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Introduction: Increasing evidence highlights the pivotal role of RNA methylation

and miRNAs in hepatocellular carcinoma (HCC). However, the risk associated

with RNA methylation-related miRNAs (RMRMs) in the HCC immune

microenvironment remains largely unknown. Here, we predicted the

correlation between RMRM risk and immune cell infiltration in HCC using

machine learning.

Methods: MiRNA sequencing data was used to identify RMRMs. A risk score

model of HCC was developed utilizing four RMRMs, including miR-551a, miR-

4739, miR-326, and miR-210-3p.

Results: Patients with high-risk scores exhibited poorer prognoses. Single-cell

RNA sequencing (scRNA-seq) analysis revealed the high-risk group exhibited

increased infiltration levels of several immune cell subtypes, including myeloid-

derived suppressor cell (MDSC), macrophage, and T cells. The data integration of

scRNA-seq and bulk RNA-seq showed the decreased TIDE score in the high-risk

patients and the elevated levels of Macro-secreted phosphoprotein 1 (SPP1),

MDSC-meiotic nuclear divisions 1 (MND1), gd T cells, and Macro-complement

C1q C chain (C1QC) predicted adverse prognosis. ScRNA-seq and spatial

transcriptomics data integration unveiled the spatial distribution of RMRMs risk

scores and their correlation with immune cell subtype localization. Risk model-

based clustering of HCC samples revealed that cluster 2, characterized by a

higher risk score, correlated with a poorer prognosis and reduced immune and

stromal scores. In vitro, the overexpression of miR-4739 in Huh-7 cells

significantly induced SPP1+ macrophages, and the culture medium derived

from SPP1+ macrophages further promoted the proliferation and migration of

Huh-7 cells. Furthermore, miR-4739 reduced m1A methylation by inhibiting

tRNA methyltransferase 61A (TRMT61A) expression.
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Discussion:Our study reveals that the RMRM risk model could effectively predict

the prognosis of HCC, and SPP1+ macrophages regulated by miR-4739-RNA

methylation promote the proliferation and migration of HCC cells. These results

highlight the potential of RMRMs in predicting the prognosis of HCC.
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1 Introduction

Hepatocellular carcinoma (HCC) is a highly aggressive form of

cancer that imposes a significant burden on patients across the globe (1,

2). HCC is characterized by strong invasiveness, uncomplicated

metastasis, and poor prognosis (3–5). Due to the lack of noticeable

symptoms in the early stages of HCC, patients are often diagnosed

when the disease has already progressed to an advanced stage (5).

Current management options for HCC include traditional drug

treatment, Radio-Frequency Ablation, systemic molecular, resections

in regional, and liver transplants (6–8). However, these approaches are

limited in their efficacy of HCC. The immune microenvironment plays

a pivotal role in the development and progression of HCC, and

immune checkpoint inhibitors have revolutionized the management

of HCC (7, 9, 10). Although immunotherapy has achieved significant

breakthroughs in the treatment of HCC, the clinical outcomes of HCC

for advanced stages are still unfavorable due to the heterogeneity of

HCC in terms of molecular and cellular signatures. Consequently, there

is an urgent need to identify easily quantifiable immune-related

biomarkers for early detection or therapeutic indicators of HCC.

MicroRNAs (miRNAs), known for their role in regulating gene

expression, hold substantial promise in the prognostic evaluation

and therapeutic management of HCC (11–17). In fact, the role of

miRNAs in the immune response of HCC has been validated. For

example, endoplasmic reticulum stress induces HCC cells to release

exosomal miRNA-23a-3p, which in turn upregulates the expression

of programmed death ligand 1 (PD-L1) in macrophages (18).

MiRNA-223 can attenuate hepatocarcinogenesis by blocking

hypoxia-driven angiogenesis and immunosuppression (19). Hu

et al. indicated that miRNA-22 reduced the abundance of

interleukin 17 (IL17)-producing T cells and inhibited IL17

signaling in HCC (20). These studies highlight the role and

involvement of miRNAs in the immunity of HCC. Therefore, it is

necessary to further explore the potential of miRNA as a biomarker

for HCC and the underlying regulatory mechanisms of miRNA on

the HCC immune microenvironment.

In recent years, up to 170 distinct chemical modifications have

been identified in RNA molecules, with N1-methyladenosine (m1A),

N6-methyladenosine (m6A), 5-methylcytosine (m5C), and N7-

methylguanosine (m7G) being particularly significant (21). The
02
role of RNA methylation has been revealed in HCC. Specifically,

the m6A methyltransferase-like 3 (METTL3)promotes non-alcoholic

fatty liver disease-induced HCC (22). The m1A methylation levels in

tRNA are remarkably elevated in tumor tissues of HCC patients and

are negatively associated with the survival of HCC patients (23). m5C

is highly conserved in different species, and the distribution pattern of

m5C in diversified RNA forms is species-specific (24). Tumor

microenvironment (TME) and prognosis of HCC are significantly

influenced by the patterns of m5Cmodification (25). Notably, a lower

patient survival rate was significantly related to higher expression of

almost all m5C regulators in HCC. The upregulation of tRNA m7G

methyltransferase complex components METTL1 and WD repeat

domain 4 has enhanced lapatinib resistance in HCC and increased

sensitivity to METTL1-targeting therapies (26). MiRNAs are virtually

involved at the post-transcriptional level and bind to 3’ UTR of their

target mRNA to regulate gene expression (27). Some studies have

indicated that miRNAs can bind RNA methylation-related genes to

regulate HCC biological processes (28, 29). However, it is still unclear

whether miRNAs regulate the HCC immune microenvironment by

binding to RNA methylation-related genes.

To explore the relationships of m6A/m5C/m1A/m7G-related

miRNAs with the immune microenvironment of HCC, we

established a risk model of RNA methylation-related miRNAs

(RMRMs) in HCC using micro RNA sequencing (miRNA-seq)

data and machine learning algorithms. We verified their reliability

in single-cell RNA sequencing (scRNA-seq) and spatial

transcriptomic data. In this study, we identified four RMRMs

associated with the risk model of HCC and assessed the effects of

RNA methylation-related miR-4739 in macrophages on HCC cells.

