had an AUC of 0.85 (95% CI, 0.77-0.93) (Figure 3B).

Similarly, in the validation cohort (Figures 3C, D), the positive

counts were significantly higher in PAC plasma samples than in

controls. The median counts were 29 for stage I&II, 34 for stage

III&IV, and 0 for controls (P < 0.001, two-tailed Mann–Whitney U-

test). The AUC values for the 120-mCGCGCGG-CpGs panel and

CA19-9 were 0.98 (95% CI, 0.96-1.00) and 0.87 (95% CI, 0.78-0.97),

respectively, further confirming the panel’s superior diagnostic

performance. When combining the training and validation cohorts,

the 120-mCGCGCGG-CpGs panel maintained an exceptional AUC
Frontiers in Oncology 05
value of 0.99 (95% CI, 0.99-1.00) for diagnosing PAC, while CA19-9

had an AUC of 0.85 (95% CI, 0.77-0.93) (Figures 3E, F). These results

highlight the robustness and high diagnostic accuracy of the 120-

mCGCGCGG-CpGs panel across different cohorts and stages of

PAC, underscoring its potential as a reliable tool for early and

accurate detection of pancreatic adenocarcinoma.
3.3 Methylation scoring and typing system

Following the risk score calculation, a waterfall plot analysis was

conducted to categorize the cases on the basis of their scores

(Figure 4A). Our model demonstrated exceptional discrimination

between patients and controls, correctly identifying all 52 patients

(100.0%) as true positives and all 52 controls (100.0%) as true

negatives (Figure 4B). Notably, the number of positive CpG sites

and their total methylation values varied significantly across

different tumor stages (Figures 4C, D). For stage I & II tumors,

the maximum positive count was 8, with a maximum total

methylation value of 150. In contrast, stage III & IV tumors

presented a maximum positive count of 14 and a maximum total

methylation value of 600. These findings underscore the importance

of our biomarker discovery process and validate the selection of a

14-CpG panel for the accurate identification of PAC patients.

The CDF and the relative change in the area under the CDF curve

are presented in Figures 5A, B, respectively. In the consensus

clustering analysis, determining the optimal k value is of utmost

importance. Referring to the criteria established in existing literature,

we defined the optimal k value as the point beyond which the area
FIGURE 2

Establishment of the PAC classifier. (A) Brier scores of the counting model trained from variables including the methylation frequency in the normal
plasma of the preselection set and the total number of markers. (B) Heatmap of the 120 mCGCGCGG-CpGs in PAC and adjacent normal tissues.
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under the CDF curve shows minimal change with further increases in

k. As a result, when k = 2, all tumor tissues were classified into two

distinct subgroups: the CpG island methylation phenotype (CIMP)

tumor cluster (n = 2) and the non-CIMP tumor cluster (n = 31)

(Figure 5C). Although the CIMP and non-CIMP tumor clusters had

similar median counts of positive CpG sites, the total methylation

value of the 120 PAC biomarkers was significantly higher in the

CIMP cluster (4809 for CIMP and 4692 for non-CIMP).

Among the 120 methylation markers for PAC, the range of

positive marker counts was identical for patients in stages I and II

(2-8), while it was 3-11 for stage III and 1-14 for stage IV. We can

only conclude that a patient is in stage III or IV when the number of

positive markers exceeds 8. Regarding the total positive methylation

values of the 120 markers, the range was the same for patients in

stages I and II (30 - 150), while it was 30 - 220 for stage III and 50 -

600 for stage IV. Similarly, we can only determine that a patient is in
Frontiers in Oncology 06
stage III or IV when the total positive methylation value exceeds

150. Correspondingly, we performed unsupervised hierarchical

clustering on the plasma data. The results revealed that tumor

patients and controls were almost completely separated into two

distinct clusters (Figure 5D). This finding strongly indicates the

powerful potential of MCTA - Seq for detection and classification in

both tissue and blood samples, highlighting its significance in

PAC research.
3.4 Specific biomarkers for each tumor

To determine whether MCTA-Seq could differentiate PAC

from other cancer types in blood, we analyzed MCTA-Seq data

from tissue and plasma samples of hepatocellular carcinoma (HCC;

n=25 tissue, n=64 plasma), colorectal cancer (CRC; n=33 tissue,
FIGURE 3

Detection of the 120 mCGCGCGG-CpGs in plasma from patients with PAC and controls. Positive counts of the 120 mCGCGCGG-CpGs in PAC
patients and normal controls (A, C, E). Receiver operating characteristic curves for the 120-loci cfDNA methylation panel and plasma CA19-9 alone
for distinguishing PACs from healthy controls in the discovery (B), and validation (D) cohorts and all cohorts (F) are shown. The P values were
computed via the two-tailed Mann–Whitney U-test. ****P < 0.0001; two-tailed MWW test. ns, not significant.
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FIGURE 4

