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Head and neck squamous cell carcinoma (HNSCC) is a prevalent malignancy,

characterized by metabolic reprogramming. This reprogramming creates an

acidic and hypoxic environment within tumor cells to adapt to metabolic

changes. Experimental data indicate that in HNSCC, the metabolic

reprogramming of tumor cells regulates immune cells via metabolites or

signaling pathways, thereby promoting cancer progression or immune evasion.

This article reviews the metabolic reprogramming in HNSCC, including glucose,

fatty acids, amino acids, and nucleotide metabolism. These metabolic pathways

play crucial roles in the proliferation, differentiation, and effector functions of

immune cells, and influence immunosuppressive checkpoints. Additionally, this

review explores the potential relationships between metabolic reprogramming,

tumor immunity, and related treatments. Thus, targeting metabolic

reprogramming and interactions between immune cells may help overcome

therapeutic resistance in HNSCC patients.
KEYWORDS

HNSCC, metabolic reprogramming, immune, tumor microenvironment, tumor
1 Introduction

Head and neck squamous cell carcinoma (HNSCC) is the most common malignancy in

the head and neck region, with 890,000 new cases and 450,000 deaths reported in 2018. The

incidence of HNSCC is rising and is projected to increase by 30% by 2030, resulting in

approximately 1.08 million new cases annually (1). The etiology of HNSCC is

multifactorial, linked to human papillomavirus (HPV), excessive alcohol consumption,

tobacco use, diet, and genetics (1–3). Despite various treatments such as surgery,

chemotherapy, radiotherapy, and photodynamic therapy, HNSCC remains a highly

refractory tumor with a tendency for early metastasis, high recurrence, and low survival

rates (4). Moreover, the mechanisms underlying HNSCC development remain unclear.

Metabolism and immune response are pivotal in cancer research, with metabolic

reprogramming and immune escape recognized as cancer hallmarks (5). The metabolic

machinery and metabolites directly impact the differentiation and function of immune
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cells. Therefore, altering these metabolic mechanisms and the

production of metabolites can modulate immune function (6).

The bioenergetic metabolism of cancer cells, characterized by

increased glucose uptake and abundant lactate secretion, along

with alterations in the tricarboxylic acid (TCA) cycle, significantly

affects the immunological tumor microenvironment (TME) (7).

HNSCC serves as an ecological model for studying complex

interactions within the TME (Figure 1) (8). This environment is

highly heterogeneous and includes various cell types, such as tumor

cells, immune cells, fibroblasts, and vascular endothelial cells (9),

along with complex intercellular interactions and metabolic

regulatory networks. These dynamics mirror the interactions

between species and the flow of energy within an ecosystem.

Similarly, the tumor microenvironment in head and neck cancer

comprises diverse cell types, resembling different species in an

ecosystem. Interactions among tumor cells, immune cells, and

stromal cells parallel the competitive, symbiotic, and predatory

relationships observed in natural ecosystems (10). Metabolic

reprogramming in HNSCC, such as alterations in glycolysis,

amino acid metabolism, and lipid metabolism, resembles the

energy flow and resource allocation seen in ecosystems (11–13).

Furthermore, the immunosuppressive environment in HNSCC,

characterized by phenomena such as T cell exhaustion and an

increase in regulatory T cells, can be likened to the predator-prey

dynamics in ecosystems (14, 15). Spatial heterogeneity within

HNSCC results in varying cell types, metabolic states, and levels

of immune infiltration across different regions, akin to the

distribution of species and resource variations across different
Frontiers in Oncology 02
habitats. The resistance mechanisms of HNSCC to radiotherapy,

chemotherapy, and immunotherapy can be analogized to species

adapting to environmental pressures in ecosystems (16).This new

field, termed immunometabolism (17), is explored in terms of how

core metabolic alterations in HNSCC influence natural and

therapy-driven immunosurveillance, and the potential of targeting

such changes to enhance anticancer immune responses.
2 Effects of glucose metabolism and
its metabolites on immune regulation
in HNSCC