Our findings provide a new scientific basis for developing

biomarkers and targeted therapeutic molecules for HCC based

on immunology.
2 Materials and methods

2.1 MiRNA -seq data analysis

We downloaded miRNA-seq data in TCGA-LIHC samples

from the Genomic Data Commons (GDC) database (https://
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portal.gdc.cancer.gov/). The DESeq2 package and Wilcoxon rank-

sum test in R software were applied to analyze the differentially

expressed miRNAs between HCC and normal tissues, with a |log2

Fold Change| > 1 criterion and adjust P value < 0.05. Based on

previous studies (30, 31), M6A/m5C/m1A/m7G-associated genes

were selected. Miranda and TargetScan tools were used to predict

miRNA binding sites on the 3’UTR of genes. The binding sites with

Context+ Score > 0, Structure Score > 155, and Free Energy < -20

were selected. The regulatory network between miRNAs and RNA

methylation-related genes was conducted utilizing Cytoscape

(version 3.9.1).
2.2 HCC risk model construction based on
RMRMs

The clinical characteristics of 372 TCGA-LIHC patients were

downloaded from the cBioPortalData package in R software. The

univariate Cox analysis was used to identify 28 RMRMs associated

with the prognosis of patients with HCC (P value < 0.05). Lasso

regression analysis was performed using the glmnet package in R

software. Specifically, cancer samples in TCGA-LIHC were divided

into training and testing sets, each containing 186 samples. The

clinical information of both sets is presented in Supplementary

Tables S1 and S2. After performing Lasso regression analysis on the

relationship between 28 RMRMs and prognosis, 13 RMRMs were

obtained. Then, multivariate Cox analysis was performed based on

the expression and survival of these 13 RMRMs, and 4 RMRMs had

a P value less than 0.05.

For each sample, we calculated the risk score utilizing the

following formula: Risk score = expon
i=1Coefi � Expri . The

survival ROC and ggplot2 packages were used to calculate and

draw the ROC curves. Samples of low- and high-risk groups were

generated following the median risk score. The optimal threshold

was used to divide the samples of training/testing groups into high

and low groups. Kaplan-Meier (KM) curves of the two groups were

drawn utilizing the survival and survminer packages. The log-rank

test compares survival differences between the two groups.
2.3 ScRNA-seq data analysis

The GSE202642 dataset was downloaded from the Gene

Expression Omnibus (GEO) database, including 6 hepatitis B virus

(HBV)-infected HCC samples and 4 HBV samples (32). The uniform

manifold approximation and projection (UMAP) algorithm

performed an overall dimensionality reduction analysis. The

singleR package and BlueprintEncodeData were used as reference

data for auxiliary annotation, followed by the FindAllMarkers

database and previous studies to find marker genes for manual

annotation of different clusters. The risk model derived from

scRNA-seq data (GSE202642) was calculated using GSVA
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methodology based on 18 target genes of 4 miRNAs. According to

the risk model, gene set variation analysis (GSVA) scores and

immune cell infiltrations were analyzed for scRNA-seq data.
2.4 Spatial transcriptomics data analysis

Sequencing data was processed using the Space Ranger software

(10× Genomics) for the demultiplexing process, transforming

barcode and read data into FASTQ format, aligned with stained

tissue imagery, and creating read count matrices. Subsequently, the

processed data were analyzed via Seurat (v 4.0). The initial

visualization of count data overlaid on tissue images to

distinguish between technical and histological variances,

subsequent removal of areas indicative of necrosis and tissue

folding, and data normalization employing SCTransform. Post-

filtering datasets were consolidated, and Harmony applied batch

effect corrections across samples. Dimensionality reduction was

achieved through PCA, and clustering was proceeded with the

Leiden algorithm. The assignment of cell types to clusters was

determined by analyzing the most variable genetic features.
2.5 Consensus clustering analysis

The Consensus Cluster Plus package was used to cluster HCC

samples based on the expressions of 4 RMRMs with prognostic

significance. The classification method selected k=2, meaning the

HCC samples were divided into two groups, cluster 1 and cluster 2.

Their KM curves and risk scores were analyzed. The CIBERSORT

algorithm was used to evaluate the differences in immune cell

infiltrations between cluster 1 and cluster 2. The Stromal,

Immune, and ESTIMATE Score of TCGA samples were acquired

from the following website: https://bioinformatics.mdanderson.org/

public-software/estimate/.
2.6 Differential analysis

RNA-seq data in TCGA-LIHC was downloaded from GDC.

The Wilcoxon rank-sum test in the R package was used to analyze

the differentially expressed genes (DEGs, |log2 Fold Change| > 1,

and adjust P value < 0.05) between HCC and paracancerous

samples. We utilized the R package clusterProfiler to conduct GO

and KEGG enrichment analyses.
2.7 Single nucleotide variation analysis

SNV data of TCGA-LIHC patients was downloaded from GDC.

Maftools were used to plot waterfall charts of samples in cluster 1

and cluster 2.
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2.8 Tumor mutation burden analysis

TMB data of TCGA-LIHC patients was downloaded from the

cBioPortalData package in R software. The TMB was calculated

based on tumor-specific gene mutations. We combined patient

survival information and TMB data, divided all HCC samples into

cluster 1 and cluster 2, and analyzed the survival status of HCC

patients in cluster 1 and cluster 2. HCC patients were further

divided into 4 clusters: low TMB + cluster 1, low TMB + cluster

2, high TMB + cluster 1, and high TMB + cluster 2. The KM curves

of 4 clusters were depicted.
2.9 Drug sensitivity

The IC50 data for various drugs from liver cancer samples in

TCGA was downloaded from a previous study (33). The IC50

between cluster 1 and cluster 2 was compared by t-test.
2.10 Clinical HCC tissues

The HCC tissue samples were obtained from the General

Hospital of Ningxia Medical University. The patients signed an

informed consent form before undergoing surgical resection. A

total of 6 paracancerous tissue samples and 6 HCC tissue samples

were obtained in the present study. The ethics committee of the

General Hospital of Ningxia Medical University approved this

study [KYLL-2022-1057].
2.11 qRT-PCR analysis

We extracted total RNA using TRIzol reagent (Invitrogen, CA,

USA) according to the manufacturer’s protocol. After the RNA

quality check, we reverse-transcribed RNA to cDNA. Random

primer (1 mL) was added to a test tube, and the reaction was

mixed with total RNA (1 mg) and RNase-Free ddH20 (added to 12

mL) for 5 min at 65°C. RT primer (1 mL), total RNA (1 mg), and
RNase-Free ddH2O (add to 12 mL) were mixed and reacted at 65°C

for 5 min. The resulting mixture (12 mL) was then mixed with

5×buffer (4 mL), dNTPMix (2 mL), protector RNase inhibitor (1 mL),
and transcriptase (1 mL), and the reaction was performed at 42°C for

60 min and at 70°C for 5 min. The resulting cDNAwas stored at low

temperatures. Kits used for qRT-PCR: 2 × Master Mix kit (Roche),

reverse transcription kit (Thermo). A qRT-PCR instrument (ABI

Q6, Applied Biosystems Inc., USA) was used for this experiment.

