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Predictive model using systemic
inflammation markers to assess
neoadjuvant chemotherapy
efficacy in breast cancer
Yulu Sun †, Yinan Guan †, Hao Yu, Yin Zhang, Jinqiu Tao,
Weijie Zhang and Yongzhong Yao*

Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The
Affiliated Hospital of Nanjing University Medical School, Nanjing, China
Background: Pathological complete response (pCR) is an important indicator for

evaluating the efficacy of neoadjuvant chemotherapy (NAC) in breast cancer. The

role of systemic inflammation markers in predicting pCR and the long-term

prognosis of breast cancer patients undergoing NAC remains controversial. The

purpose of this study was to explore the potential predictive and prognostic value

of systemic inflammation markers (NLR, PLR, LMR, NMR) and clinicopathological

characteristics in breast cancer patients receiving NAC and construct a pCR

prediction model based on these indicators.

Methods: A retrospective analysis was conducted on 209 breast cancer patients

who received NAC at Nanjing Drum Tower Hospital between January 2010 and

March 2020. Independent sample t-tests, chi-square tests, and logistic

regression models were used to evaluate the correlation between

clinicopathological data, systemic inflammation markers, and pCR. Receiver

operating characteristic (ROC) curves were utilized to determine the optimal

cut-off values for NLR, PLR, and LMR. Survival analysis was performed using the

Kaplan-Meier method and log-rank test. A predictive model for pCR was

constructed using machine learning algorithms.

Results: Among the 209 breast cancer patients, 29 achieved pCR. During a

median follow-up of 68 months, 74 patients experienced local or distant

metastasis, and 56 patients died. Univariate logistic regression analysis showed

that lymph node status, HER-2 status, NLR, PLR, and LMR were associated with

pCR. ROC curve analysis revealed that the optimal cut-off values for NLR, PLR,

and LMR were 1.525, 113.620, and 6.225, respectively. Multivariate logistic

regression analysis indicated that lymph node status, NLR, and LMR were

independent predictive factors for pCR. Survival analysis demonstrated that

lymph node status, NLR, and LMR were associated with prognosis. Machine

learning algorithm analysis identified the random forest (RF) model as the optimal

predictive model for pCR.

Conclusion: This study demonstrated that lymph node status, NLR, and LMR had

significant value in predicting pCR and prognosis in breast cancer patients. The
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RF model provides a simple and cost-effective tool for pCR prediction, offering

strong support for clinical decision-making in breast cancer treatment and aiding

in the optimization of individualized treatment strategies.
KEYWORDS

breast cancer, systemic inflammation markers, pCR, prognosis, predictive model
1 Introduction

Female breast cancer has been the leading cause of global cancer

incidence nowadays which seriously does harm to physical and

mental health of woman (1, 2). Nowadays, neoadjuvant

chemotherapy (NAC) is a standard therapeutic strategy for some

kinds of breast cancer, which can promote improved breast

conservation therapy rates and provide timely and individualized

information on chemotherapy sensitivity (3). Pathological complete

response (pCR) following neoadjuvant therapy serves as a key

measure of treatment effectiveness. It is commonly defined as the

complete absence of invasive cancer cells in the surgical specimen,

including both the primary tumor site and lymph nodes (4, 5).

Research has demonstrated that patients achieving pCR tend to

have more favorable long-term outcomes, such as significantly

prolonged disease-free survival (DFS) and overall survival (OS)

(6–8). As a result, the role of pCR as a surrogate endpoint for

clinical benefit for NAC has been widely acknowledged.

However, since not all patients achieve pCR, it is essential to

identify predictive biomarkers for treatment response to guide the

development of individualized treatment strategies. Therefore, many

studies are trying to explore tumor biomarkers for breast cancer

prognosis, but due to economic and technical limitations, most of

them remain in the laboratory stage and have not been applied to

clinical large-scale (9–12). It is hoped that a precise, comprehensive,

and easily accessible biomarker can be identified as soon as possible to

predict the efficacy of NAC and the prognosis of breast cancer patients.

