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Introduction: Quantum computing is increasingly being investigated for

integration into medical radiology and healthcare applications worldwide.

Given its potential to enhance clinical care and medical research, there is

growing interest in evaluating its practical applications in clinical workflows.

Methods: We developed an evaluation of quantum computing-based auto-

contouring methods to introduce medical physicists to this emerging

technology. We implemented existing quantum algorithms as prototypes

tailored for specific quantum hardware, focusing on their application to auto-

contouring in medical imaging. The evaluation was performed using a medical

resonance imaging (MRI) abdominal dataset, comprising 102 patient scans.

Results: The quantum algorithms were applied to the dataset and assessed for

their potential in auto-contouring tasks. One of the quantum-based auto

contouring methods demonstrated conceptual feasibility, practical

performance is still limited by current available quantum hardware and

scalability constraints.

Discussion: Our findings suggest that while quantum computing for auto-

contouring shows promise, it remains in its early stages. At present, artificial

intelligence-based algorithms continue to be the preferred choice for auto-

contouring in treatment planning due to their greater efficiency and accuracy. As

quantum hardware and algorithms mature, their integration into clinical

workflows may become more viable.
KEYWORDS

quantum computing, medical image segmentation, auto-contouring, quantum image
representation, radiotherapy planning
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1 Introduction

Research on the application of quantum computing in magnetic

resonance imaging (MRI) diagnostic analysis is rapidly progressing.

Microsoft’s quantum computing team has developed a quantum-

inspired algorithm for magnetic resonance fingerprinting that runs

on classical machines. This algorithm reduced scan times by a factor

of three while increasing precision by 30% (1).

MRI works by polarizing proton spins in hydrogen atoms and

measuring their relaxation times, which vary depending on the

material (e.g., hard and soft tissues, bone, and cancerous cells) (2).

As a quantum-based technique, MRI holds significant potential for

medical imaging. Current research efforts, such as those from the

Superconducting Quantum Materials and Systems Center at Fermi

National Accelerator Laboratory and New York University Langone

Health, aim to develop quantum algorithms for processing 3D MRI

images (3). These advancements are expected to improve diagnostic

speed and facilitate more accurate molecular-level analyses, which

could revolutionize cancer diagnosis and treatment. Additionally,

collaborations like those between the German Cancer Research

Center and Fraunhofer Competence Network Quantum

Computing are exploring quantum computing for personalized

cancer therapies (4).

Although quantum computing promises to revolutionize

medical imaging, it remains an emerging field, and its immediate

impact on medical algorithms is still uncertain. In this study, we

evaluated several quantum algorithms applicable to auto-

contouring methods used in treatment planning systems. Our

analysis found that current quantum methods for medical image

processing are still in early stages of development.

A prominent contributor to the field, Stephen Jordan at

Microsoft Quantum, maintains a list of quantum algorithms in

his “quantum algorithm zoo” (5) Notably, research on quantum

image processing (QIP) is still limited, with image segmentation

representing only 3% of the quantum computing work published in

this area (6, 7). Much of the literature on quantum computing has

focused on security and foundational aspects of the field. However,

quantum algorithms for practical applications in medical imaging

are gaining traction.

Among the key quantum algorithms are Grover’s search

algorithm (amplitude amplification) (8), Shor’s factoring

algorithm (9), and the Harrow-Hassidim-Lloyd (HHL) algorithm

(10). These algorithms are being adapted for applications such as

quantum neural networks and quantum image processing. While

the concept of quantum-based neural networks is still in its infancy,

current research is exploring the potential of integrating quantum

properties into neural network models for tasks like image

contouring.

Before developing effective quantum algorithms, it is crucial to

understand the limitations of the underlying quantum hardware.

Different quantum devices may offer varied capabilities, and

understanding these constraints will guide the development of

algorithms suited for medical applications. In this paper, we
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evaluate three distinct quantum algorithms—quantum-inspired,

gate-based, and quantum annealing-based—using an MRI dataset.

We conclude with a discussion on their relative potential for auto-

contouring in medical imaging.

This paper is organized as follows:We begin with a brief review of

quantum vs. classical computing to provide a clearer understanding

of quantum computing. The following section describes our methods

for selecting the three quantum algorithms evaluated in this study.

Next, we outline the dataset used for algorithm evaluation. The

subsequent sections focus on three different quantum algorithms.

Finally, we discuss the strengths and limitations of these algorithms,

followed by concluding remarks.
2 Classical versus quantum computing

Classical hardware for computing is effective because of the

software that runs on top of it. There are two main types of software

that operate on classical hardware: operating systems and

application programs. Compilers translate high-level code into

bytecode and machine language, which manipulate bits (0 or 1)

in the computer processor. Over the years, considerable effort has

gone into developing higher-level languages that allow users to

write code quickly for their applications. Similarly, software for

quantum computing hardware is actively being developed.

Currently, developing algorithms for quantum computers can be

time-consuming because developers must tailor their algorithms to

run on individual quantum bits (qubits), rather than using high-

level programming languages like Rust or Python.

The rules for manipulating classical bits are very different from

those for quantum bits. Five important differences between classical

and quantum computations are: (1) quantum superposition, (2)

interference between qubits, (3) quantum entanglement, (4) non-

deterministic calculations, and (5) non-clone-ability of a qubit state.

A classical bit is either in state 0 or state 1, whereas a qubit can

exist in both states simultaneously, a property known as

superposition. In quantum mechanics, the state of a system is

unknown until it is measured. This creates ambiguity in the

use of the term “superposition.” For example, some developers

describe the Hadamard operation as transforming a qubit state

from yQ

�� �
  =  0j0i  +   1j i   to yQ

�� �
1ffiffi
2

p = ðj0i + 1j iÞ as putting the

state in a superposition of states. Note, we have employed Dirac

notation representing the ket y ⟩j of the wavefunction. ⟨y  j
represents the bra of the wavefunction. In quantum mechanics,

there is a finite probability that a qubit can exist in superposition,

even if that probability is close to zero. It is safer to assume that

quantum states are always in a superposition of states until they are

measured. Schrödinger’s famous cat thought experiment exemplifies

this concept, where a cat inside a box is simultaneously in two states

—alive and dead—until the box is opened.