2.1 The impact of glucose metabolism on
immune regulation in HNSCC

In low-oxygen conditions, cells depend on glycolysis, bypassing

oxygen-reliant mitochondrial metabolism for energy (18). Unlike

normal cells, cancer cells exhibit a preference for glycolysis in the

cytoplasm even when oxygen is available, a phenomenon known as

the “Warburg effect” or “aerobic glycolysis” (19). This effect is also

observed in HNSCC (20). Key regulators of aerobic glycolysis

include the “high-affinity” glucose transporter GLUT1, which is a

critical rate-limiting factor for cellular glucose uptake and

metabolism, lactate exporter monocarboxylate transporter 4

(MCT4), and glycolytic enzymes such as hexokinase 2,

phosphofructokinase 1, and enolase 1, along with low-activity
FIGURE 1

The tumor immune microenvironment of HNSCC can be analogized to an ecosystem: the interactions between tumor cells and immune cells
resemble predator-prey and competitive relationships in an ecosystem; CTCs represent spatial heterogeneity akin to species distribution within an
ecosystem; and the metabolic reprogramming of tumor cells parallels energy flow dynamics in ecological systems.
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pyruvate kinase M2 (PKM2) (21). Research by Christian H.

Ottensmeier et al. utilized a mouse model of primary lung

epithelial cell tumors (TC-1) overexpressing GLUT1 and assessed

extracellular acidification rate (ECAR) as an indicator of glycolysis.

An increase in ECAR was noted both in control and GLUT1-

transduced TC-1 cells, particularly in those overexpressing GLUT1,

demonstrating a negative correlation between high GLUT1

expression and tumor-infiltrating lymphocyte (TIL) infiltration in

HNSCC, which delayed tumor regression (Figure 2) (22). Similarly,

Kun Wu’s research linked lymph node metastasis and recurrence in

oral squamous cell carcinoma (OSCC) with increased PD-1

expression and glycolysis in CD4+ T cells, indicating potential

regulatory mechanisms in OSCC progression (23). Furthermore,

Rosemarie Krupar’s studies highlighted the clinical significance of

glycolysis-driven immunosuppression in HNSCC through genomic

profiling, showing improved survival in patients with favorable

immune and metabolic genetic profiles (high CD8A, high

mitochondrial-rich COX5B, low GLUT1) (24). These findings

illustrate how glycolysis regulates immune cells (25) and

immunosuppressive checkpoints in HNSCC, ultimately

modulating the tumor’s immune environment.
2.2 The role of glycolytic metabolite
lactate in immune regulation in HNSCC

Lactate, a principal byproduct of glucose’s glycolytic

metabolism, exerts immunosuppressive effects in cancer (26) and

plays a significant role in immune regulation in HNSCC. Studies

have shown that lactate, produced by upregulated PKM2, promotes
Frontiers in Oncology 03
tumor progression and galectin-9-mediated immunosuppression

through NF-kB signaling in HNSCC, linking metabolic

reprogramming with immune regulation (27). Fusobacterium

nucleatum, a Gram-negative anaerobic bacterium, has been found

to enhance GLUT1 aggregation in the plasma membrane and

glycolysis via activation of the GalNAc-autophagy-TBC1D5

signaling pathway, leading to extracellular lactate accumulation

and the formation of M2-like tumor-associated macrophages

(TAMs) (Figure 2). Concurrent inhibition of GalNAc and GLUT1

facilitated the formation of M1 anti-tumor macrophages and

regression of OSCC (28). Lactate has also been implicated in

immune escape mechanisms in HNSCC. Ruijie Wang et al.

demonstrated that IL-11 overexpression promoted tumor

progression and CD8+ T cell dysfunction in vivo; conversely, IL-

11 knockout reversed lactate-induced CD8+ T cell exhaustion (29).