We set the qRT-PCR parameters to 95°C for 10 min, 95°C for 15 s,

and 60°C for 60 s × 45 amplification cycles. We standardized the

expression levels to U6 and quantified the expression levels

according to the 2-DDCT method. The primers of miR-4739, miR-

210-3p, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and

tRNA methyltransferase 61A (TRMT61A) used in this study are

listed in Table 1.
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2.12 m1A dot blot assays

RNA was extracted from Huh-7 cells via the Trizol method. 10µL

of RNA was denatured at 95°C for 3 min, immediately on ice for

2 min, and dropped onto the nitrocellulose membrane. Then, after air-

drying, the specimens were dried at 120°C for 15min. RNA not bound

to the membrane was washed off withWash Buffer (0.1% Tween-20 in

1×phosphate buffer saline (PBS)) for 3 min. At room temperature, the

proteins were blocked with Blocking Buffer (5% Non-fat milk inWash

Buffer) for 1 h. The membranes were transferred to M1A antibody

(Blocking Buffer1:2000 dilution) and cultured for 2 h at room

temperature (or 4°C with shaking overnight). When the incubation

was finished, at room temperature, the cells were washed four times

with Wash Buffer for 5 min each. Subsequently, the washed nylon

membrane was immersed in the secondary antibody solution (1:2000

dilution) and cultured for 1 h at room temperature. Then we washed

the plates four times for 5 min each at room temperature with Wash

Buffer. Finally, chemiluminescence was performed with an ECL

chemiluminescence kit, and a chemiluminescence imaging system

was used to record the chemiluminescence results.
2.13 Cell culture and transfection

The Huh-7 cell line (CL-0120, Procell) was cultured in DMEM

supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/

streptomycin (PS) at 37°C with 5% CO2. The human monocytic

leukemia cell line THP-1 (iCell-h188, iCell Bioscience) was procured

from iCell Bioscience and cultured in Roswell Park Memorial

Institute (RPMI) 1640 medium supplemented with 10% fetal

bovine serum and antibiotics (penicillin/streptomycin). Cells were

maintained in a humidified incubator with an atmosphere of 5% CO2

at a temperature of 37°C. THP-1 cells were treated with 100 nmol/L

phorbol-12-myristate-13-acetate (P8139, Sigma) to induce

macrophage differentiation for 48 h. The miR-4739 mimics (5’-AA

GGGAGGAGGAGCGGAGGGGCCCU-3’ and 5’-UUCCCTCCUC
TABLE 1 Primer sequences.

Gene Primer sequences (5’–3’)

miR-4739-RT
GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAAT
TGCACTGGATACGACAGGGCCC

miR-210-3p-RT
GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAAT
TGCACTGGATACGACTCAGCCG

U6-F CGATACAGAGAAGATTAGCATGGC

U6-R AACGCTTCACGAATTTGCGT

miR-4739-F GCAGAAGGGAGGAGGAG

miR-210-3p-F GCTGTGCGTGTGACA

All-R AGTGCGTGTCGTGGAGTCG
miR-XXX-RT: The primers are used for reverse transcription of miR-4739 and miR-210-3p.
miR-4739-F and miR-210-3p-F: The forward primers are used for RT-qPCR analysis of miR-
4739 and miR-210-3p. All-R: The reverse primers are used for qRT-PCR analysis of miR-4739
and miR-210-3p.
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CUCGCCUCCCCGGGA-3’) were transfected into Huh-7 cells using

Lipofectamine™ 2000 (Invitrogen) transfection reagent. The upper

chamber of the Transwell insert was used to culture Huh-7 cells

overexpressing miR-4739, while the lower chamber was used to

culture macrophages.

MiRNA inhibitors are chemically modified double-stranded

oligonucleotides that can specifically bind to and inhibit

endogenous miRNAs. MiR-4739 inhibitors are small molecule

inhibitors targeting MiR-4739. In the presence of Lipofectamine™

2000 (Invitrogen) transfection reagent, Huh-7 cells were transfected

with miR-4739 inhib i tor (5 ’-AGGGCCCCUCCGCUC

CUCCUCCCUU-3’ and 5’- UCCCGGGGAGGCGAGGAGGAGG

GAA-3’) and inhibitor NC (5’-UUCUCCGAACGUGUCACGUTT-

3’ and 5’-ACGUGACACGUUCGGAGAATT-3’). On the day before

transfection, we inoculated Huh-7 cells into plates of 96-well at

30×104 cells/well. After 24 h, the fusion rate of cells reached 90%,

and the cells were transfected with miR-4739 inhibitor and inhibitor

NC. The transfection reagent and RNA were diluted in OPTI-MEM

(31985062, Thermo) and incubated for 5 min at room temperature.

Then, at room temperature, 50 mL of the diluted inhibitors and 50 mL
of the diluted transfection reagent were mixed and incubated for

20 min. 100 mL of the incubated mixture was appended to the cell

sample for continued incubation for 24 h.
2.14 Immunofluorescence

Immunofluorescence was used to detect the expression of

secreted phosphoprotein 1 (SPP1) in macrophages co-cultured

with Huh-7 cells. Briefly, macrophages were washed 3 times with

PBS before fixation with 4% paraformaldehyde. Subsequently,

macrophages were blocked with immunofluorescence sealing fluid

(Beyotime) and incubated with anti-SPP1 (1:1000, sc-73631, Santa

Cruz Biotechnology) at 4°C overnight. After washing with PBS,

macrophages were incubated with a secondary Cy3-labelled goat

anti-mouse IgG antibody (1:1000, A0521, Beyotime) for 1 h at room

temperature. Finally, nuclei were stained with DAPI (Beyotime) for

10 min, and immunofluorescence was visualized under an

immunofluorescence microscope.
2.15 Western blot

Following the manufacturer’s instructions, we extracted the

total protein of Huh-7 cells, and the reagents were RIPA lysate

buffer (Beyotime Biotechnology). After we measured the protein

concentration via BCA protein assay, we used 10% SDS-PAGE gel

to load and separate 40 mg of total protein and transferred it to

polyvinylidene fluoride membranes. With 5% bovine serum

albumin, the protein was further blocked, diluted in 0.05% Tris-

buffered saline/Tween (TBST) and incubated with the primary

antibody TRMT61A (1:1000, PA5-88013, Invitrogen), SPP1

(1:1000, PA5-34579, Invitrogen) or TRMT1 (1:1000, PA5-40929,

Invitrogen) overnight at 4°C. The protein was cultured at room
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temperature with HRP-conjugated Goat Anti-Rabbit secondary

antibody (1:5000, SA00001-2, Proteintech) for 2 h. After intensity

analysis utilizing a Bio-Rad ChemiDoc XRS system (Bio-Rad,

Hercules, CA, USA), we exposed the protein bands via an ECL

kit (Millipore, St. Louis, MO, USA).
2.16 CCK-8 assay

In the presence of lipo2000 transfection regent, Huh-7 cells

were transfected with miR-4739 inhibitor/NC. The cells were

digested to make a single-cell suspension. Then, the cells were

counted, and each group was diluted to 1×104 cells/ml. Cells were

inoculated into 96-well microplates (3599, Corning) at 1000 cells/

well. We added 10 mL CCK-8 reagent to each well after the cells

were fostered for 0 h, 24 h, 48 h, and 72 h, then cultured for 2 h. We

used a microplate reader (Thermo, MA, USA) to analyze the

absorbance at 450 nm. Absorbance can be used to express

cell proliferation.
2.17 EdU assay

Cells were first infected with miR-4739 inhibitor and NC for

24 h. Then, before EdU (E607204, China) was appended, we

inoculated the infected cells into the plates of 96-well (1 × 104

cells/well) and cultured for 24 h. Based on the protocol, we

incubated the cells for 2 h at 37°C and fixed them in 4%

formaldehyde solution for 30 min, and then we added 150 mL of

2 mg/mL glycine for 5 min. Next, with 0.5% Triton X- 100 at room

temperature, these cells were treated for 10 min. After, we utilized

PBS to wash the cells and added 1× ApolloR reaction mix (100 mL/
well), then treated these cells with EdU, and then at room