Quantum entanglement is another key concept, observed in

particles such as photons and electrons. It describes a scenario in

which multiple particles share a wavefunction, meaning that the
frontiersin.org
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state of one particle directly affects the state of the other (11). This

phenomenon is common in real quantum systems, qubits are not

isolated and interact with their environment, other qubits, or other

quantum systems. Entanglement occurs when two qubits interact

and become linked in such a way that their individual states cannot

be described independently. The strength of the entanglement

depends on how strongly the qubits interact with each other.

Weakly entangled qubits exhibit weak entanglement, while

strongly entangled qubits display stronger correlations. In

quantum computing, writing the entanglement between two states

as ⊗   is conventional. This notation does not provide the strength

of the entanglement between the two states.

ya⟩⊗j jybi
Quantum interference in quantum systems occurs when the

wavefunctions of nearby qubits overlap. This commonly occurs and

is one of the most challenging aspects of developing a quantum

computer. When the wavefunction extends outside the physical

qubit, the electron can tunnel outside the barrier containing the

electron, called leakage current. When two qubit wavefunctions

overlap, interference patterns emerge, similar to the ripples caused

by multiple pebbles dropped in a pond. This interference can be

constructive or destructive, affecting the probabilities of certain

outcomes. Furthermore, when qubits are entangled, interference

between their states can create a multi-level system, where the

combined quantum states result in multiple possible configurations.

For instance, two qubits, each with two possible states (|0⟩ and |1⟩),

the combination will have four different = states: the excitation of

one of the qubits is considered one state, (|01⟩ or |10⟩), while the

excitation of both qubits is considered another state, (|11⟩) and both

qubits in the ground state is a state (|00⟩). Mathematically, the

combination of quantum states in Hilbert space forms a vector

space composed of a linear combination of two or more allowed

states. Control of the population of these states is the fundamental

building block of quantum computer.

Quantum indeterminacy refers to the inherent uncertainty in

quantum systems. Repeating the same quantum algorithm is likely

to yield different results each time due to the probabilistic nature of

quantum mechanics. When measuring the state of a system, the

measurement itself has a probability distribution over all possible

outcomes. Both the state and the measurement outcome are

inherently uncertain, and this indeterminacy is a defining feature

of quantum mechanics.

Cloning a quantum state—creating an exact, independent copy

of a state without altering it—is not possible, due to the unique

properties of quantum measurements. The act of measuring a

quantum state interacts with and changes that state. Qubits in a

pure state (uncoupled from the environment) can be cloned. Thus,

it is impossible to measure a quantum state and then recreate the

original state, unless the state were a pure state to begin with. It is

worth mentioning that, although quantum cloning is impossible, it

is possible to clone a state with non-perfect fidelity (12).

Table 1 summarizes the key differences between classical and

quantum computation. For further study of the basics of quantum

computing, numerous online resources, books, and courses are
Frontiers in Oncology 03
available, including “Quantum Computation and Quantum

Information” by Nielsen and Chuang (13). Further explanation of

quantum computing is beyond the scope of this article, as there is a

vast amount of resources available.
3 Methods

We conducted a literature search to identify all available open-

source quantum contouring algorithms from GitHub and

PaperswithCode, specifically focusing on algorithms for quantum

image segmentation. Our search covered three different types of

quantum algorithms: quantum-inspired, quantum annealing, and

gate-based qubit algorithms. For each of these categories, we found

one relevant algorithm. To provide concrete examples of how these

algorithms can be applied, we used them for contouring the liver in

MR abdominal images. This approach offers medical physicists

valuable insights and a deeper understanding of how quantum

algorithms can be utilized within treatment planning systems.

In this study, all quantum algorithms were implemented and

evaluated using quantum simulators rather than physical quantum

hardware. Simulators allow for idealized performance assessment of

these methods for possible use as quantum image segmentation

methods. While this provides a useful framework of the initial

algorithm development, it doesn’t capture the challenges with

deploying these on quantum hardware. Future work will need to

incorporate experimental validation on physical quantum devices to
TABLE 1 Comparison between classical and quantum computations.

Type of
comparison

Classical Quantum

Basic Unit Bits are either 0 or 1 Qubits are ina superposition
of states

Basic Unit Bits have a
definite value

Qubits do not have a definite value
until a measurement is done

Bit
Manipulation

Bits are copied or
read without
affecting other
bits’ values

Qubits are in an unknown state
and cannot be copied or read
without disrupting the other states.
If two qubits are entangled,
performing a measurement of one
will affect the other qubit states

Storage n-bit storage can
hold one value from
0 to 2n − 1

n-qubits hold 2n values

Computation n-bit processor can
do one operation

n-qubit processor can do
2n operations

Computation Operations are done
via
logical operators

Operations are done via
Unitary Matrices

Computation copyingabitstateis
possible

Cloning a quantum or classical bit
is not possible

Measurement Calculations are
deterministic;
repeating the same
algorithm gives the
same result