Clinical data further indicate that peripheral lymphocytes and

lactate dehydrogenase levels correlate with the response and

survival outcomes of immune checkpoint inhibitors in head and

neck cancer (30), underscoring lactate’s role in suppressing immune

function and facilitating immune evasion by tumors.
2.3 Impact of hypoxic metabolic
environment on immune regulation in
HNSCC

Under hypoxia or pseudohypoxia (where oxygen is present but

cannot be properly utilized due to alterations in oxygen-sensing

pathways), cells activate numerous adaptive responses. These

responses are coordinated by various cellular pathways, most of
FIGURE 2

The overexpression of GLUT1 promotes glycolysis in HNSCC, leading to excessive PD-1 expression on CD4+ T cells and ultimately resulting in tumor
immune escape. Lactate produced during glycolysis is transported extracellularly via MCT4, which drives macrophage polarization toward the pro-
tumor M2 phenotype and may also contribute to CD8+ T cell exhaustion. Additionally, the hypoxic tumor microenvironment activates HIF-1a, which
mediates the formation of the CD74/CXCR2 complex, thereby recruiting immunosuppressive MDSCs to facilitate immune suppression.
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which are controlled by a common factor, namely the hypoxia-

inducible factor (HIF) (31). Hypoxic microenvironments are

prevalent in most solid tumors, with research showing that cancer

cells adapt to hypoxia through signaling pathway alterations.

Hypoxia induces immune tolerance (32), weakening cytotoxic T

cell function and promoting regulatory T cell recruitment, thereby

diminishing tumor immunogenicity (33). Quynh-Thu Le et al.

identified Galectin-1 as a hypoxia-regulated protein and

prognostic marker in HNSCC, noting a strong negative

correlation between Galectin-1 and CD3 staining (34).

Furthermore, Dan P. Zandberg et al. reported that increased

oxidative metabolism in tumor cells, during PD-1 resistance,

exacerbated intratumoral hypoxia and reduced CD8+ T cell

infiltration. Hypoxia-inducible factors (HIFs), particularly HIF-1a
and HIF-2a, play central roles in modulating immune evasion (33)

by regulating the chemotaxis of CD11b+Gr-1+ myeloid cells through

binding to CD74/CXCR2 and CD74/CXCR4 complexes(Figure 2)

(35), activating the p38/MAPK and PI3K/AKT signaling pathways

(36). These findings suggest a significant role for hypoxia in

regulating the immune microenvironment of HNSCC, warranting

further exploration of its mechanisms.
3 Effects of other metabolites and
metabolic pathways on immune
regulation in HNSCC

3.1 Amino acid’s role in immune regulation
in HNSCC

Cancer’s progression from a localized tumor to widespread

metastatic disease is complex and multifaceted, making it a leading

cause of death among cancer patients (37). The primary agents of this

process are circulating tumor cells (CTCs), which detach from the

primary tumor and disseminate through the bloodstream to colonize

other organs (38). Indoleamine 2,3-dioxygenase 1 (IDO1) is an

enzyme involved in the catabolism of the essential amino acid L-

tryptophan; it depletes this amino acid and contributes to immune

suppression and tolerance in the tumor microenvironment. Studies

indicate that in patients with locally advanced head and neck cancer

undergoing chemoradiation, IDO1 acts as a surrogate biomarker for

an “inflamed” good prognosis phenotype at baseline. Conversely,

persistent overexpression of IDO1 at treatment’s end may negate the

effects of immunogenic cell death induced by chemoradiation

(39).Glutamine metabolism is vital for various cellular functions,

including nucleotide synthesis, amino acid production, redox

balance, glycosylation, extracellular matrix production, autophagy,

and epigenetics (40). It is extensively utilized by macrophages and

neutrophils, and glutamine availability also governs the production

and secretion of pro-inflammatory cytokines (IL-6, IL-1, and TNF) by

macrophages (41). Glutamine is critical for immune regulation in

HNSCC. Ying-Chieh Liu, through database analysis, found that

higher expression of SLC1A5 (amino acid transporters) in tumors
Frontiers in Oncology 04
was associated with significantly lower immune scores in CD8,

monocytes, and dendritic cells, and higher scores in M0 and M1

macrophages (Figure 3). Disruptions in immune modulation,

metabolism, and oxidative stress were linked to SLC1A5 aberrations

in HNSCC (42). Meanwhile, An Song reported that glutamine levels

in HNSCC improved post-radiation therapy, correlating with

upregulated expression of the glutamine transporter SLC1A5. This

study also demonstrated that inhibiting glutamine metabolism in

conjunction with radiotherapy enhanced the expression of CD47, an

immune checkpoint receptor that protects cells from macrophage

phagocytosis, thereby hindering phagocytosis and reducing treatment

efficacy (43). This indicates that targeting glutamine metabolism

might offer a novel approach to cancer therapy.
3.2 The impact of fatty acid metabolism on
immune regulation in HNSCC

Multiple studies have demonstrated that aberrant signaling

pathways or nutrient competition in the tumor microenvironment

can induce phenotypic reprogramming of fatty acid metabolism and

alter the function of tumor-infiltrating immune cells, thereby

impacting the efficacy of cancer immunotherapy (44). Blake R.