Inflammation predisposes to the development of cancer and

promotes all stages of tumorigenesis such as initiation, promotion,

invasion, and metastasis (13, 14). Systemic and local tumor

inflammation all play an important role in the pathophysiology of

breast cancer. Among the various systemic inflammation markers,

the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte

ratio (PLR), and lymphocyte-to-monocyte ratio (LMR), neutrophil-

to-monocyte ratio (NMR) have attracted significant attention due to

their ability to reflect the balance between pro-tumor inflammatory

responses and anti-tumor immune activity (15–17). In addition,

peripheral blood testing is widely used in clinical practice, which is

convenient, cheap and fast to operate. Therefore, indicators of

peripheral blood inflammation are expected to become reliable

biomarkers for predicting pCR and long-term prognosis.

However, the predictive and prognostic value of different

systemic inflammation markers in breast cancer remains

controversial. Based on this, this study aimed to comprehensively
02
investigate the relationship between peripheral blood inflammation

markers (such as NLR, PLR, LMR and NMR) and the efficacy of NAC

or prognosis in breast cancer patients. By collecting peripheral blood

data and relevant clinicopathological information from breast cancer

patients, this study analyzed the applicability of these markers as tools

for predicting short-term treatment outcomes and long-term survival

rates in breast cancer. In addition, this study utilized machine

learning algorithms to construct various pCR prediction models

based on several blood inflammation markers. Through analysis

and comparison, the optimal model was ultimately identified to

predict the efficacy of NAC in different breast cancer patients.

Therefore, this study not only developed a simple and cost-effective

pCR prediction model based on systemic inflammatory markers but

also demonstrated its broad potential for clinical application. The

model supports precision medicine by evaluating NAC efficacy and

optimizing personalized treatment plans.

2 Methods

2.1 Patients

Female patients with invasive breast cancer between January

2010 and March 2020 at Nanjing Drum Tower Hospital were

retrospectively screened. The inclusion criteria were as follows:

(1) patients aged ≥18 years; (2) patients pathologically diagnosed

with invasive breast cancer using hollow needle biopsy before NAC;

(3) patients who underwent NAC prior to surgery; (4) patients with

available complete medical data. The exclusion criteria were as

follows: (1) patients with metastatic breast cancer or a history of

other primary malignant tumors (2) patients who received other

types of neoadjuvant therapy, including radiotherapy or endocrine

therapy; (3) patients with any chronic inflammatory diseases,

including autoimmune diseases, such as systemic lupus

erythematosus, rheumatoid arthritis, Sjögren’s syndrome, etc; (4)

Patients lost to follow-up. This study was approved by the Ethics

Committee of Nanjing Drum Tower Hospital and conducted in

compliance with the Declaration of Helsinki.
2.2 Clinicopathologic analysis

Patients information were collected from the electronic medical

records of Nanjing Drum Tower Hospital, including complete
frontiersin.org
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b lood count re su l t s w i th in one week be fore NAC,

clinicopathological characteristics, and treatment plans.

Neutrophil-to-lymphocyte ratio (NLR) = neutrophil count (109/

L)/lymphocyte count (109/L). Platelet-to-lymphocyte ratio (PLR) =

platelet count (109/L)/lymphocyte count (109/L). Lymphocyte-to-

monocyte ratio (LMR) = lymphocyte count (109/L)/monocyte

count (109/L). Neutrophil-to-monocyte ratio (NMR) = neutrophil

count (109/L)/monocyte count (109/L) (18).
2.3 Outcomes and patients follow-up

The primary endpoint of this study was pCR. pCR was defined

as the absence of invasive disease in the breast and axilla (ypT0ypN0

or ypTisypN0) (19). The secondary endpoint of this study were

disease free survival (DFS) and overall survival (OS). DFS was

calculated as the time (in months) from the date of diagnosis to the

date of relapse (local, loco-regional or distant recurrence) or death.

OS was calculated as the time (in months) from the date of

diagnosis to the date of death due to any cause or the final

follow-up time. Follow-ups were conducted every 3 months

during the first 2 years after surgery, every 6 months for 3-5

years, and annually thereafter.
2.4 Statistical analysis

Statistical analyses were performed using SPSS 22.0 software.