temperature, we made them react for 30 min in the dark. After

that, we added Hoechst 33342 (100 mL/well) for 30 min to visualize

nuclei. Subsequently, we washed the plates with PBS, and then

fluorescence microscopy (DM IL LED, Leica, Wetzlar, Germany)

was utilized to observe the positive cells.
2.18 Transwell assay

We used 24-well plates (354480, BioCoat) to perform the

transwell assay. The cells were first starved with 2% FBS-DMEM

medium for 12 h and then suspended in DMEM medium without

FBS before being appended to the upper chamber (1 × 105 cells/

well). At the same time, we added a DEMEmedium containing 10%

FBS to the lower chamber. We used an incubator to incubate the

plates for 72 h. Then, we incubated the cells, which migrated to the

lower surface of the filter membrane. We fixed and stained these

cells with 4% paraformaldehyde and 0.5% crystal violet. A cotton

swab was gently used to scrape the cells that remained on the upper

surface of the filter membrane. The inverted microscope captured

the lower surfaces, and the counts were repeated three times.
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2.19 Wound-healing assay

Without changing the medium, the monolayer was scratched,

and the tip of a new 200-microliter gun tip was threaded through

the center of the hole. After scraping, to remove the isolated cells,

we gently washed them twice with PBS and then supplemented

them with an excellent serum-free medium. Monolayer cells were

photographed on a microscope at 0 h and 24 h, and wound spacing

was measured.
2.20 Luciferase reporter assay

The RNAhybrid website analyzed the possible binding sites of

miR-4739 in TRMT61A. Then, the recombinant luciferase reporter

vector with mutation binding site was co-transfected into HEK293T

cells with miR-4739 expression mimics using Lipofectamine 2000

(Invitrogen). Renilla luciferase expression vector psiCHECK-2

(Promega) was used as an internal reference. After 48 h of

transfection, cells were harvested and lysed. Luciferase reporter

assays were performed using the dual luciferase reporter assay

system (Promega).
2.21 Statistical analysis

A t-test was used to compare the two groups, and P < 0.05 was

considered statistically significant. All assays were repeated three

times independently.
3 Results

3.1 The risk model identifies four RMRMs
associated with the prognosis of patients
with HCC

Figure 1A illustrates the schematic construction and subsequent

analysis of the RMRM risk model in HCC. We conducted a

differential analysis for miRNAs between HCC and normal

tissues. We found 313 differentially expressed miRNAs between

HCC and normal tissues, including upregulated 279 and 34

downregulated differentially expressed miRNAs in HCC

compared to normal tissues (Figure 1B). The target genes of

differentially expressed miRNAs were predicted, and 117 miRNAs

were found to be linked with RNA methylation-related

genes (Figure 1C).

The miRNA data in TCGA-LIHC was divided into training and

testing sets. The training set was used to construct the risk model.

First, the univariate Cox analysis identified 28 RMRMs which were

significantly correlated with HCC prognosis (P < 0.05)

(Supplementary Figure S1A). Subsequent Lasso regression and

multivariate Cox analyses further selected four RMRMs as

prognostic markers, including miR-551a, miR-4739, miR-326, and

miR-210-3p (Figure 2A, Supplementary Figures S1B, C). Next, we
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calculated the risk scores of 4 RMRMs in the testing set and plotted

the KM and ROC curves. The risk score was as follows: Risk score =

exp (0.2565 × miR-210-3p + 0.2818 × miR-326 + 0.2546 × miR-

4739 + 0.3145 × miR-551a). The HCC samples in TCGA-LIHC

were categorized into high- and low-risk groups. Compared to the

overall survival (OS) of patients in the low-risk group, the patients

in the high-risk group exhibited reduced OS, as validated in the

training (P < 0.001) (Figure 2B), testing (P < 0.001) (Figure 2C), and

total sets (P < 0.001) (Figure 2D). Subsequently, we focus the

prognostic prediction of the RMRM model on the accuracy of

predicting patient survival at 1, 3, 5, 7, and 9 years. The AUCs of the

ROC curves in the training sets (Figure 2E), testing sets (Figure 2F),

and total sets (Figure 2G) were indicated at 1, 3, 5, 7, and 9 years.

The heatmap showed the expressions of miR-551a, miR-4739, miR-

326, and miR-210-3p in the high- and low-risk groups in the testing

and full data sets (Figures 2H, I, Supplementary Figure S1D).

Furthermore, we also developed an integrated nomogram based

on independent prognostic factors to calculate the individual OS for

patients with HCC (Supplementary Figure S1E). This nomogram

model exhibited superior predictive accuracy. The calibration plots

confirmed their reliability in forecasting 3- and 5-year OS rates

(Supplementary Figure S1F). Additionally, decision curve analysis

(DCA) indicated that our integrated nomogram offered a significant

net benefit over the risk score model and age alone (Supplementary

Figure S1G). Collectively, these findings suggest that the nomogram

provides a prognosis for patients with HCC.
3.2 ScRNA-seq profiling reveals risk score-
associated immune landscape in HCC

To further explore the heterogeneity of immune cells under the

RMRMs risk model, we performed scRNA-seq analysis on 6 HBV-

infected HCC (HBV-HCC) and 4 HBV tissues obtained from the

GSE202642 dataset. After quality control, 98,904 cells from 10

pat ients were used for further analysis . The UMAP

dimensionality reduction algorithm identified 11 distinct cell

types: B cells, NK cells, T cells, neutrophils, dendritic cells (DCs),

macrophages, myeloid-derived suppressor cells (MDSCs),

monocytes, fibroblasts, endothelial cells, and epithelial cells

(Figure 3A). Next, the expression profi les of 18 RNA

modification-associated genes, which are the potential targets of

miR-551a, miR-4739, miR-326, and miR-210-3p, constituting the

risk model, were assessed in various cell types. The results revealed a

differential expression pattern of these genes in different cells

(Figure 3B). We developed a new risk-scoring algorithm to

elucidate the relationship between the TCGA-derived risk model

and the landscape of immune cells at the single-cell level. This

approach ingeniously overcame the absence of miRNA expression

data by employing GSVA on the expression of 18 RNA-modified

genes targeted by the 4 miRNAs. Furthermore, we transformed the

expression data of these target genes into a miRNA score according

to the following formula: risk score = 1 - (x - min)/(max - min). The

UMAP plot revealed the distribution of risk scores (Figure 3C), and

cells were categorized into high-risk (pink) and low-risk (blue)
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groups (Figure 3D). GSVA showed that risk-high group enriched

tumorigenesis and immune regulation pathways, including

Interferon gamma response, Inflammatory response, Glycolysis,

Angiogenesis, and Wnt beta catenin signaling (Figure 3E).