Heath et al. suggested that obesity might create an interferon-I-

deprived tumor microenvironment, leading to the expansion of

inhibitory myeloid cell clusters and a reduction in effector T cells.

This process may involve saturated fatty acids inducing NLRC3

expression, a DNA-binding protein that inhibits the STING

pathway, effectively suppressing the STING-IFN-I pathway in

HNSCC cells, leading to T cell exhaustion and reduced HNSCC

immunogenicity (45). Consistently, other researchers have shown that

a high-fat diet-induced obesity significantly promotes OSCC

development and alters the local immune microenvironment by

expanding CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs),

potentially through recruitment via the CCL9/CCR1 axis and

enhancing MDSC immunosuppressive functions via intracellular

fatty acid uptake(Figure 3) (46). Marwah M. Albakri et al. also

discovered that fatty acids secreted by HNSCC induced M2-like

macrophage formation (47). These findings indicate that in

HNSCC, the aberrant accumulation of lipid metabolites (e.g., short-

chain fatty acid, long chain fatty acid, cholesterol, etc.) in tumor-

infiltrating myeloid cells, including MDSCs, DCs, and TAMs, skews

these immune cells towards immunosuppressive and anti-

inflammatory phenotypes through metabolic reprogramming.

Exploring ways to overcome fatty acid metabolic dysregulation

could improve immunotherapy outcomes for HNSCC.
3.3 The role of adenosine signaling
pathway in immune regulation in HNSCC

Adenosine is an evolutionarily conserved metabolic regulator

that links energy status to physiological processes, including

immune regulation and cell proliferation. Tumors create an
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adenosine-rich immunosuppressive microenvironment by

increasing ATP release in dying and stressed cells and converting

it to adenosine via extracellular enzymes (48). The accumulation of

nucleoside adenosine in the tumor microenvironment suppresses

various immune cells’ anti-tumor functions, including cytotoxic T

cells and natural killer cells, by binding to adenosine A2A receptors

(A2ARs) (5, 49). In HNSCC, the adenosine signaling pathway plays

an indispensable role in immune surveillance. Recent studies have

highlighted that A2AR expression is significantly correlated with

HIF-1a, CD73, CD8, and Foxp3, and that blocking A2AR

significantly reduces the number of CD4+Foxp3+ Tregs while

enhancing CD8+ T cell anti-tumor responses(Figure 3) (50).

Additionally, some studies have revealed that co-inhibition of the

adenosine 2B receptor and programmed death ligand 1 promotes

the recruitment and cytotoxicity of natural killer cells in OSCC (51).

Magis Mandapathil et al. demonstrated that adenosine deaminase

(ADA), responsible for deaminating immunosuppressive adenosine

to inosine, increases CD4+ effector T cells’ sensitivity to inhibitory

signals transmitted by adenosine receptors in HNSCC patients,

leading to extracellular adenosine accumulation and affecting the

tumor microenvironment (52). Ectonucleotidases CD39 (also

known as NTPDase 1) and CD73 (5’-NT) are cell surface

molecules that play an indispensable role (49). Targeting CD39

and CD73 activity to inhibit adenosine production is a promising

strategy to enhance anti-tumor immunity.
Frontiers in Oncology 05
4 Regulation of immune metabolism
in HNSCC by related signaling
pathways