Continuous variables with a normal distribution, were analyzed

using an independent samples t-test. Categorical variables were

analyzed using the chi-square test. Univariate and multivariate

logistic regression models were used to evaluate the correlation

between clinicopathological characteristics and pCR. Receiver

operating characteristic (ROC) analysis was used to evaluate the

optimal cut-off value of systemic inflammatory markers. Survival

analysis was conducted using the Kaplan-Meier method and log-

rank test. A p-value of less than 0.05 was considered

statistically significant.
2.5 The predictive model construction
method

The pCR predictive model was constructed using the Support

Vector Machine (SVM), Random Forest (RF), and K-Nearest

Neighbors (KNN) algorithms sequentially through the PyCharm

Professional 2023.1.3 software. Standard Deviation (SD), Root

Mean Square Error (RMSE), and Correlation Coefficient (r) were

used as evaluation metrics to determine the optimal model.

2.5.1 Algorithm introduction
(1) SVM (Support Vector Machine)

SVM is a supervised algorithm used for both classification and

regression tasks (20). Its goal is to identify the hyperplane that best

separates classes in a high-dimensional space by maximizing the
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margin (distance) between the hyperplane and the closest data

points from each class, called support vectors. The optimization can

be expressed as:

min
1
2

wk k2

subject to:

yi(w · xi + b) ≥ 1, ∀i

where w is the weight vector, b is the bias, xi represents the input

features, and yi is the class label (+1 or -1). For cases where the data

is not linearly separable, SVM employs kernel functions (e.g.,

polynomial or RBF kernels) to project the data into a higher-

dimensional space.

(2) RF (Random Forest)

RF is an ensemble method based on decision trees, commonly

used for both classification and regression (21). It trains multiple

decision trees on random subsets of the data and generates

predictions by combining them-for classification via majority

voting or for regression by averaging. Each tree is built using a

bootstrap sample and splits nodes based on a random selection of

features. The prediction formula is:

ŷ =
1
No

N

i−1
Ti(x)

where Ti(x) is the prediction from the i-th tree and N is the total

number of trees. The randomization during training allows the

algorithm to model diverse data patterns effectively while reducing

overfitting and improving generalization.

(3) KNN (K-Nearest Neighbors)

KNN is a straightforward, non-parametric algorithm used for

classification and regression (22). It assigns a class to a data point by

finding its k-nearest neighbors in the feature space and determining

the majority class among them or predicts a value by averaging their

outputs. The similarity between data points is calculated using

distance metrics, such as the Euclidean distance:

d(x, x0) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(xi − x

0
i)
2

s

where x and x’ are feature vectors. KNN depends entirely on the

training data, making it computationally expensive during

prediction and sensitive to the value of k and the choice of

distance metric.

Fine-tuning hyperparameters plays a crucial role in enhancing

the effectiveness of machine learning models, as it significantly

affects their performance, complexity, training processes, and

generalization capabilities. This study examines the initial

hyperparameter settings of various algorithms, as shown in Table 1.

2.5.2 Evaluation index
Different algorithms were used to evaluate the accuracy of the

pCR prediction model. The evaluation metrics—standard deviation

(SD), root mean square error (RMSE), and correlation coefficient (r)

—provide a comprehensive assessment of the model’s performance.
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SD evaluates prediction consistency, RMSE measures accuracy by

penalizing larger errors, and r assesses the linear relationship

between predictions and actual outcomes. Together, these metrics

ensure the model’s reliability in predicting pCR and supporting

personalized clinical treatments. The calculations of evaluation

indicators are as follows (23):
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SD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
I=1(Xi − �X)2

r

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(yi;actual − yi;predicted)
2

N − 1

s

r =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −o

n
i=1(yi;actual − yi;predicted)

2

on
i=1(yi;actual − yaverage)

2

s

Where, yi,actual represents the true value for the i-th sample,

while yi,predicted denotes its predicted value. yaverage refers to the

mean of the actual values, and n or N corresponds to the total

number of samples. For the standard deviation formula, xi indicates

the value of the i-th sample, X̅ represents the average of the

sample values.
3 Results

3.1 Patient characteristics

A total of 209 patients with breast cancer who received NAC were

included in this research, with an average age of 50.9 ± 10.8 years
TABLE 2 Clinicopathological characteristics of breast cancer patients.