Simplifying to 14 mCGCGCGCGG-CpGs for risk assessment and disease staging in PAC patients. (A) The waterfall plot illustrates the risk probability
distribution between PAC and normal plasmas. (B) ROC curve analysis revealed the performance of the selected 14-cfDNA panel in all PACs and
normal plasmas. (C, D) The positive numbers and total methylation values of these 14 mCGCGCGCGG-CpGs in different tumor stages were
significantly different.
FIGURE 5

Tumor subtypes were identified via the methylation sequencing results of tissues and plasma. (A) The consensus matrix obtained when k = 2. The
consistency values range from 0 to 1, where 0 means never clustering together (white), and one means always clustering together (dark blue).
(B) The CDF curves for different values of k The value of k represents the number of clusters in the consensus cluster. When the optimal k value is
reached, the area under the CDF curve does not significantly increase with increasing k value. (C) The total methylation values (MEPMs) of 120
mCGCGCGG-CpGs in different CIMP types of PAC and adjacent noncancerous tissues. ****P < 0.0001; two-tailed MWW test. (D) Unsupervised
clustering results of PAC and healthy control plasma via MCTA-Seq.
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n=142 plasma), and gastric cancer (GC; n=28 tissue, n=89 plasma)

patients, collected from previous studies (references 18-20). Similar

to the findings in HCC, CRC, and GC, the 120 mCGCGCGG-CpGs

associated with PAC were also predominantly positive in these

other tumor types. This observation prompted us to search for more

specific biomarkers to improve discrimination between cancer

types. We performed differential methylation analysis to identify

plasma biomarkers capable of distinguishing PAC from HCC, CRC,

and GC. Through these comparisons, we identified 621 PAC-

specific (P vs H) and 36 HCC-specific (H vs P) mCGCGCGG-

CpGs;148 PAC-specific (P vs C) and 10 CRC-specific (C vs P)

mCGCGCGG-CpGs; and1024 PAC-specific (P vs G) and 48 GC-

specific (G vs P) mCGCGCGG-CpGs. For each set of biomarkers,

we calculated the total methylation values for PAC and the

respective tumor type, which clearly differentiated all four tumor

types in blood (Figures 6A-C).

To further validate these findings, we employed Uniform

Manifold Approximation and Projection (UMAP) analysis. This

approach demonstrated clear separation between PAC and other

tumor plasma samples, as well as between normal controls and

patient plasma (Figure 6D). These analyses culminated in the
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identification of a panel of cfDNA methylation biomarkers

capable of accurately distinguishing PAC from HCC, CRC, and GC.
3.5 Distinguishing the type of tumor
in blood

Crucially, we next need to assess the possibility of MCTA-Seq

simultaneously screening high-risk populations for HCC, CRC, GC

and PAC, which is the core of our entire study.

To achieve an optimal balance between sensitivity and

specificity in screening, we established positive cut-off counts for

diagnostic biomarkers specific to each tumor type. These cut-offs

were determined through regression trend analysis using a

preselection cohort of normal plasma samples (n=96). The

resulting cut-off values were set at > 5 counts for HCC (n=38)

(Figure 7A), CRC (n=80) (Figure 7B), GC (n=153) (Figure 7C), and

PAC (n=120) (Figure 7D). In accordance of the established

algorithm, we examined normal plasma and PAC in this study

and HCC, CRC, and GC in previous studies. These findings

highlight the robustness and reliability of the MCTA-Seq-based
FIGURE 6

MCTA-Seq for discriminating PAC and HCC, PAC and CRC, and PAC and GC. (A) Total methylation values of the 621 PAC-specific mCGCGCGG-
CpGs (P vs H) and the 36 HCC-specific mCGCGCGG-CpGs (H vs P) in the plasma of patients with PAC and HCC at different stages and control
participants. (B) Total methylation values of the 148 PAC-specific mCGCGCGG-CpGs (P vs C) and the 10 CRC-specific mCGCGCGG-CpGs (C vs P)
in the plasma of patients with PAC and CRC at different stages and control participants. (C) Total methylation values of the 1024 PAC-specific
mCGCGCGG-CpGs (P vs G) and the 48 GC-specific mCGCGCGG-CpGs (G vs P) in the plasma of patients with PAC and GC in different stages and
control participants. (D) Uniform manifold approximations and projections of PAC, HCC, CRC, GC and control participant plasma samples are
indicated in the figure.
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screening approach for simultaneously detecting multiple cancer