4.1 Immune regulation by the PI3K−Akt
−mTOR pathway in HNSCC

The PI3K-mTOR pathway, frequently activated in cancer, controls

cell growth and metabolism. mTOR signaling regulates amino acid,

glucose, nucleotide, fatty acid and lipid metabolism (53). Recent studies

have identified important regulatory roles of mTOR in the

differentiation, activation, and functional properties of immune cells,

where mTOR’s function is to coordinate and shape immune effector

responses (54, 55). The Akt-mTOR pathway is known to be activated

in HNSCC (56). Numerous studies focus on the regulation of

immunity by the mTOR signaling pathway through metabolic

reprogramming in HNSCC. Tyrosine phosphorylation of HER3 (a

member of the ErbB protein family) and PI3K were identified as the

basis for abnormal PI3K/AKT/mTOR signaling in PIK3CA wild-type

HNSCC. It has been discovered that HER3 blockade inhibited HER3-

PI3K-AKT-mTOR oncogenic signaling and simultaneously reversed

the immunosuppressive tumor microenvironment, demonstrating that

co-targeting HER3 and PD-1 led to tumor growth inhibition and

subsequently enhanced therapeutic immune responses (57). There is

convincing evidence that PD-L1 promotes HNSCC cell growth
FIGURE 3

Fatty acids promote NLRC3 expression to inhibit the STING pathway, thereby inducing exhaustion of CD8+ T cells, and mediate CCL9/CCR9 to
enhance the immunosuppressive function of MDSCs; overexpression of SLC1A5 is associated with reduced immunohistochemical scores of related
immune cells; inhibition of A2AR may decrease the number of Treg cells and promote antitumor immune responses of CD8+ T cells.
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through mTOR signaling, further supporting the role of mTOR

metabolic signaling in immune evasion in HNSCC (58). Additional

research has discovered that SOAT1, a key enzyme in lipidmetabolism,

activated the PI3K/AKT/mTOR pathway and promoted M2-like

polarization of TAMs, thus promoting OSCC growth both in vitro

and in vivo(Figure 4) (59). The mTOR signaling pathway is also

implicated in regulating the immune system through its effects on

glucose metabolism. Akt, by interacting with multiple downstream

targets such as the 160 KDAAkt substrate (AS160), plays a crucial role.

AS160 is known to inhibit the translocation of GLUT4 to the

membrane, a vital glucose transporter crucial for cellular energy

needs. Activation of Akt diminishes the inhibitory effect of AS160,

leading to increased activity of GLUT4. Consequently, this activation

elevates glucose absorption in cancerous cells, thereby augmenting

glycolytic flux (60). Ellen C. Moore et al. has discovered that the

concomitant use of rapamycin, an inhibitor of mTOR, with anti-PD-L1

therapy, significantly boosts antigen-specific CD8+ T cell responses and

facilitates the infiltration of immune cells (61). It is imperative for

subsequent research to delineate more precisely the roles of the mTOR

pathway in both tumor and immune cells within the context

of HNSCC.
4.2 Regulation of immune metabolism in
HNSCC by the NF-kB pathway

The NF-kB transcription factor is crucial in various normal

cellular processes, such as inflammation and cell survival, and plays

a role in the molecular pathogenesis of cancer (62). As a
Frontiers in Oncology 06
transcription factor for anti-apoptotic genes, NF-kB promotes

tumor survival in various cancers, including HNSCC. Matrix

metalloproteinase 9 (MMP-9), associated with lymph node

metastasis and reduced survival rates, is synergistically

upregulated by pro-inflammatory cytokines and growth factors in

an NF-kB-dependent manner (63, 64). Research indicates that

under glucose-deficient conditions, both CXCL8 mRNA and its

protein IL-8 are elevated in cancer cells in an NF-kB-dependent
manner. Furthermore, targeting CXCL8 signaling enhances the

sensitivity of HNSCC to anlotinib by reducing tumor-associated

macrophage-derived agrin (65). The NF-kB pathway is not only

involved in the regulation of glucose metabolism but also plays a

role in lipid metabolism. Similarly, studies have demonstrated that

PER2 (Period circadian regulator 2) binds to HSP90, thereby

inhibiting the IKK/NF-kB pathway and downregulating PD-L1

expression, which enhances the cytotoxic activity of CD8+ T cells

against OSCC (Figure 4) (66).
4.3 Regulation of metabolic
reprogramming in HNSCC by the PD-1
\PD-L1 signaling pathway

Malignant tumor cells evade anti-tumor immune responses by

promoting negative signaling pathways such as PD-1/PD-L1 (67).