Characteristics Total (n=209) pCR (n=29) Non-pCR (n=180) P value

Age, years 50.9 ± 10.8 52.9 ± 9.4 50.6 ± 11.0 0.28

Menopausal state

Premenopausal 97 (46.4) 11 (37.9) 86 (47.8) 0.324

Postmenopausal 112 (53.6) 18 (62.1) 94 (52.2)

Tumor size

≤ 2 cm 42 (20.1) 9 (31.0) 33 (18.3) 0.113

>2cm 167 (79.9) 20 (69.0) 147 (81.7)

Lymph node metastasis

Negative 58 (27.8) 14 (48.3) 44 (24.4) 0.008

Positive 151 (72.2) 15 (51.7) 136 (75.6)

HER2 status

Negative 118 (56.5) 11 (37.9) 107 (59.4) 0.030

Positive 91 (43.5) 18 (62.1) 73 (40.6)

Molecular subtyping

HER2 91 (43.5) 18 (62.1) 73 (40.6) 0.032

TNBC 46 (22.0) 7 (24.1) 39 (21.7)

Luminal 72 (34.4) 4 (13.8) 68 (37.8)
Presented as mean ± standard deviation or frequency (%).
HER2 human epidermal growth factor receptor 2; TNBC triple-negative breast cancer.
Bold values indicate that they are statistically significant at P<0.05.
TABLE 1 The initial setting of each algorithm’s hyperparameter.

Algorithm Hyperparameter Value Range

SVM Kernel type Linear, Polynomial,
RBF, Sigmoid

Regularization parameter C 0.1, 1, 10

Gamma parameter 0.01, 0.1, 1

RF Number of decision trees 100–500 (step size of 5)

Maximum depth 1–91 (step size of 1)

Maximum number of features 1–3

KNN Number of
neighbors (n_neighbors)

1–6 (step size of 1)

Weights ‘distance’ or ‘uniform’
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(Table 2). 29 of them benefited from NAC and obtained pCR, while

180 unobtained pCR. There were no significant differences in age,

menopausal status, and tumor size between the pCR group and the

non-pCR group (P>0.05). Patients without lymph node metastasis

were more likely to achieve pCR (P=0.008). In addition, The human

epidermal growth factor receptor 2 (HER2)-positive subtype was also

significantly increased in the pCR group (P=0.030), which may suggest

that HER2 positivity is associated with a better pCR.
3.2 Analysis of factors in relation to pCR in
breast cancer patients

Univariate analysis manifested that lymph node metastasis (OR

(95% CI): 0.347 (0.155-0.774), P=0.010), HER-2 status (OR (95%

CI): 2.399 (1.070-5.375), P=0.034), NLR (OR (95% CI): 0.283

(0.130-0.617), P=0.001), PLR (OR (95% CI): 0.987 (0.975-0.998),

P=0.019) and LMR (OR (95% CI): 1.214 (1.064-1.386), P=0.004)

were the factors associated with the efficacy of NAC. The breast

cancer group without lymph node metastasis, HER2-positive group,

low NLR group, low PLR group, and high LMR group were more

likely to achieve pCR (Table 3).

Considering the lack of exact boundary values for NLR, PLR, and

LMR in clinical practice, the optimal cut-off values for predicting pCR

in this research were determined through Receiver Operating

Characteristic (ROC) analysis, grouped by NLR (1.525), PLR

(113.620), and LMR (6.225). The Area Under the Curve (AUC)

values of them were 0.729, 0.640, and 0.685, respectively (Table 4).