Calculations are nondeterministic;
for one input there can be multiple
possible results
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better understand the true capabilities and limitations of quantum

auto-contouring in clinical applications.
4 Dataset

The dataset consisting of 34-patients, with a total of 102 scans,

consisting of MR imaging data of the abdomen, with unenhanced, late

arterial phase, and portal venous phase. Imaging was acquired from

multiple MR scanners: Optima MR450w,1.5T, (GE), TrioTim, 3T,

(Siemens), Intera, 1.5T (Philips), Achieva 1.5T (Philips), and

Panorama 1T (Philips). Preoperative abdominal MR was obtained

using a liver protocol consisting of an arterial phase (20–30 seconds

after contrast injection), pre-contrast phase, a venous phase (60–80

seconds after injection of intravenous contrast material), and a

delayed phase (15 minutes after contrast injection). Each series was

obtained in the axial plane with a phased array multi-coil. A T1-

weighted spoiled gradient echo sequence was performed. The multi-

phase MR studies were exported in DICOM format from the picture

archiving and communication system to an independent server

running 3D Slicer (14). Data collection and analysis for this study

were conducted in accordance with Institutional Review Board (IRB)

protocols PA15-0091, titled Image Processing for Retrospective

Analysis of Therapy Response and Planning, under the approval of

Ada Lo at MD Anderson Cancer Center, Houston, TX. All

experiments were carried out in accordance with institutional

policies. PHI was removed. The imaging data was analyzed as NifTI

files. The liver was contoured by a radiologist in 3D Slicer. All images

were pre-processed using SimpleITK (15) for non-uniformity in the

main magnetic field, (16). The 3D Slicer scripting interface was used

to iteratively anonymize all data and maintain orientation and

resolution information as a compressed NifTI format recommended

by the Neuroimaging Informatics Technology Initiative.

This dataset contains demographic and clinical information

primarily focused on liver-related conditions such as hepatocellular

carcinoma and cirrhosis. The patient cohort has a mean age of

approximately 66 years, with ages ranging from 44 to 92. Most
Frontiers in Oncology 04
patients are male (82%), with females representing 18% of the

sample. Racial composition is diverse, including individuals

identified as White (52%), Asian (21%), Black (9%), Hispanic

(6%), and unknown (12%). This dataset offers a rich foundation

for analyzing patterns in liver disease across a varied patient

population, with cleanly structured demographics that support

stratified analysis by age, gender, and race.
5 Evaluation of quantum inspired
classical algorithm

QIS-Net (Quantum Image Segmentation Network) is a self-

supervised, quantum-inspired machine learning algorithm designed

for image segmentation (17). It uses an image threshold parameter for

each pixel, defining a quantum-like state based on an individual pixel

and its eight nearest neighbors through fuzzy logic. In this framework,

each pixel neighborhood is mapped into a three-level quantum-like

system (qutrit), where the levels represent low, medium, and high

intensities derived from fuzzy membership functions.

The self-supervised approach relies on unlabeled data, using

learned representations for feature detection and classification from

raw input. Instances of self-supervised approaches include: GPS

location data to distinguish between objects typically found in

buildings, schools, homes, etc.; hashtags in online content to

assist machine learning in environments with limited labeled

data; and techniques like edge detection and super-pixels in

images to help train neural networks using unlabeled data.

The biggest challenge with fully unsupervised learning is making

sure that the derived data representation and the learning tasks are

aligned. In QIS-Net, rotational gates are applied to simulate unitary

evolution of each qutrit. The first convolutional layer is constructed by

applying a counter-clockwise rotation operation R(q) to each qutrit

set, and the second layer by applying a clockwise rotation operation R

(-q). These rotations are modeled as unitary transformations in the

qutrit Hilbert space, approximating superposition interactions among

neighboring pixel intensities. QIS-Net is shown in Figure 1.
FIGURE 1

The self-supervised QIS-Net neural network.
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The completion of the image segmentation algorithm was done

by measuring the population |⟨z|z⟩|2, where z represents the

simulated quantum state associated with a pixel neighborhood.

The input-output relation of the jth quantum pixel at the center of

the qutrit to the tth quantum pixel at the center of the qutrit on the

same image was defined through the calculated transition

probabilities derived from these population measurements

jzkt (xt) 〉 = s(xt)o
n�m

j
eiz

k−1
j ft

j jht
j

� �
,

where zt is the output quantum neuron. In essence, |⟨z|z⟩|2,

converts the quantum information, which is on a classical machine,

into classical information by collapsing the wavefunction. The

parameter xi,j is the ith neuron in the image to be sampled

xt,j =om−2
p−1o1

c−1m+p,+c cos (wt,j − At,j)

where Ai,j = 2pBi,j, and Bi,j  is the cardinality of the image,

which is the sum of the intensities of the pixels that compose the

tth qubit. The summation, j, is over the eight surrounding pixels. To

determine whether it was foreground or background, a quantum

sigmoidal activation function was applied, given as

s(x) =
1

lw + e−n(x−b)
, (1)

where n is the steepness factor, b the activation factor, and lw
the response of a gray scale intensity index. The frequency is given

by

wi,j = 2p 2p −om−2
p=−1o1

c−1mi+p,j+c − mi,j

� �
;  j ∈ 1, 2,…8f g

The gray scale intensity index is given as

lw = Sw
SN

Flw − Flw−1
,

where SN is the sum of the 8-connected neighboring grayscale

pixels values as qubits. The interconnection strengths, fij between
two adjacent layers were inspired by a quantum fuzzy membership

between neurons i and i′ in different layers as

jft
k,j 〉 =

cos (ak,j)

sin (ak,j)

" #
;  j ∈ 1, 2,…8f g :

The index j is over the 8 surrounding pixels that make up the

qutrit. The relative measure of quantum fuzzy membership enables

the network to detect the edges between foreground and

background pixels

akj =
p
2
− (mk − mkj); j ∈ 1, 2, 3,…, 8f g,

where µkis the pixel intensity of the kth neuron and µk,jone of

its’ eight-neighbors j ∈ {1,2,…8}. The threshold parameter hkt is

given as jht
k =

cos (g j
k)

sin (g j
k )

2
64

3
75 where g tk = 2po

j
mt,j. The translation of an

individual pixel and its’ eight-nearest neighbors into a qubit was
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done using a multi-class gray-level transition for a fixed class FlwL ∈
½0, p2 �. The multi-class gray-level transitions considered were