Specifically, PD-1 upregulation inhibits the effector functions and

expansion of T cells within the tumor microenvironment, thus

enabling tumor cells to escape immune surveillance (68). Literature

indicates that elevated levels of PD-1 and glycolysis in CD4+ T cells
FIGURE 4

SOAT1 (a lipid metabolism enzyme) activates the PI3K−Akt−mTOR signaling pathway, thereby promoting macrophage polarization toward the M2
phenotype; PER2 binds to HSP90 and inhibits the NF-kB signaling pathway, leading to decreased PD-L1 expression and thereby enhancing CD8+ T
cell immune infiltration; overexpression of the PD-L1/PD-1 axis may increase glycolysis in CD4+ T cells, ultimately leading to lymph node metastasis.
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are positively correlated with lymph node metastasis in OSCC

(Figure 4) (23). Sphingosine kinases (SPHKs), crucial rate-

limiting enzymes, exist as two subtypes, SPHK1 and SPHK2,

which catalyze the phosphorylation of sphingosine (SPH) to

sphingosine-1-phosphate (S1P). Research by Qi Fang et al. shows

that SPHK1 promotes immune escape in HNSCC by regulating the

MMP1-PD-L1 axis. The combination of PD-1 immunotherapy and

targeted metabolic reprogramming has become a critical research

focus in cancer therapeutics, offering synergistic effects that may

overcome the limitations of single-agent therapies, enhance

antitumor efficacy, and address drug resistance.
5 Therapeutic prospects of targeting
immune metabolism in HNSCC

Surgical resection remains the primary treatment for HNSS,

with chemotherapy and radiotherapy serving as key adjuvant

therapies. The studies mentioned above provide a deeper

understanding of metabolic interventions in HNSCC and

immune cells, which may reveal novel therapeutic targets.

Immunometabolic pathways in HNSCC hold significant potential

for therapeutic development (Table 1). Glycolytic metabolism may

contribute to the suboptimal efficacy of immunotherapy in HNSCC.

To address this, Yong Teng et al. used ganetespib, an inhibitor of

heat shock protein 90 (HSP90), as a pharmacological model. Their

prior research showed that HSP90 inhibition suppresses glycolytic

flux in HNSCC cells by downregulating PKM2 at both the

transcriptional and post-translational levels. Further studies

revealed that combining ganetespib with radiotherapy attenuates
Frontiers in Oncology 07
radiation-induced PKM2 upregulation and enhances T cell-

mediated antitumor immunity, resulting in superior antitumor

efficacy compared to either treatment alone (69). Lactic acid is

also a viable immune-metabolic target. Sun M Lim et al. found that

pembrolizumab-based combination therapy reduced the expression

of lactate-producing genes (including SLC16A3 and LDHA) in the

EGFR HIGH MET HIGH subpopulation of HNSCC. This study

highlighted the remodeling of the TME by the combination

therapy, providing a theoretical basis for additional therapeutic

strategies combining amivantamab (a bispecific EGFR-MET

antibody) with PD-1 immunotherapy (70). Extensive tumor

necrosis and localized hypoxia in HNSCC may contribute to poor

chemotherapeutic response or even drug resistance. To address this,

Tong Wu et al. developed a hypoxia-adaptive nanocomposite

TiO2@Ru@siRNA for the prevention and treatment of OSCC.

Under visible light excitation, this material efficiently induces

HIF-1a gene silencing and OSCC cell eradication while

remodeling the immunosuppressive microenvironment by

downregulating key immunosuppressive factors and activating T-

cell-mediated antitumor immunity (71). Regarding the previously

discussed glutamine and adenosine metabolic reprogramming,

related drugs have already entered clinical trials. In HNSCC,

mutations in Nuclear factor erythroid 2-related factor 2 (Nrf2)

increase intratumoral recruitment of polymorphonuclear myeloid-

derived suppressor cells (PMN-MDSCs) and reduce M1

macrophages, inducing radioresistance. Li Guan et al. (72)

discovered that the glutaminase inhibitor CB-839 can reverse

these changes. Zhi-Jun Sun et al. demonstrated that blocking with

SCH58261 (an A2AR antagonist) significantly reduced the

population of CD4+Foxp3+ Treg cells and enhanced the anti-
TABLE 1 Drugs targeting immunometabolism in HNSCC.