Multivariate binary logistic regression was performed on the

indicators with differences in univariate analysis. It was found that

lymph node metastasis (OR (95% CI): 0.347 (0.140-0.862),

P=0.023), NLR (OR (95% CI): 0.376 (0.143-0.990), P=0.048), and

LMR (OR (95% CI): 2.828 (1.081-7.400), P=0.034) were factors

associated with the efficacy of NAC (Table 5).
3.3 Survival analysis

During a median follow-up of 68 months (range: 5-168

months), 74 patients (35.4%) experienced local or distant
Frontiers in Oncology 05
metastasis, and 56 patients (26.8%) died. The average DFS was

115.7 months and the average OS was 130.3 months. Through

Kaplan-Meier analysis (log-rank test), it could be observed that the

absence of lymph node metastasis and lower NLR were associated

with longer DFS (P=0.005, P=0.029) and longer OS (P<0.001,

P=0.041). In addition, higher LMR was associated with longer

DFS (P=0.044). Although it was not significantly associated with

longer OS (P=0.059), a certain trend was observed. However, HER2

status and PLR were not associated with either DFS or OS

(P>0.05) (Figure 1).
3.4 Performance analysis of different
algorithm models

To further quantitatively describe the impact of Lymph Node

Metastasis, NLR, and LMR on pCR, this study utilized machine

learning algorithms to construct a pCR prediction model. The

performance of different algorithm models were shown in Table 6

and Figure 2. The performance of pCR predictive models

constructed with different algorithms were described using the

Taylor diagram. The Taylor diagram evaluated pCR predictive

models from different algorithms by comparing predictions to

observations using three metrics: SD, RMSE, and r. The radial

distance indicated SD (larger values are farther from the center), the

distance to Obs represented RMSE (shorter distances indicate

higher accuracy), and the angle with the horizontal axis reflected

r (smaller angles mean stronger correlations).
TABLE 3 Univariate logistic regression analysis of factors in relation to
pCR in breast cancer patients.

Variable OR value (95% CI) P value

Lymph node metastasis 0.347 (0.155-0.774) 0.010

HER2 status 2.399 (1.070-5.375) 0.034

NLR 0.283 (0.130-0.617) 0.001

PLR 0.987 (0.975-0.998) 0.019

LMR 1.214 (1.064-1.386) 0.004

NMR 0.921 (0.817-1.037) 0.175
pCR, pathological complete response; HER2, human epidermal growth factor receptor 2;
NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; LMR, lymphocyte-
to-monocyte ratio; NMR, neutrophil-to-monocyte ratio.
Bold values indicate that they are statistically significant at P<0.05.
TABLE 4 Optimal cut-off values of NLR, PLR, and MLR based on ROC
curve analysis for prediction of pCR in breast cancer patients.

Index AUC 95% CI Cut-off value P value

NLR 0.729 0.621-0.836 1.525 <0.001

PLR 0.640 0.537-0.742 113.620 0.016

LMR 0.685 0.576-0.794 6.225 0.001
fro
NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; LMR, lymphocyte-
to-monocyte ratio; ROC, Receiver Operating Characteristic; pCR, pathological complete
response; AUC, area under the curve. Bold values indicate that they are statistically
significant at P<0.05.
TABLE 5 Multivariate logistic regression analysis of factors in relation to
pCR in breast cancer patients.

Variable OR value (95% CI) P value

Constant 0.018

Lymph node metastasis (- VS +) 0.347 (0.140-0.862) 0.023

HER2 status (- VS +) 2.155 (0.888-5.228) 0.090

NLR (≤1.525 VS >1.525) 0.376 (0.143-0.990) 0.048

PLR (≤113.620 VS >113.620) 0.747 (0.282-1.977) 0.557

LMR (≤6.225 VS >6.225) 2.828 (1.081-7.400) 0.034
pCR, pathological complete response; HER2, human epidermal growth factor receptor 2;
NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; LMR, lymphocyte-
to-monocyte ratio.
Bold values indicate that they are statistically significant at P<0.05.
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The RF model performed the best (Figure 2). It had the lowest

RMSE (0.109), indicating the smallest error, and the highest r

(0.94), demonstrating the strongest fitting capability. Although its

SD (0.301) was slightly higher than other algorithms, its overall
Frontiers in Oncology 06
predictive performance was superior to both SVM and KNN. SVM

ranked second, with an RMSE of 0.110 and an r of 0.92, and it had

the lowest variability (SD=0.174), making it the runner-up choice.