FlwL =
p
2 ½  0,   0:15,   0:30,   0:46,   0:61,   0:76,   0:91,   1:0�f
½0, 0:14, 0:28, 0:42, 0:56, 0:70, 0:90, 1:0�
½0, 0:13, 0:26, 0:39, 0:52, 0:75, 0:91, 1:0�
½0, 0:18, 0:36, 0:54, 0:72, 0:90, 0:97, 1:0�
½0, 0:17, 0:34, 0:51, 0:68, 0:85, 0:95, 1:0�
½0, 0:15, 0:29, 0:43, 0:57, 0:71, 0:85, 1:0�
½0, 0:15, 0:30, 0:46, 0:61, 0:76, 0:91, 1:0�
½0, 0:62, 0:71, 0:80, 0:83, 0:93, 0:98, 1:0�
½0, 0:60, 0:72, 0:82, 0:94, 0:96, 0:98, 1:0�
½0, 0:63, 0:74, 0:79, 0:82, 0:88, 0:97, 1:0�

½  0,   0:70,   0:74,   0:79,   0:82,   0:88,   0:98,   1:0�g :
The user modified the parameters n and FlwL (multi-threshold)

for optimum results. The investigators calculated a Dice similarity

coefficient (DSC) of up to 0.83. The images contained varying levels

of quantization corresponding to different features in the image. A

post-processing step was performed to remove unwanted nearby

features. The authors evaluated the self-supervised quantum neural

network on 800 MR images of brain tumors and calculated the Dice

similarity score. The DSC for QIS-Net was 0.781, compared to U-

Net’s score of 0.991 on the same dataset.

The available code was written to vary the steepness parameter

(n) in Equation 1 and allowed the user to select the optimum image

from an array of images. QIS-Net claimed to use a self-supervised

learning framework in which the segmentation predictions were

done without the need for pixel-level supervision during each

training iteration. While this approach worked for the authors,

we found that we needed to optimize the algorithm over a set of

parameters. We modified the code to calculate the Sørensen-Dice

coefficient,

DSC =
2 X ∩​ Yj j
Xj j + Yj j , (2)

for each value of n ∈ [0.02, 0.03, 0.04, 0.05] that was utilized for

each patient. As part of the postprocessing step, we extracted the

largest connected component and applied hole filling to the

predicted binary segmentation from the predicted binary image.

The value of FlwL that gave the highest Dice coefficient was

consistently [0, 0.04, 0.28, 0.42, 0.56, 0.70, 0.90, 1.0]. As a final

post-processing step, we added an Otsu thresholding of 4 levels and

selected the highest threshold value. Example image segmentation

for two patients over all three phases are shown in Figure 2. The

resulting Sørensen–Dice coefficient (a), Hausdorff distance (b), and

optimized values of n (c) are presented in Figure 3. The median Dice

score was 0.3144 ± 0.1428 and Hausdorff distance (HD) coefficient

151.1784 ± 40.7488. The code was written in MATLAB R2021b and

run on an NVIDIA GPU Quadro RTX 6000. The cloned and

modified source code is available on GitHub: https://github.com/

rachelglenn/QISNET.
frontiersin.org
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6 Evaluation of quantum image
segmentation on a gate-based
quantum computer

Grover’s search algorithm provides a method to efficiently

identify marked elements within a large, unstructured dataset. In

this study, Grover’s method was adapted to the task of medical

image segmentation following the framework presented in Ref. (18)
Frontiers in Oncology 06
by treating the image as a quantum state and searching for pixels

belonging to the target organ structure. An overview of this Grover-

based segmentation approach is illustrated in Figure 4.

A lightweight U-Net model was first used to generate a

preliminary segmentation, identifying candidate pixels likely to

represent liver tissue. These candidates were designated as

marked states within the quantum system.

Three-dimensional medical image segmentation requires

significant memory resources for classical storage. A 32-bit image
FIGURE 3

Evaluation metrics for the QIS-Net algorithm on the dataset: (A) Sørensen–Dice coefficient, (B) Hausdorff distance, and (C) optimized values of n.
FIGURE 2

Example image segmentation of the liver using QIS-Net. Top row (A–C) Patient 21 (Arterial), Patient 22 (Pre-contrast), and Patient 23 (Venous).
Bottom row (D–F) Patient 1 (Arterial), Patient 2 (Pre-contrast), and Patient 3 (Venous).
frontiersin.org
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of size 1024 x 1024 x 72 requires approximately 2.42 Gigabits

(around 300 Megabytes) of storage. In contrast, quantum image

representation (QIR) techniques such as the Normal Arbitrary

Quantum Superposition State (NAQSS) (19), offer a highly

compact alternative. It can represent the same multi-dimensional

image using only (n+1)-qubits, where n encodes pixel location, and

the additional qubit encodes intensity. For an image of this size,

NAQSS would require approximately 28 qubits, offering a highly

compact representation that could significantly reduce memory

requirements if large-scale fault-tolerant quantum computers

become available.

In this study, the medical image and the AI-marked candidates

were encoded into a quantum state. Super-pixel intensities were

normalized, and the spatial coordinates were mapped onto the

NAQSS representation. A Hardamard gate was used to place the

quantum image in a superposition of states. Grover’s search

algorithm then operates by repeatedly rotating the quantum

state’s probability amplitudes to amplify the likelihood of

measuring marked candidates. An initial equal superposition of

all pixel states is prepared using Hadamard gates. Further, Grover is

composed of an oracle function and diffusion operator. The oracle

inverts the phase of the marked states by using a Z-quantum gate.

The diffusion operator is composed of three gates the Hadamard,

Pauli-X, and Controlled-Z gates. It reflects the entire state about the

mean amplitude. Repeating both operators increases the probability

of the marked states.