Drugs name
Action
target

Targeted metabolism
Targeted immune Clinical trial

Ganetespib HSP90 Suppresses tumor glycolytic flux facilitate tumor infiltration of cytotoxic T cells NCT02334319

Amivantamab EGFR and MET
increased expression of genes implicated in
production of lactate(SLC16A3)

enhanced infiltration of granzyme B–producing
CD8 T cells

NCT05908734

TiO2@Ru@siRNA HIF-1a hypoxia relief activation of CD4 and CD8 T lymphocytes Preclinical phase

CB-839 GLS1
Inhibit the conversion of glutamine
to glutamate

Reduce the expression of PMN-MDSC-attracting
chemokines (including CXCL1, CXCL3,
and CSF3).

NCT03528642

SCH58261 A2AR inhibit adenosine-A2AR interaction
reduced the population of CD4+ Foxp3+ Tregs
and enhanced the anti-tumor response of CD8+

T cells
Preclinical phase

anti-CD73 monoclonal
antibody (mAb)

CD73 inhibit adenosine generation
reverse the ‘exhausted’ phenotype of CD4+ and
CD8+ T cells

NCT02503774

Etomoxir CPT1 Inhibition of fatty acid oxidation Reverse M2 macrophage polarization Preclinical phase

Rapamycin mTOR attenuate tumor lactate production Enhances Immune-Mediated Tumor Clearance NCT01195922

reparixin CXCL1/2
Hypoxia-driven glucose deprivation
triggers CXCL8 upregulation via HIF-1a/
NF-kB axis

Inhibit CLU synthesis in tumor-associated TAMs Preclinical phase

IDOi (BMS986205)
+ nivolumab

IDO1and PD-1 Modulate tryptophan metabolism Block the binding of PD-1 to PD-L1 NCT03854032
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tumor response of CD8+ T cells (50). Weiwei Deng ‘s team also

discovered that blocking adenosine with MEDI9447 (a CD73-

specific monoclonal antibody) can alter the exhausted phenotype

of T cells (73). Research on drugs targeting fatty acid metabolic

reprogramming remains limited and is currently in the

experimental stage. Marwah M Albakri et al. found that fatty

acids in HNSCC promote macrophage polarization toward the

M2 phenotype, and the fatty acid oxidation inhibitor Etomoxir

can reverse this polarization (47). This drug shows promising

clinical potential.

Targeting relevant signaling pathways that regulate

immunometabolism in HNSCC presents promising application

prospects for improving therapeutic efficacy. Clinical trials are

currently evaluating mTOR inhibitors in combination with

various treatment modalities for HNSCC (74). John H. Lee et al.

found that rapamycin reduces lactate levels in HNSCC tumors,

thereby alleviating the inhibitory effect of lactate on perforin release

by CD8+ T cells (75). The research group led by Xu Wang found

that IL-8 supplementation stimulates TAMs to synthesize clusterin

(CLU), which counteracts oxidative stress in HNSCC cells under

glucose-deficient conditions. Additionally, in two xenograft models,

pharmacological blockade of CXCL8 signaling (using reparixin)

sensitized HNSCC cells to nutrient deprivation therapy (anlotinib)

(65). Although immune checkpoint blockade therapy has advanced

rapidly in recent years, a subset of patients still fail to achieve

satisfactory treatment outcomes. Eric V. Mastrolonardo and

colleagues conducted a clinical trial demonstrating that

combining the IDO1 inhibitor BMS-986205 with the PD-1

inhibitor Nivolumab enhanced T cell activity and boosted

immune-mediated antitumor responses in treatment-naïve,

surgically resectable HNSCC patients (76).
6 Conclusion

Previous studies have demonstrated that HNSCC acquires

immune evasion capabilities by altering metabolic pathways.

Targeting these pathways, along with anti-immune evasion

treatments, holds significant clinical potential. However, the specific
Frontiers in Oncology 08
mechanisms require further detailed investigation. Discussion of

mitochondrial function in regulating immunity remains insufficient

and demands more comprehensive explanation.
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