KNN had the highest RMSE (0.121) and the lowest r (0.89),
FIGURE 1

Survival analysis. Kaplan–Meier survival plots of lymph node metastasis (A), HER2 status (C), NLR (E), PLR (G), and LMR (I) for disease-free
survival.Kaplan–Meier survival plots of lymph node metastasis (B), HER2 status (D), NLR (F), PLR (H), and LMR (J) for overall survival. p ≤ 0.05: *
(statistically significant); p ≤ 0.01: ** (highly significant); p ≤ 0.001: *** (extremely significant).
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indicating the poorest performance (Table 6). In summary, RF was

the optimal model. The optimal hyperparameter combination for

the model algorithm through cross-validation and grid search was:

n_estimators=200, max_depth=10, max_featurest= 2.

The RF algorithm outperforms SVM and KNN in pCR

prediction due to its structural and topological advantages, which

align with this study’s objectives (24). RF uses an ensemble of

decision trees with bootstrap aggregating, reducing overfitting and

improving robustness, making it effective for high-dimensional

clinical data like inflammation markers and clinicopathological

features. Its decision-tree framework automatically selects key

features and captures complex nonlinear relationships between

predictors and outcomes (25). This is critical for pCR prediction,

where such factors interact intricately. In comparison, SVM is

sensitive to parameter tuning, and KNN struggles with high-

dimensional data due to its lack of modeling.
4 Discussion

This study retrospectively analyzed the predictive and prognostic

value of several systemic inflammation markers in breast cancer

patients receiving NAC and developed an optimal prediction model,
Frontiers in Oncology 07
aiming to explore whether these indicators could influence pCR and

survival outcomes. We found that lymph node status, NLR, and LMR

were significant predictors of pCR and were closely associated with

recurrence and survival in breast cancer patients undergoing NAC.

Therefore, we successfully developed an optimal model to predict pCR

using these three factors with machine learning algorithms.

Inflammation plays a crucial role in the various stages of

carcinogenesis and cancer treatment (13, 26). It not only promotes

cancer initiation and progression by promoting tumor cell

proliferation, invasion, and metastasis but also suppresses anti-tumor

immune responses by altering the tumor microenvironment (27, 28).

Neutrophils and monocytes can promote tumor angiogenesis and

facilitate immune evasion by secreting pro-inflammatory factors and

growth factors, while lymphocytes play a critical role in anti-tumor

immunity (29, 30). Additionally, platelets contribute to tumor

progression by supporting tumor cell proliferation and protecting

them from immune system attacks (31, 32). Therefore, various

inflammatory markers have been incorporated into clinical studies to

assess systemic inflammatory status and immune function in patients.

However, numerous studies have shown that the role of different

systemic inflammatory markers in predicting treatment response and

prognosis in breast cancer remains controversial.

NLR is one of the most extensively studied inflammatory

markers. A meta-analysis by Cullinane et al. which included 8

studies with a total of 1,586 patients, demonstrated that a lower

baseline NLR was associated with a higher pCR rate (OR (95% CI):

1.83 (1.15–2.91), P=0.0003) (33). Subsequently, another meta-

analysis evaluating 17 studies showed that a high NLR was

associated with a lower pCR rate (OR (95% CI): 1.620 (1.209–

2.169), P<0.001) (34). Among this meta-analysis, 11 studies

assessed the relationship between NLR and DFS in breast cancer

patients, and indicated that elevated NLR was associated with

poorer DFS (HR (95% CI): 2.269 (1.557–3.307), P<0.001).

Furthermore, 6 studies revealed that elevated NLR was also

associated with poorer OS (HR (95% CI): 1.691 (1.365–2.096), P

< 0.001). These findings were entirely consistent with the results of

our study, which showed that higher NLR values were associated

with poorer pCR, DFS, and OS. Our study demonstrated that NLR

was an independent predictor of pCR after NAC in breast cancer

patients and a prognostic factor for DFS and OS. However, a small

number of studies did not observe a significant predictive

relationship between NLR levels and pCR and suggested that

NLR was not an independent prognostic indicator for DFS (35, 36).