We walk the reader through the encoding process that maps a

classical image into a quantum representation using the NAQSS

(Normalized Amplitude Quantum Superposition State) model, which

is a precursor step to applying Grover’s search algorithm for

segmentation. A detailed derivation of Grover’s algorithm can be

found in (13); here we focus on the adaptation of Grover’s search to

medical image segmentation. All operations performed classically in

MATLAB without modeling physical noise or hardware constraints.

In NAQSS, the image is mapped into a superposition of

quantum states where each basis state i 〉j encodes the position of

the pixel and qi   encodes the pixel intensity. For an image with 2n

pixels, the image will require n + 1 qubits (18).

y2j i = qijii
The spatial image coordinates are expanded by horizontal and

vertical locations (x and y) using ij i = jxmi ykj i.

ij i = jxmi ykj i= jin:ik+1i ik … i1j i
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where the x-axis and y-axis of the image are represented as

xmj i   = jin  …   ik+1i and ymj i   = jin  …   ik+1i.
The intensity is normalized to define the amplitude as

qi =
aiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o2n−1
y=0 a2y

q ,

where ai defines the color

ai =
p
2

i − 1
M − 1

� 	

with i ∈ {1,2,…,M}. M represents the total number of intensity

levels. This step embeds the entire image into a quantum

superposition, similar to how classical images are store in RAM

but compressed into a quantum state.

Grovers algorithm requires that each pixel be labeled as

foreground or background using a segmentation mask—either

predefined or AI-generated.

For segmentation, the image is divided into foreground and

background components. This is done by attaching a label qubit cij i
to each state:

cij i =
j0i,   background
1j i,   foreground  

(

The full quantum image encoding for Grover’s algorithm can be

written as

fc
�� �

= qijii cij i =oi∈Bqijii 0j i +oi∈Fqijii 1j i, (3)

where B is the background and F is the foreground. The binary

label helps Grover’s algorithm focus its search of pixels in the image

on “marked” foreground states.

Rather than checking for a state individually, as with a classical

algorithm, Grover’s algorithm searches across the entire image in a

superposition of all possibilities, iteratively, amplifying pixels

labeled as foreground and destructively interferes the background

states. The measurement after the optimal number of iterations of

Grover’s algorithm is given by

yg

�� �
= o

​
i ∈Aaijiij1iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Si∈Aa

2
i

p
The foreground image is obtained with the probability

Pr(yg) =oi∈Aa
2
i :
FIGURE 4

Diagram of Grover-based image segmentation.
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The only remaining requirement to run Grover’s search algorithm

is identifying the marked (foreground pixels) quantum states. We use

an AI-based segmentation mask for the marked states. This framework

demonstrates how a quantum—enhanced search can be applied to

medical image segmentation for detecting labeled structures, such as

the liver. NAQSS provides a compact and physically meaningful way to

encode spatial and intensity information into a quantum state to

enable quantum algorithms, such as Grover’s search algorithm.
6.1 Method to mark quantum states

We trained a U-Net PocketNet architecture (20) neural network

to generate the marked quantum state of the liver in abdominal

images. The MR images were pre-processed using z-score intensity

normalization. A 5-fold cross-validation training method, where in

each fold 80% of the data for training and 20% for testing, ensuring

no patient overlap between folds.

In the K-fold method, the dataset is shuffled and split into K

groups. One group is held out as the testing dataset, while the

remaining K−1 groups are used for training. The model is evaluated

on the held-out testing group, and this process is repeated such that

each group serves as the testing dataset exactly once.

Within each fold, the training dataset was further split into

training and validation subsets (80/20 split). Training utilized the

Adam optimizer with an initial learning rate of 0.001 (21). During

training, if the loss plateaued for 10 steps within an epoch, the learning

rate was reduced by a factor of 0.9. The sliding window approach was

used, with a patch size of 256×128×128. Each K-fold dataset was

trained for 200 epochs with 250 steps per epoch. In the postprocessing,
Frontiers in Oncology 08
we extracted the largest connected component and applied hole filling

to the predicted binary segmentation. At the end of each epoch, the

Sørensen-Dice Coefficient (SDC), as defined in Equation 2, was

calculated using the validation dataset. Training was performed

using TensorFlow v2.8.0 on an NVIDIA Quadro RTX 8000. The

network weights were initialized with TensorFlow’s default values.

Inference was conducted on the testing dataset after each K-fold

training session. A sliding window approach was applied during

inference, with the same patch size as used in training. The window

was moved in steps equal to half the patch size, and predictions were

weighted with a Gaussian kernel having a full-width half-maximum

(FWHM) of 0.029 pixels. The largest connected components in

each image were selected, and the Dice score was computed for each

patient in the testing dataset at the end of each training cycle.

Example image segmentation of two patients are shown in Figure 5.

The Dice scores and HD coefficients are shown in Figure 6. The

Dice median across all folds was 0.9307 ± 0.0383 and HD coefficient

29.0499 ± 25.0915. The median Dice score and standard deviation

was aggregated across the testing datasets from all five folds. For

each fold, Dice scores were calculated on the held-out testing subset,

and the distribution of these scores across all patients was used to

compute the overall median and standard deviation. This provides a

summary of model performance variability across the entire dataset.
6.2 Results of Grover’s algorithm using the
marked states

Grover quantum circuit is illustrated in Figure 7. The trained

model was used to mark states for Grover’s search algorithm, which
FIGURE 5

Example Image Segmentation using classical AI. Top row (A–C) Patient 21 (Arterial), Patient 22 (Pre-contrast), and Patient 23 (Venous). Bottom row
(D–F) Patient 1 (Arterial), Patient 2 (Pre-contrast), and Patient 3 (Venous).
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was implemented classically in MATLAB. To reduce the

computational complexity, we utilized super-pixels to limit the

number of pixels being searched. The optimal number of

iterations for Grover’s algorithm was determined using the

formula (18):

t   =  
1
w

 
p
2
 −   f

� �
(4)

where

w = cos−1 1 − 2
r
N

� �
,

and

f = tan−1
A0

L0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

(N − r)

r� 	
:
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Here, A0 and L0, represent the average amplitudes of the marked

and unmarked states, respectively. The variable r is the number of

non-zero pixels, and N is the total number of pixels in the image.