types in high-risk populations. The high sensitivity and specificity

achieved across all tumor types underscore the potential of this

method for early and accurate cancer screening, which is critical for

improving patient outcomes through timely intervention.
4 Discussion

Compared to other genomic DNA methylation detection

methods, MCTA-Seq stands out as a semi-targeted approach,

uniquely capable of directionally enriching hypermethylated CpG

island genomic regions for high-throughput analysis. During the

amplification process, MCTA-Seq enhances and concentrates

signals from methylated CpG sites, significantly improving

detection sensitivity and providing a more comprehensive and

accurate depiction of methylation profiles, as evidenced in

previous studies (5–8, 42–44). In this study, we applied MCTA-

Seq to analyze tissue and peripheral blood samples from patients

with PAC, enabling us to map the methylation landscape at the

genomic level. Building on prior research, we achieved a significant

milestone by successfully differentiating PAC from other cancer

types, such as HCC, CRC, and GC.

MCTA-Seq targets the start sequence ‘CGCGCGGs’, the most

prevalent among short tandem CpG types, including

‘CGGCGGCGGs’, ‘CGCGGCGGs’, and ‘CGCGGCGAs’. While

this approach allows for the discovery of novel biomarkers on a

genome-wide scale, it may miss sequences lacking ‘CGCGCGGs’.

Our results identified several PAC methylation markers previously

reported in blood, such as EVX2, IKZF1, and CCDN2, as well as
Frontiers in Oncology 09
novel biomarkers like DHX30, C3orf70, and BRF1. These

overlapping markers across multiple studies underscore their

diagnostic potential for PAC, while inconsistent markers may

require further validation with larger sample sizes (45, 46).

Previous experience suggests that combining cancer-specific

biomarkers is more effective for distinguishing cancer origins

than relying on tissue-specific markers, and MCTA-Seq excels in

this regard (27, 28). We identified hundreds of differentially

methylated biomarkers between PAC and other cancers (HCC,

CRC, and GC). A classifier composed of these biomarkers achieved

diagnostic accuracy exceeding 90%, which is particularly valuable

for patients with cancer metastasis, as it aids in identifying the

primary lesion.

MCTA-Seq demonstrates remarkable sensitivity and specificity,

both surpassing 90%, for detecting stage I and II PAC. These results

align with those reported by Shen SY et al., who used the limma-trend

test statistic after large-scale sequencing to select the top 300

differentially methylated regions (DMRs) (47). In contrast, CA19-9,

the only FDA-approved serum biomarker for PAC, has limited clinical

utility due to its relatively low sensitivity (80%; 95% CI = 72-86%) and

specificity (75%; 95% CI = 68-80%). Efforts to improve PAC diagnosis

have explored combining CA19-9 with other biomarkers, such as

Mucin 5AC (MUC5AC), though the effectiveness of such

combinations remains under evaluation (48–50). Overall, the trend

in PAC diagnosis is shifting toward the use of multi-biomarker panels

rather than single biomarkers.

In recent years, bioinformatics methods have been widely used

to identify diagnostic and prognostic markers (51–55). An

increasing number of studies have investigated biomarkers related

to cancer and inflammation identified through machine learning
FIGURE 7

Determination of the cut-off values of positive biomarkers in different tumor types. (A–D) The process for establishing cut-off in PAC, HCC, CRC and
GC patients according to the frequency of cancer diagnostic biomarkers in normal controls. The dashed lines indicate the cut-off in each set.
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(56–59), single-cell analysis (60), and Mendelian randomization

analysis (61–66). Beyond diagnosis, DNA methylation is closely

linked to prognosis, cancer staging, and treatment response. Using

consensus clustering analysis, we identified two distinct clusters

with markedly different DNA methylation profiles, which

significantly correlated with cancer stage and prognosis. While

previous studies have explored methylation-based clustering in

cancer patients, our research is the first to apply this approach

specifically to PAC (67). Additionally, we developed a scoring

system that clearly differentiates patients (scores > 0) from

normal controls (scores < 0). These scoring and typing systems

have accelerated clinical translation, and their integration into

clinical practice is anticipated in the near future, offering

significant benefits for patient care and management. Our

findings clearly demonstrate that MCTA-Seq serves as a highly

potent genome-wide DNA methylation detection method,

particularly effective for the early noninvasive detection and

discrimination of PAC. This outcome is highly consistent with

our initial anticipations.
5 Conclusion

In this study, we identified 120 cfDNA methylation biomarkers

in blood for the detection of PAC, which demonstrated excellent

sensitivity and specificity. The innovative aspect of our study is the

development of a methylation score and typing system specifically

for PAC, which we believe holds great potential for clinical

application. Furthermore, we have uncovered hundreds of

differentially methylated cfDNA biomarkers that can effectively

distinguish PAC from HCC, CRC, and GC with high specificity.
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