PLR, as a systemic inflammatory marker, remains controversial

in its predictive and prognostic value for breast cancer patients

undergoing NAC. A meta-analysis by Qi et al., which included 22

studies involving 5,533 patients treated with NAC, demonstrated

that elevated PLR was associated with a lower pCR rate (HR (95%

CI): 0.77 (0.67–0.88), P<0.001), poorer OS (HR (95% CI): 1.90

(1.39–2.59), P<0.001), and worse DFS (HR (95% CI): 1.97 (1.56–

2.50), P<0.001) (37). Subsequently, another study also suggested

that PLR was an independent predictor of pCR, which contradicted

the findings of our study (38). However, two recent studies were

fully consistent with the results of our study, indicating that high

PLR groups showed lower pCR rates in univariate analysis, but PLR
TABLE 6 Performance comparison of different predictive models.

Model algorithm SD RMSE r

SVM 0.174 0.110 0.92

RF 0.301 0.109 0.94

KNN 0.265 0.121 0.89
SVM, support vector machine; RF, random forest; KNN, K-Nearest Neighbors; SD, standard
deviation; RMSE, root mean square error; r, correlation coefficient.
FIGURE 2

Performance comparison of different models. A, B and C represent
pCR models constructed using SVM, RF and KNN
algorithms respectively.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1552802
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sun et al. 10.3389/fonc.2025.1552802
was not significantly associated with pCR in multivariate analysis

and was unrelated to patient prognosis (39, 40). Interestingly, Dan

et al. found that the difference in PLR before and after treatment,

rather than pre-treatment or post-treatment PLR alone, was

significantly associated with pCR (41).

Studies on LMR and NMR are relatively limited, and this study

further enhances the understanding of these two inflammatory

markers. Peng et al., through a retrospective analysis of 808 breast

cancer patients undergoing NAC, found that pre-NAC LMR was an

independent predictor of NAC efficacy (OR (95% CI): 1.771 (1.273–

2.464), P=0.001) (42). This was consistent with our findings, as we

observed that higher LMR was associated with better pCR rates and

improved DFS. However, many studies suggested that higher LMR

after NAC or before surgery was closely associated with higher pCR

rates and better breast cancer prognosis (43, 44). This study did not

find a relationship between NMR and NAC efficacy or patient

prognosis, which was supported by some previous studies (42, 45).

Therefore, this study suggested that NMR was unlikely to serve as an

evaluation indicator for predicting NAC efficacy or survival prognosis.

A major highlight of this study was the identification of factors

associated with pCR through multivariate analysis, followed by the

construction of several pCR predictive models using machine learning

algorithms and the selection of the optimal model to assist in guiding

clinical decision-making. The higher accuracy of RF compared to SVM

and KNN primarily stems from its algorithm structure and topology

(21). In this study, the RF model achieved the smallest RMSE (0.109),

and the highest r (0.94), indicating the lowest error and the strongest

fitting ability. Therefore, RF outperformed SVM and KNN in terms of

handling data complexity, robustness, and stability across different

datasets, making it the optimal model in this study.

There are some limitations to this study. First, it is a single-center

retrospective study. Future multi-center prospective trials and external

validation could be conducted to make the model more universal and

generalizable. Second, the study involves a relatively long enrollment

period, during which breast cancer treatment methods have

continuously evolved, and the emergence of targeted therapies has

led to changes in NAC regimens. Finally, peripheral blood

inflammation markers are influenced by many factors, but this study

has excluded patients with inflammatory diseases or use of specific

medications. For model algorithm optimization, future efforts will aim

to expand the sample set and incorporate deep learning techniques,

such as neural networks, to build pCR prediction models with greater

adaptability and enhanced accuracy.
5 Conclusion

This study indicated that lymph node status, NLR, and LMR were

independent predictors of pCR and were strongly associated with the

prognosis of breast cancer patients undergoing NAC. To further

quantitatively analyze the impact of these three indicators on pCR,

pCR predictive models were constructed using machine learning

algorithm. The RF prediction model could effectively and accurately

evaluate the efficacy of NAC in breast cancer patients, providing a

simple and cost-effective tool for personalized treatment strategies.
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