The source code for the implementation is available on GitHub at

https://github.com/rachelglenn/QIS. Calculations were executed on

an NVIDIA GPUQuadro RTX 6000. Example image segmentations

for two patients across all three phases are shown in Figure 8. In the

postprocessing, we extracted the largest connected component and

applied hole filling to the predicted binary segmentation. The Dice

coefficient and HD distanced can be seen in Figure 9, with a median

score 0.9309 ± 0.0400 and HD coefficient 29.0499 ± 25.0915. The

Dice score for the QCuts algorithm was not subject to cross-

validation and was calculated for the entire dataset. The optimal

number of iterations was determined using Equation 4. As this was

simulated without quantum noise, convergence followed the

expected theoretical pattern.
FIGURE 6

Evaluation metrics for the UNet-PocketNet algorithm on the dataset: (A) Sørensen–Dice coefficient, (B) Hausdorff distance.
FIGURE 7

The quantum circuit representing Grover’s algorithm. The input image is represented expressed in Equation 3. The output is represented via a
measurement.
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7 Evaluation of an annealing-based
quantum algorithm

QCUTS (Quantum cuts) is a quantum annealing-inspired

method for image segmentation by formulating the task as an

energy minimization problem (22). Quantum annealers are

quantum hardware that find a global minimum to an objective

function. In this approach, super-pixels are used to reduce the
Frontiers in Oncology 10
dimensionality. The super-pixels are modeled as nodes in a graph

and the edges encode a similarity measure based on the pixel

intensity differences. Optimal segmentation occurs by minimizing

the total energy of the system. This process is mathematically

analogous to solving the Schrödinger equation for eigenvalues.

Quantum annealing (23) leverages quantum effects such as

entanglement and superposition to find the lowest-energy state of

a Hamiltonian (cost function). This process has been successfully
FIGURE 9

Evaluation metrics for the hybrid Grover’s algorithm on the dataset: (A) Sørensen–Dice coefficient, (B) Hausdorff distance.
FIGURE 8

Example image segmentation using the hybrid Grover’s/AI algorithm. Top row (A–C) Patient 21 (Arterial), Patient 22 (Pre-contrast), and Patient 23
(Venous). Bottom row (D–F) Patient 1 (Arterial), Patient 2 (Pre-contrast), and Patient 3 (Venous).
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applied to problems like the traveling salesman problem, scheduling

tasks, and graph-based optimization. It begins by initializing the

qubits in the lowest-energy state of a simple Hamiltonian. By

adjusting the Hamiltonian parameters (by using tunneling and

superposition) the system evolves and explores a vast solution

space and ultimately settles into the lowest-energy state of the

target Hamiltonian, corresponding to the optimal solution of the

problem. This method is particularly well-suited for solving graph-

based image segmentation problems, where the image is mapped

onto an energy equation with two states: foreground and

background. Compared to gate-based quantum computers, the D-

Wave quantum annealer excels in solving such problems due to its

design and optimization capabilities.

In this study, QCUTS was adapted here to evaluate its utility on

MR abdominal images. It was implemented using classical

simulated annealing to approximate quantum annealing behavior;

no real quantum hardware was employed. Future evaluations on

physical quantum annealers, such as D-Wave systems, may differ

due to factors l ike noise, l imited qubit connectivity,

and decoherence.

The following sections describe the energy formulation used in

QCUTS and evaluate its performance on liver segmentation tasks.
7.1 The QCuts algorithm

QCuts is a quantum-enhanced method for graph-based image

segmentation, as illustrated in Figure 10 (22). Note that graph-based

image segmentation algorithms are naturally well-suited for high-

contrast grayscale or black-and-white images. This is because they

rely on intensity differences and edge detection to construct graphs

and identify regions, tasks that are simpler when contrast

is pronounced.

The algorithm begins by taking an input image and generating

super-pixels, which were treated as nodes in a fully connected

graph. Edges between nodes were weighted according to the

grayscale intensity similarity between the corresponding super-

pixels, with stronger weights assigned to more similar regions.

The labeling vector is derived from the Hadamard product of the

eigenvalues, reflecting quantum principles. Note that in this

context, “Hadamard product” refers to the classical element-wise

multiplication between vectors, and is not the quantum Hadamard

gate often used to create superposition in quantum computing. This

classical product formulation was inspired by quantum notation but

does not involve actual quantum operations.
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The energy expression consists of two terms:

E(y) = Eunary(y) + lEbinary(y) : (5)

A unary potential, Eunary a binary potential Ebinary . The unary

term encourages super-pixels believed to belong to the target organ

or structure to be labeled accordingly. It was defined as a simple

binary indicator based on initial seed selection from low-intensity

regions. The parameter l controls the weight contribution of the

binary term compared to the unary term. It was assumed that l = 1.

The unary term is defined as

Eunary(z) =
1

Si(z
2
i Þ

1,  if Si  ∈ Sforeground

0;    otherwise:
,

(

where Si denotes the ith super-pixel and Sforeground   represents

the set of super-pixels with the lowest mean grayscale intensity

values, assumed to correspond to the target structure.

The binary potential promotes smoothness by penalizing label

differences between similar neighboring super-pixels, based on a

Gaussian-weighted intensity difference:

Ebinary(zi,   zj) =   1
Si(z2i )

wi,j(z
2
j − zizj) measures how appropriately

labeled the pixel, zi, is given the image information. To ensure

minimization, the labeling vector z is replaced by y=z · z, which has

the values [-1,0,1].