Next, we performed a comparative analysis between HBV-HCC

and HBV samples to evaluate the risk scores across various immune

cell subtypes. As shown in Figure 4A, the risk score of epithelial
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cells, endothelial cells, MDSCs, DCs, neutrophils, B cells, NK cells,

and T cells significantly increased in the HCC sample compared to

the control. Subsequently, HCC samples were grouped based on the

risk score of epithelial cells, with GSM6127499, GSM6127502, and

GSM6127505 being the high-risk group and GSM6127500,

GSM6127501, and GSM6127504 being the low-risk group

(Supplementary Figure S2A). The high-risk group exhibited
FIGURE 1

Identification of RNA methylation-related miRNAs (RMRMs) in hepatocellular carcinoma (HCC). (A) Flow diagram of the design of this study.
(B) Differentially expressed miRNAs between samples derived from tumor and normal tissues through volcano map. (C) Regulatory network of
miRNAs and m6A/m5C/m1A/m7G-associated genes. miRNAs are indicated in green; The m6A/m5C/m1A/m7G- associated genes are indicated
in red.
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higher infiltration levels of immune cells than in the low-risk group

(Figure 4B). We also noticed that the risk scores of endothelial cell

subtypes, including Epi_LEPR, Epi_SERP5, and Epi_SRGN, in the

HBV-HCC group were significantly higher than those in the HBV

group (Figure 4C). The macrophage subtypes Macro_SPP1,

Macro_F13A1, and Macro_C1QC increased in the high-risk

group compared to the low-risk group, but their risk scores
Frontiers in Oncology 08
exhibited no statistical differences between the HBV-HCC and

HBV groups (Figures 4B, D). MDSC subtypes, MDSC_CR1 and

MDSC_DUSP2, showed higher risk scores in the HBV-HCC group

compared to the HBV group (Figure 4E). Furthermore, compared

to the low-risk and HBV groups, the high-risk and HBV-HCC

groups demonstrated a higher percentage of T cell subtypes, such as

regulatory T cells (Treg) and gdT cells (Figures 4B, F). Collectively,
FIGURE 2

Construction and verification of RNA methylation-related miRNAs (RMRM) risk model in hepatocellular carcinoma (HCC). (A) Multivariate Cox
regression analysis identified four RMRMs for risk model construction. (B–D) In the training set (B), testing set (C), and full data set (D), the Kaplan-
Meier (KM) survival curves were plotted between the groups with high and low risk. (E–G) ROC curves were plotted for the training set (E), testing
set (F), and full data set (G) at 1, 3, 5, 7, and 9 years after diagnosis. (H, I) Heatmaps of selected four miRNAs in the testing set (H) and full data set (I).
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the above results illustrate the characteristics of immune cell subsets

associated with risk scores in HCC.

Subsequently, we used samples from the TCGA-LIHC cohort to

explore the correlation between the risk scores and immune cell

subsets identified by scRNA-seq analysis. Figure 4G depicts the

distribution of infiltration levels across various immune cell

subtypes within HCC samples. The microsatellite instability

(MSI) score was increased, while the TIDE score was decreased in

the risk-high compared to the risk-low group (Supplementary

Figure S2B). The risk-high group showed a higher level of

Macro_F13A1 than the risk-low group (Figure 4H), which was

consistent with the results in the scRNA-seq data (Supplementary
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Figure S2C). Univariate Cox regression analysis demonstrated that

elevated infiltration levels of Macro-SPP1, MDSC-MND1, gd T

cells, T-proliferating cells, and Macro-C1QC were significantly

correlated with an adverse prognosis of HCC patients, with the

correlation of macrophages being the most significant, while the

presence of CD8+ T cells and Macro-ISG15 was identified as a

favorable prognostic factor (Figure 4I). KM survival analysis

indicated that HCC patients with high levels of Macro-SPP1 and

MDSC-MND1 exhibited significantly shorter OS times than those

with lower infiltration levels (Figure 4J, Supplementary Figure S2D).

ROC analysis validated the predictive accuracy of Macro-SPP1 and

MDSC-MND1 (Figure 4K, Supplementary Figure S2E). Conversely,
FIGURE 3

Assessment of RNA methylation-related miRNA (RMRM) risk score and its associated immune pathways at single-cell level. (A) The UMAP plots
annotated cell types. (B) The expression profiles of 18 RNA modification-associated genes targeted by 4 RMRMs in various cell types. (C) The
distribution of risk model scores across various cell types. (D) All cells were clustered into high-risk and low-risk groups. (E) GSVA of hallmark gene
sets showed the pathways activated in high-risk and low-risk groups.
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FIGURE 4

The immune regulatory landscape of RNA methylation-related miRNA (RMRM) risk score revealed by single-cell RNA sequencing (scRNA-seq) and
bulk-seq analysis. (A) The violin plot showed the risk model score of different cell types between control and hepatocellular carcinoma (HCC)
samples at the single-cell level. (B) The proportion of different cell subtypes in the high-risk and low-risk score groups. (C-F) Risk model score of cell
subpopulation of epithelial cells, macrophages, T cells, and myeloid-derived suppressor cell (MDSC) cells using scRNA-seq data. (G) Infiltration
analysis of tumor samples from TCGA-HCC bulk-seq, using the biomarker obtained from the scRNA-seq analysis. (H) The violin plot shows the
infiltration of subtypes in risk-high and risk-low tumor samples. (I) Univariate Cox regression of prognosis-related immune cell subpopulation
associated with RMRM risk score. (J) Kaplan-Meier (KM) survival curves show the association of secreted phosphoprotein 1 (SPP1)+ macrophage level
with the OS survival of liver hepatocellular carcinoma (LICH) patients. (K) ROC curves were plotted for the diagnosis value of SPP1+ macrophage.
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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HCC patients exhibiting high levels of CD8+ T cells and Macro-

ISG15 demonstrated favorable prognoses (Supplementary Figures

S2F-I). In summary, these findings suggest the relationship between

the risk scores of various cell subsets and the prognosis of

HCC patients.
3.3 Spatial transcriptome shows risk score-
related immune microenvironment
structure