The Gaussian weight is defined as

wij =
1

s
ffiffiffiffiffi
2p

p exp −
jjSi − Sjjj2

2s 2

� 	
,

where

Si =
SkdikIk
Skdik

The delta function dik indicates whether or not the kth voxel

belongs to the ith super voxel. The optimal solution of Equation 5

was obtained by computing the eigenvectors corresponding to the

smallest eigenvalues using MATLAB’s built-in linear algebra

solvers. We then calculated the Dice coefficient, Equation 2.

Example image segmentation of two patients are shown in

Figure 11. The cloned and modified source code is available on

github, https://github.com/rachelglenn/qcuts3D. Calculations were

executed on an NVIDIA GPU Quadro RTX 6000. The Dice

coefficient and HD distance are shown in Figure 12. The Dice

score median was 0.2533± 0.2529 and HD coefficient 143.348±

59.6341. The low dice score can be attributed to several factors,

including the algorithm’s reliance on grayscale intensity differences,
FIGURE 10

QCUITS quantum-classical image segmentation algorithm.
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which are less pronounced in abdominal MR images compared to

higher contrast images such as porous media. Additionally, the lack

of anatomical priors or AI guidance makes QCuts susceptible to

errors in defining target structures.

Future studies on actual quantum annealers, such as D-Wave,

will need to carefully assess how noise, limited qubit connectivity,

and hardware-induced stochasticity affect segmentation accuracy

and repeatability. For example, a QCuts implementation mapped
Frontiers in Oncology 12
onto a D-Wave system would require approximately 256 logical

qubits if the image is preprocessed into 256 superpixels. Due to the

need for minor embedding on D-Wave’s sparse qubit architecture,

the actual number of physical qubits could range from 384 to over

2500, depending on graph connectivity and embedding efficiency.

These hardware constraints may influence both the feasibility and

stability of segmentation outcomes and must be addressed in

future work.
FIGURE 11

Example image segmentation using the QCuts method. Top row (A–C) Patient 21 (Arterial), Patient 22 (Pre-contrast), and Patient 23 (Venous).
Bottom row (D–F) Patient 1 (Arterial), Patient 2 (Pre-contrast), and Patient 3 (Venous).
FIGURE 12

Evaluation metrics for the QCUTS algorithm on the dataset: (A) Sørensen–Dice coefficient, (B) Hausdorff distance.
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8 Discussion

Developing quantum segmentation methods is essential for

advancing treatment planning systems, particularly in medical

imaging tasks like liver segmentation. Most quantum

segmentation algorithms focus on translating classical methods

into quantum formalisms. Table 2 compares the performance of

three quantum algorithms alongside AI-based methods, using Dice

scores as the evaluation metric.

QIS-Net was adapted from a region-growing strategy that relies

on pixel intensity and local neighborhood information to guide

expansion. The region-growing method was modeled as a logic

neural network that was converted to a quantum-inspired Fuzzy

logic algorithm. The main challenge with this method is the

requirement of choosing, through trial and error, the activation

function for the qutrit and the qutrit translation function, FlwL ∈
½0, p2 ]. We tried optimizing the algorithm over a range of values for

these two parameters to improve the performance, but the Dice

score remained low. Region-growing methods, such as the one used

in QIS-Net, struggle with low-contrast boundaries, noise, and the

need for carefully tuned parameters—limitations that remained

even after incorporating quantum-inspired elements. The

quantum adaptation did not resolve these fundamental

challenges, resulting in poor segmentation performance. The

reliance on trial-and-error optimization further reduces its

practicality for treatment planning.

The quantum annealer algorithm implements graph-based

image segmentation, which can also be solved classically using

simulated annealing with equivalent results. The primary advantage

of the quantum annealer lies in its potential for acceleration rather

than improved accuracy. In our study, converting the classical

graph approach into a quantum annealing framework did not

overcome these limitations. The method remains useful for high-

contrast regions. Enhancements, such as incorporating a pixel

region of interest (ROI) for the liver as the foreground, could

improve its performance. This would require either manual ROI

selection or AI-based auto-contouring. While QCUTS was not

designed for abdominal medical imaging, its implementation

serves as a valuable example for medical physicists exploring

quantum annealer hardware. QCUTS achieved a Dice score of

0.2533 ± 0.2529, reflecting its limited applicability in this context.

Grover’s algorithm was implemented on a qubit-based

quantum computer. It used predictions from an AI auto-

contouring liver model to search for the quantum-liver state

(marked state). As a metaheuristic algorithm, Grover’s method
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offers an approximate solution akin to thresholding post-

processing. Although it slightly improved the Dice score (0.9309±

0.0400) compared to AI auto-contouring alone (0.9307± 0.0383),

the improvement was within the standard deviation, rendering it

statistically insignificant. Repeated experiments using different

seeds for AI auto-contouring confirmed this finding.

Both QIS-Net and QCuts demonstrated performance challenges

that go beyond simple contrast limitations. QIS-Net, which relies on

fuzzy logic applied to local pixel neighborhoods, underperformed in

cases with heterogeneous textures and ambiguous anatomical

boundaries. These characteristics reduced the effectiveness of its

qutrit-based activation and translation functions, even after

parameter optimization. In contrast, QCuts is designed for high-

contrast or binary (black-and-white) images and relies heavily on

grayscale intensity differences to define graph edges. As a result, it

struggled with the continuous grayscale profiles common in

abdominal MR images, where liver boundaries are often subtly

defined. To illustrate these algorithm-specific limitations, we

selected a representative patient case (1-artierial,2-pre-contrast,3-

venous) where both QIS-Net and QCuts yielded low Dice scores and

integrated this example across Figures 2 (QIS_NET), Figure 5 (AI

baseline), Figure 8 (Grover AI), and Figure 11 (QCuts). This allows

for a direct visual comparison across all evaluated methods and

highlights areas where classical AI and quantum-classical hybrids

currently outperform purely quantum-inspired or annealing-based

methods. These qualitative insights help contextualize the observed

performance gaps and suggest clear targets for future refinement.