To elucidate the spatial characteristics of risk score within the

TME, we procured spatial transcriptome data of HCC (34) and

integrated it with the scRNA-seq data. Leveraging the markers

derived from scRNA-seq, we annotated the cells in spatial

transcriptomic data into macrophage subtypes Macro-C1QC,

Macro-F13A1, and Macro-SPP1, Neutrophils, GPR183+ T cells,

epithelia subtypes Epi-SRGN, Epi-LEPR, Epi-IGF2, and Epi-SFRP5,

Endothelial cells, Fibroblasts, and B cells (Figure 5A). We observed

that Macro-C1QC and GPR183+ T infiltrated around Epi−SRGN

and Epi−LEPR. Next, the spatial activities of 4 RMRMs (miR-551a,

miR-326, miR-4739, and miR-210-3p) were evaluated using the

miTEA method (Figure 5B). The results showed that Epi−SRGN

regions exhibited spatial activities of 4 miRNAs. The spatial

distribution of risk scores within the HCC microenvironment was

also evaluated, and tumor regions exhibited notably high scores

(Figure 5C). Patients who demonstrated a positive response to a

multi-tyrosine kinase inhibitor, cabozantinib, and a PD-1 inhibitor,

nivolumab, were presented with significantly higher scores than

those who did not respond to the treatment (Figure 5C). Violin

plots revealed that risk scores within the Epi−SRGN cell population

were relatively elevated compared to other cell types (Figure 5D),

leading us to select Epi-SRGN for in-depth analysis. The colocation

analysis demonstrated a positive correlation between the position of

risk scores and the location of Epi−SRGN and Epi−LEPR

(Figure 5E, Supplementary Figure S3A) and a negative correlation

between the location of Epi−SRGN and GPR183+ T cells (Figure 5F,

Supplementary Figure S3B). In addition, a negatively correlated

position relationship between Epi−SRGN cells and Macro−C1QC

was found (Supplementary Figure S3C). Taken together, these

results indicate the spatial relationship between risk scores and

the location of immune cells.
3.4 Consensus clustering analysis based on
the expression of 4 RMRMs

Consensus clustering was employed to classify HCC samples

into distinct molecular subtypes based on 4 RMRMs expression

patterns (Figure 6A). This unsupervised clustering method

enhances the robustness of subtype identification by evaluating

clustering stability across multiple iterations. Given the

heterogeneity of HCC, identifying molecular subtypes helps to

elucidate differences in tumor immune microenvironment
Frontiers in Oncology 11
characteristics, prognostic implications, and potential therapeutic

responses. We found that the optimal clustering results were

produced after choosing k=2 (Figure 6A). The heatmap showed

the expression profiles of 4 RMRMs in cluster 1 and cluster 2

(Figure 6B). Cluster 2, exhibiting a higher risk score, showed a

worse prognosis than cluster 1 (Figures 6C, D). Next, we further

explored the immune infiltration characteristics of cluster 1 and

cluster 2. The comparative analysis between 2 clusters highlighted a

pronounced reduction in the infiltration of regulatory T cells

(Tregs), plasma B cells, follicular helper T cells, and M0

macrophage in cluster 1 compared to cluster 2, while the

infiltration of monocyte, activated mast cell, CD4 memory resting

T cells were drastically increased (Figure 6E). The ESTIMATE,

immune, and stromal scores in cluster 1 were higher than in cluster

2 (Figure 6F). We also observed that miR-210-3p was negatively

correlated with the ESTIMATE, immune, and stromal scores, while

miR-326 exhibited an opposite trend (Figure 6G, Supplementary

Figures S4A, B). Subsequently, we performed a differential analysis

between cluster 1 and cluster 2. We found 147 DEGs between

cluster 1 and cluster 2, including 94 upregulated and 53

downregulated DEGs in cluster 1 compared to cluster 2

(Supplementary Figure S4C). GO enrichment analysis found that

upregulated DEGs were enriched in mitosis-related pathways, such

as mitotic nuclear division, mitotic cell cycle phase transition,

regulation of mitotic metaphase/anaphase transition, and mitotic

spindle assembly checkpoint signaling (Supplementary Figure

S4D). KEGG enrichment analysis revealed that upregulated DEGs

were associated with cellular senescence, p53 signaling pathway,

HIF-1 signaling pathways, glycolysis/gluconeogenesis, viral

carcinogenesis, and Foxo signaling pathway (Supplementary

Figure S4E). Our results demonstrated that the identified subtypes

exhibited significant differences in immune infiltration and survival

outcomes, supporting the biological relevance of the classification.
3.5 TMB and drug sensitivity analyses of
cluster 1 and cluster 2

We then obtained mutation data of TCGA-LIHC samples to

analyze TMB in cluster 1 and cluster 2. The proportion of mutations

in cluster 2 was higher than in cluster 1 (Figure 7A), and the

mutation load index TMB index was overall higher in cluster 2 than

in cluster 1 (Figure 7B). The OS rate of ten years between patients

with high and low TMB showed no statistical significance

(Figure 7C). However, the OS rate of cluster 1 and cluster 2 in

patients with high and low TMB were significantly correlated with

the prognosis (P < 0.001) (Figure 7D). To evaluate the relationship

between drug sensitivity and consensus clusters, we compared IC50

values of different drugs between cluster 1 and cluster 2 (Figure 7E).

Specifically, we obtained the IC50 values of samples from the

TCGA-LIHC database. Based on unsupervised consensus

clustering analysis, we compared the IC50 values between the two

groups and found significant changes in the IC50 values of six

drugs. The IC50 values of TGX221, PI.103, and Luminespib in
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cluster 1 were significantly lower than in cluster 2. Conversely,

cluster 1 exhibited an increase in the IC50 values of THZ.2.102.1,

Doparinad, ACY.1215 when compared to cluster 2. These findings

indicate the differences in TMB and drug sensitivity between cluster

1 and cluster 2.
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3.6 MiR-4739 is involved in the regulation
of HCC by targeting TRMT61A

Considering the most significant correlation between Macro-

SPP1 and the poor prognosis of HCC patients and the higher risk
FIGURE 5

Spatial transcriptomics (ST) analysis showed the spatial structure of immune cells correlated with RNA methylation-related miRNA (RMRM) score.
(A) Annotate the tissue sections by integrating single-cell RNA sequencing (scRNA-seq). Spatial mapping of cell subsets identified in the scRNA-seq
data. (B) Spatial activity of four miRNAs. (C) Spatial mapping of the risk score in therapy responder and non-responder. Hepatocellular carcinoma
(HCC) patients were treated with neoadjuvant cabozantinib, a multi-tyrosine kinase inhibitor, and nivolumab, a PD-1 inhibitor. (D) Differences in risk
scores among cell subtypes identified by the spatial transcriptome. (E) The spatial relationship between the RiskModel and Epi−SRGN. (F) The spatial
location correlation of Epi−SRGN and GPR183+ T cells.
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score exhibited by Macro-SPP1, we explored the impact of RMRMs

in HCC cells on SPP1+ macrophages. Compared to the normal

paracancerous tissues, miR-4739 and miR-210-3p were significantly

upregulated in HCC tumor tissues in the miRNA-seq data
Frontiers in Oncology 13
(Table 2), and qRT-PCR analysis further confirming the

significant upregulation of miR-4739 (Figure 8A). Thus, we

selected miR-4739 for subsequent analysis. Huh-7 cells were

transfected with miR-4739 mimics and co-cultured with THP-1-
FIGURE 6

RNA methylation-related miRNA (RMRM) risk scores-related clustering in hepatocellular carcinoma (HCC) patients. (A) The consensus matrix. k=2.
(B) Heatmaps of 4 RMRMs in the cluster 1 and cluster 2 groups. (C) Differential analysis of risk score between cluster 1 and cluster 2. (D) Kaplan-
Meier (KM) survival analysis for cluster 1 and cluster 2. (E) Differential expressions of immune cell subpopulations in cluster 1 and cluster 2 are shown
in the boxplot. (F) The correlations between RMRM risk score and immune infiltration. (G) The interrelation analysis between immune score and the
expression of the four RMRMs. **P < 0.01, ***P < 0.001, ****P < 0.0001.
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induced macrophages for 24h (Figure 8B). As expected,