In terms of potential hardware implementation, the quantum

resource demands for Grover’s segmentation and QCuts differ

considerably. For Grover’s algorithm, a 64×64 image requires at

least 12 qubits using NAQSS encoding to map pixel data into

quantum state space. In contrast, a D-Wave implementation of

QCuts—assuming the image is downsampled into 256 superpixels

—would require approximately 256 logical qubits to represent the

graph-based segmentation problem. Due to D-Wave’s sparse

physical qubit connectivity, this could translate to 384–2560

physical qubits after accounting for embedding overhead. These

estimates underscore the practical differences in hardware

scalability and implementation pathways between quantum

circuit-based and quantum annealing approaches.

Overall, while quantum segmentation methods like QCUTS,

QIS-Net, and Grover AI demonstrate innovative approaches, they

face significant challenges in accuracy, efficiency, and adaptability.

Current results suggest that further refinement and integration with

classical AI methods are needed to realize their full potential in

medical imaging applications.

Of the three algorithms that we implemented and evaluated on

MR images, we found that the inclusion of AI into the Grover’s

quantum algorithm yielded the best results. This is mainly due to

the fact that casting classical algorithms in a quantum space doesn’t

necessarily mean that it improves the accuracy of the classical

method. While Grover’s algorithm is not necessary for classical

image segmentation, it may allow for a means to perform quantum

image segmentation on actual quantum medical images. See

Figure 13. The generated quantum medical image could be cloned
TABLE 2 Summary and comparison of quantum algorithms.

Model Dice

QCUTS 0.2533 ± 0.25290

QIS-Net 0.3144± 0.1428

Grover AI 0.9309± 0.0400

AI 0.9307± 0.0383
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with non-perfect fidelity into a classical image for AI to mark the

states, then converted back into quantum information (as quantum

marked states). Grover’s algorithm would search for the quantum

states within the quantum generated image and perform auto-

contouring, while maintaining the quantum information. This

would perform auto-contouring in a quantum space rather than

in a classical space.
9 Practical clinical implications

Quantum computing offers theoretical capabilities that could

address some of the limitations of traditional AI-based

segmentation methods including, static model parameters,

deterministic outputs, and challenges to anatomical uncertainties

with outliers within datasets. Quantum systems inherently encode

probabilistic information, which may allow for more flexible

handling of uncertainty in image segmentation, particularly in

anatomically complex or ambiguous regions. Such capabilities, if

realized, could be particularly valuable in adaptive radiotherapy

workflows where frequent re-contouring based on daily imaging is

required. In the context of treatment planning for radiation therapy,

the ability to rapidly and accurately auto-contour organs at risk and

target structures is critical for improving efficiency and

maintaining precision.

Our current evaluation of quantum segmentation methods,

however, demonstrates that they are not yet clinically competitive

with classical AI approaches. This is likely because most quantum

segmentation algorithms today are adaptations of classical

techniques rather than fundamentally quantum-native designs,

limiting their ability to offer distinct advantages. Moreover,

although pre-processing steps such as bias field correction and

intensity normalization were applied to harmonize images across

scanners, scanner-specific variability was not analyzed separately

due to limited sample sizes within each subgroup. This remains a

potential source of variation in segmentation performance and will

be addressed in future studies.

In terms of computational practicality, we also observed

significant overhead in simulating quantum algorithms on classical

machines. For example, Grover’s algorithm was the most

computationally intensive due to the large memory and matrix
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operations needed for simulating amplitude amplification. Both

QCuts and QISNET also matrix operations intensive. In contrast,

the classical AI baseline ran efficiently on a high-performance GPU.

These results suggest that, while quantum algorithms may one day

offer novel capabilities, their current simulation costs are substantially

higher and not yet viable for routine clinical deployment.

Finally, even if technical challenges are overcome, integrating

quantum algorithms into clinical treatment planning systems will

require addressing additional barriers, including software validation,

regulatory approval, and ensuring interpretability for clinical end

users. Even if technical hurdles are overcome, integrating quantum

algorithms into clinical treatment planning systems would require

addressing significant barriers related to software validation,

regulatory approval, and clinician interpretability.

One promising future direction lies in leveraging the inherent

probabilistic structure of quantum systems to generate voxel-wise

uncertainty maps during segmentation. Such maps could highlight

ambiguous regions where manual review is warranted—an area

where classical deep learning models often fall short. This capability

could ultimately improve trust and safety in auto-contouring

pipelines, especially in anatomically complex or borderline cases.
10 Concluding remarks

A significant amount of progress remains to be made before

practical use of a quantum computer can be implemented in

medical imaging. Current quantum segmentation algorithms,

including those evaluated in this study, do not demonstrate a

clear advantage over established classical methods in terms of

segmentation accuracy or clinical applicability. While

improvements in quantum hardware—such as increasing qubit

counts, enhancing error correction, and developing quantum data

storage and communication—are critical for future development, it

is equally important to recognize that advances cannot rely solely on

expectations of faster computation. Future research must explore

how uniquely quantum properties, such as probabilistic encoding

and entanglement, can be leveraged to address clinical challenges

that classical systems struggle with, including handling uncertainty

in image segmentation and supporting adaptive treatment

workflows. Quantum computing offers the ability to present
FIGURE 13

Possible Quantum image segmentation.
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medical image pixel values as a probability. Currently,

distinguishing different tissue types, such as muscle and fat, on

CT scans is difficult. Quantum representation of the pixel values

would allow for algorithms to leverage Hounsfield units as a

probability for image segmentation. Evaluation of the

performance of quantum algorithms in processing medical images

would help Medical Physicists understand capabilities of quantum

computing in medical radiology and diagnostic imaging.
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