overexpression of miR-4739 in Huh-7 cells significantly increased

the expression of SPP1 in macrophages and the proportion of SPP1+

macrophages (Figures 8C, D). We noticed that the conditioned
Frontiers in Oncology 14
media derived from macrophages stimulated by Huh-7 cells with

miR-4739 overexpression was found to enhance the proliferative

capacity of Huh-7 cells (Figure 8E), suggesting an underlying

interaction between SPP1+ macrophages and Huh-7 cells.
FIGURE 7

Tumor mutation burden (TMB) and drug sensitivity analyses of cluster 1 and cluster 2. (A) According to the mutation proportion, the waterfall chart
was drawn to demonstrate the mutation type and rate of twenty genes in RNA methylation-related miRNA (RMRM) risk score-related clusters. (B)
TMB differences analysis between cluster 1 and cluster 2. (C) Kaplan-Meier (KM) survival curves between the groups with high and low TMB. (D) KM
survival curves between diverse levels of TMB combined with the cluster group. (E) Drug sensitivity analysis between risk score-related clusters.
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Additionally, we investigated the direct effects of miR-4739 on

cancer cells. Considering the high expression of miR-4739 in cancer

cells, we knocked down miR-4739 in Huh7 cells using specific miR-

4739 inhibitors (Figure 8F) and observed reduced proliferation

(Figure 8G), cell viability (Figure 8H), invasion (Figure 8I), and

migration of Huh-7 cells (Figure 8J) compared to the NC inhibitor

group. Together, these results demonstrate the critical role of miR-

4739 in malignant features in HCC.

To clarify how miRNA regulates a specific RNA modification to

mediate the biological processes of HCC cells, we overlapped m6A/

m5C/m1A/m7G-related genes with miR-4739 target genes and

identified TRMT61A (Figure 9A). In fact, there was a predictive

binding site between miR-4739 and TRMT61A (Figure 9B), and this

prediction was confirmed by the dual-luciferase reporter assay

(Figure 9C). Western blot analysis showed that the expression of

TRMT61A was significantly reduced in clinical HCC tumor samples

compared to the normal paracancerous tissues (Figure 9D). However,

miR-4739 inhibition led to a significant increase in the expression

level of TRMT61A in Huh-7 cells (Figure 9E). We used the dot blot

assay to examine the impact of miR-4739 on m1A modification, and

the results demonstrated that miR-4739 inhibition promoted m1A

modification in Huh-7 cells (Figure 9F). These findings suggest that

miR-4739may regulate the progression of HCC by inhibiting TRMT-

mediated m1A modification.
4 Discussion

RNA methylation is pivotal in RNA transcription, splicing, and

translation (35) and is closely associated with immune cell infiltration

in cancer (36). This study established a novel prognostic model of

RMRMs for HCC. ScRNA-seq data integrated spatial transcriptomes

revealed various immune cell subtypes associated with risk models and

delineated potential relationships between risk scores and the spatial

location of these subtypes within tissues. Moreover, miR-4739

upregulation in HCC cells remarkably induced SPP1+ macrophage

differentiation. This phenomenon may be attributed to the fact that

miRNA-4739 targets and suppresses TRMT61A, thereby promoting

the malignant characteristics of HCC cells, which subsequently induces

the differentiation of SPP1+ macrophages.

This study established a risk model of RNA-methylation

miRNAs for HCC. MiRNAs are diagnostic markers for HCC
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(37). A growing body of evidence has revealed significantly

abnormal RNA methylation levels and the dysregulation of

enzymes related to RNA methylation in HCC tissues and cell

lines (38). However, a few studies have focused on using miRNAs

associated with RNA methylation modifications to predict HCC.

Previous studies have demonstrated a crosstalk between miRNA

and RNA methylation in HCC (39). Our study also validated that

RNA methylation-related genes were the target genes of

differentially expressed miRNA between HCC and normal

samples. Subsequently, these RMRMs were used to construct

prognostic risk models. After pre-screening calculations, we

identified 4 miRNAs associated with the prognosis of HCC,

including miRNA-551a, miRNA-4739, miRNA-326, and

miRNA210-3p. A previous study reported that increased

expression of microRNA 551a blocks breast tumorigenesis (40).

MiR-4739 serves as a biomarker of doxorubicin chemoresistance in

breast cancer, with its overexpression facilitating the proliferation,

progression, and survival of cancer cells (41). MiRNA-326 regulates

the progression of various cancers (42–44) and has diagnostic and

prognostic roles in HCC (45). These findings highlight the

reliability of the four RMRMs in the prognostic prediction of

HCC. In this study, HCC samples in TCGA-LIHC could be

categorized into high- and low-risk groups based on the

expressions of 4 RMRMs. ScRNA-seq and spatial transcriptomics

data also validate the effectiveness of this prognostic risk model.

Specifically, scRNA-seq analysis revealed differences in risk scores

among various immune cell subtypes in HBV-HCC and HBV

tissues, with the high-risk group significantly enriched in

tumorigenesis and immune regulation pathways, indicating that

the risk model effectively distinguishes risk characteristics of

different immune cell subtypes. Spatial transcriptomics further

validated the spatial distribution of risk scores within the tumor

microenvironment, showing that high-risk score regions highly

overlapped with tumor areas and were positively correlated with

the spatial localization of specific cell types (such as Epi-SRGN),

confirming the effectiveness of the risk model at the spatial level.

RMRMs should be considered for better disease management.

Our results revealed the relationship of the prognostic risk model

of RMRMs with the immune response. RNA methylation-miRNAs

have been demonstrated to play a critical role in immune response (46).

Our study showed differences in the risk scores of RMRMs of various

immune cells between HCC and control samples. Furthermore, we also

found the spatial correlation among the RMRMs risk score, tumor cells,

and immune cell subtypes. In this study, we discovered that SPP1+

macrophages were significantly increased in the high-risk group of the

RMRMs and were positively correlated with poor prognosis. SPP1+

macrophages represent an emerging subset of macrophages and are

implicated in tumorigenesis. A study has indicated that macrophage

polarity, defined by the expression of CXCL9 and SPP1 rather than

traditional M1 and M2 markers, controls human cancers (47). SPP1+

macrophages interacted with CAFs, forming a tumor immune barrier

restricting immune cell infiltration into the tumor core, thus confining

anti-PD-1 therapy in HCCmice (48). In our results, the overexpression
TABLE 2 RMRM expression levels in miRNA-seq data.

miRNA
log2Fold
Change

Adjust
P values

Regulation

miR-
210-3p

1.03 2.47×10-5 Up

miR-326 -1.15 1.35×10-10 Down

miR-4739 1.42 2.92×10-4 Up

miR-551a -1.54 6.80×10-8 Down
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FIGURE 8

miR-4739 in hepatocellular carcinoma (HCC) cells induces secreted phosphoprotein 1 (SPP1)+ macrophages to drive HCC cell proliferation. (A) The
relative expression level of miR-4739 and miR-210-3p in HCC tumor and normal paracancerous tissues was detected through qRT-PCR. (B) Graphical
representation of the co-culture of HCC cell line Huh-7 cells and THP-1 induced macrophages. (C) The expression of SPP1 in macrophages co-cultured
with miR-4739-overexpressed Huh-7 cells was detected by western blot. (D) Immunofluorescence showing the SPP1 positive macrophages after co-
culture with Huh-7 cells with different treatments. (E) EdU detected cell proliferation of HCC cells after adding the culture medium of macrophages
induced by Huh-7 cells with different treatments. (F) qRT-PCR was used to verify the knockdown effect of miR-4739 inhibitor in Huh-7 cells. (G, H)
CCK8 (G) and EdU (H) detected cell proliferation of Huh-7 cells. (I, J) The invasion and migration of Huh-7 cells were detected by transwell (I) and
scratch (J) experiments. ns = no significance, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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of miR-210-3p in HCC cells induced SPP1+ macrophages, promoting

cancer cell proliferation. These data underscore the significance of

SPP1+ macrophages in the malignancy of HCC and their interaction

with RNA epigenetic modification-related miRNAs in modulating the

tumor microenvironment.

This study validated that miR-4739 promoted HCC progress

and bond to TRMT61A. The noncatalytic subunit of tRNA

methyltransferase 6 (TRMT6) forms a tRNA methyltransferase

complex with TRMT61A to catalyze the methylation of m1A

(49). A related study has shown that the m1A methyltransferase

formed by TRMT6 and TRMT61A was inversely correlated with

HCC survival (23). Our findings indicated lower protein levels of

TRMT61A in HCC tissues than in the normal samples. TRMT61A

has been explored in cancers. For example, the expression of

TRMT61A was significantly upregulated in bladder cancer cell

lines compared to SV-HUC-1 cells (50). However, the depletion

of TRMT6/TRMT61A markedly impaired the proliferative capacity

of bladder cancer cell lines. In contrast, our in vitro experiments
Frontiers in Oncology 17
demonstrated that miRNA-4739 inhibit TRMT61A expression, and

miRNA-4739 promoted the proliferation of Huh-7 cells and

enhanced their invasive and migratory capabilities. These results

suggested TRMT61A inhibition may promote HCC development.
5 Conclusion

In conclusion, our findings highlighted a novel RMRM risk model

associated with the immunemicroenvironment and prognosis of HCC.

ScRNA-seq data integrated spatial transcriptomics unveiled a diverse

array of immune cell subtypes linked to the RMRMs risk model,

shedding light on the spatial distribution of these subtypes within

tissues and their correlation with risk scores. Furthermore, we observed

that the upregulation of miR-4739 in HCC cells significantly induced

SPP1+ macrophages, thereby promoting cancer cell proliferation. We

also found that miR-4739 mediated m1A methylation by inhibiting

TRMT61A. These findings provide a new perspective on the spatial
FIGURE 9

miR-4739 targets and inhibits TRNA methyltransferase 61A (TRMT61A) to suppress m1A methylation. (A) Venn diagram shows the number of
overlapping gene TRMT61A in m6A/m5C/m1A/m7G-associated genes and miR-4739 target genes. (B) RNAhybrid predicted sequence
complementarity maps of miR-4739 and 3’ UTR of TRMT61A. (C) Dual-luciferase reporter assay detected the targeting relationship of miR-4739 with
TRMT61A 3’ UTR. (D) The expression of TRMT61A was detected through western blot in the hepatocellular carcinoma (HCC) tumor and normal
paracancerous groups. (E) After inhibiting miR-4739, the expression of TRMT61A in Huh-7 cells was detected through qRT-PCR. (F) Dot blot assay
measured the m1A modification after knocking down miR-4739 in Huh-7 cells. ns = no significance, *P < 0.05, **P < 0.01.
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interplay between RNA epigenetic modifications and immune cell

subsets within the tumor microenvironment, offering novel molecular

targets for HCC immunotherapy.
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SUPPLEMENTARY FIGURE 1

Establishment of a nomogram model integrating risk score and clinical

information. (A) The forest plot showed the Univariate Cox regression of 28
prognosis-related RNA methylation-related miRNAs (RMRMs). (B) The

analysis of Lasso regression screened thirteen key RMRMs. (C) Cross-
validation in the study of Lasso regression for tuning parameter selection.

(D) Heatmaps of selected four miRNAs in the training set. (E) The calibration

plots confirmed the reliability of the nomogram. (F) A nomogram predicting
the 3- and 5-year OS for patients with hepatocellular carcinoma (HCC). (G)
Decision curve analysis (DCA) indicates the nomogram offered a significant
net benefit over the risk score model and age.

SUPPLEMENTARY FIGURE 2

Immune characteristics of cell subsets associated with the risk model. (A) The
risk model score in each sample in the single-cell RNA sequencing (scRNA-
seq) dataset. (B) The correlation between immune infiltration and risk model

score in TCGA- hepatocellular carcinoma (HCC). (C) Differential infiltration
analysis of T cell subtypes between high- and low-risk model score groups.

(D) Kaplan-Meier (KM) survival curves show the association of myeloid-
derived suppressor cell (MDSC)- meiotic nuclear divisions 1 (MND1) level

with the OS survival of liver hepatocellular carcinoma (LICH) patients. (E) ROC

curves show the diagnosis value of MDSC-MND1. (F) KM survival curves show
the association of the Mcro-ISG15 level with the OS survival of LICH patients.

(G) ROC curves show the diagnosis value of Mcro-ISG15. (H) KM survival
curves show the CD8+ T cell level association with the OS survival of LICH

patients. (I) ROC curves showing the diagnosis value of CD8+ T cell.

SUPPLEMENTARY FIGURE 3

Spatial position relationship between risk score, immune cells, and epithelial
cells. (A) Spatial correlation between risk score and Epi-LEPR cell. (B) Spatial
correlation between Epi-SRGN cell and GPR183+ T cell. (D) Spatial correlation
between Macro-C1QC cell and GPR183+ T cell.

SUPPLEMENTARY FIGURE 4

Differential analysis for RNA methylation-related miRNA (RMRM)-related

clusters. (A, B) The interrelation analysis between the ESTIMATE score and
the expression of the four RMRMs (A) and between the stromal score and the

expression of the four RMRMs (B). (C) The volcano plot shows the differentially
expressed genes (DEGs) between cluster 1 and cluster 2. (D) GO enrichment

analysis of upregulated DEGs between cluster 1 and cluster 2. (E) KEGG
enrichment analysis of upregulated DEGs between cluster 1 and cluster 2.
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