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Background: Abnormal activation of the hepatocyte growth factor (HGF) and c-

mesenchymal–epithelial transition factor (c-Met) signaling pathway is associated

with tumor occurrence and development. Serum HGF concentrations are

significantly higher in patients with advanced and poorly differentiated

laryngeal squamous cell carcinoma than those with early and highly

differentiated disease. NK4, a splice variant of HGF, can competitively bind to

c-Met and acts as a specific antagonist of HGF. Although preliminary research

has been conducted on the tumor-suppressing function of the NK4 gene, its

specific mechanism of action in laryngeal cancer remains unclear.

Methods: Stable laryngeal squamous cell carcinoma cell lines expressing NK4

were developed using a lentiviral packaging method. The experimental group

was labeled with PLV-NK4-TU212, whereas the control group was labeled with

PLV-NC-TU212. Western blotting verified a stable expression. The functions of

the NK4molecule were assessed using MTT, EMT, and apoptosis assays, and cell

lines were subjected to transcriptome sequencing.

Results: Protein expression analysis showed that NK4 was stably expressed.

Compared with the wild-type and negative control groups, overexpression of the

NK4 gene inhibited the migration and proliferation of laryngeal squamous cell

carcinoma cells and induced cell apoptosis. Transcriptome sequencing revealed

that the expression levels of 320 genes differed significantly, with 189

upregulated and 131 downregulated genes.

Conclusion: In this study, a TU212 laryngeal squamous cell carcinoma cell line

overexpressing NK4 was constructed using a lentiviral packaging system.

Functional experiments showed that PLV-NK4-TU212 cells exhibited a

significantly reduced migration rate, decreased proliferative ability, and

increased apoptosis rate. The results of this study provide an experimental

basis for NK4 as a potential therapeutic target for laryngeal squamous cell

carcinoma highlighting its translational medical value.
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1 Introduction

According to global epidemiological data, laryngeal cancer, a major

type of malignant head and neck tumor, accounts for approximately

1% of all malignant tumors (1). Approximately 90% of the pathological

types are squamous cell carcinomas (2), and malignant transformation

originates from the abnormal proliferation of laryngeal mucosal

epithelial cells (3). Despite the multidisciplinary integration of

innovative therapies in recent years, such as surgical resection,

radiotherapy, sensitization chemotherapy, and PD-1/PD-L1 immune

checkpoint inhibitors, the incidence and mortality rates are increasing

(4). Laser minimally invasive surgery (TLM) for early-stage patients

can effectively remove tumors while preserving laryngeal function as

much as possible (5). In surgery combined with radiotherapy (6),

chemotherapy, and targeted therapy, the 5-year survival rate for early-

stage laryngeal cancer (T1–T2) is approximately 80%, while the 5-year

survival rate for locally advanced laryngeal cancer (T3–T4) is

approximately 50% (7, 8).

This clinical dilemma is primarily attributable to the unique

molecular and pathological characteristics of laryngeal cancer.

LSCC is prone to local infiltration, cervical lymph node

metastasis, and chemotherapy resistance (9). To date, no accurate

biomarkers have been determined for treatment response in LSCC.

Therefore, exploring the molecular regulatory network of invasion

and metastasis in LSCC may provide a theoretical basis for the

development of new strategies for targeted therapy.

Clinical studies have shown that the aberrant activation of the

hepatocyte growth factor (HGF)/c-Met signaling pathway is associated

with tumorigenesis and progression. Met, a receptor for HGF, is a

proto-oncogene product of a heterodimeric tyrosine kinase (10). After

binding to HGF, it initiates downstream signaling pathways, such as

MAPK, STAT, PI3K, and NF-kB, to regulate cell proliferation,

invasion, and migration (11). Serum HGF concentrations in patients

with advanced and poorly differentiated laryngeal squamous cell

carcinoma are significantly higher than those in patients with early

stage and highly differentiated disease (12). Studies have shown that

NK4, an HGF antagonist, inhibits HGF/c-Met-induced tumor growth,

metastasis, and invasion antagonism ultimately leading to apoptosis.

NK4 consists of a hairpin structural domain at the N-terminal end of

the a-chain of HGF and four Kringle regions, which is obtained from

the cleavage of HGF by proteolytic digestion. NK4, a splice variant of

HGF, competes with c-Met for binding and is a specific antagonist of

HGF (13). An adenoviral vector carrying a stably expressed NK4 gene

was found to inhibit the growth of a bone metastatic tumor model and

prolonged the survival of mice (14). Human placental-derived

mesenchymal stem cells expressing NK4 (PDMSC-NK4) have been

reported to exert antitumor effects on glioblastoma cells (15).

Moreover, NK4 inhibits cancer growth in vivo by suppressing IDO

expression in tumors and promoting NK cell accumulation (16).

Lentiviruses can efficiently deliver target genes into tumor cells and

stably integrate them into the host cell genome to achieve long-term and

stable gene expression, thereby aiding in the genetic modification of

tumor cells and the study of regulatory gene functions. Using a lentiviral

packaging system to construct cell lines that stably express genes is a

powerful tool for gene therapy and mechanistic research on tumors. For
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instance, localized STAT3 knockdown in the brain, achieved via

lentiviral vectors encoding STAT3 shRNA, was established, and the

NLRP3-STAT3 interaction was validated. This model system was then

utilized to determine if JAK2 inhibition confers neuroprotection

following ischemic stroke (17). Furthemore, previous research has

also reported a lentiviral overexpression vector co-expressing the

CopGFP and PuroR reporter genes was successfully engineered.

Validation in hepatocellular carcinoma (HCC) cells demonstrated its

efficacy in promoting the expression of a target gene with an extended

coding sequence (18). Lentivirus-mediated gene transfer was employed

to establish a stable cell line expressing the avb3 integrin, which

exhibited enhanced susceptibility to foot-and-mouth disease virus

(FMDV). This model provides a valuable tool for investigating avb3
integrin functions (19). Based on this literature, we used lentiviral

packaging technology to construct a TU212 cell line of laryngeal

squamous cell carcinoma overexpressing NK4 and verified its

biological functions. The aim of this study was to investigate the

function and mechanism of action of NK4, providing a theoretical

basis for assessing its role in the progression of laryngeal cancer, as well

as its potential therapeutic value and its clinical application.
2 Materials and methods

2.1 Cells, plasmids, and viruses

The TU212 cell line was purchased from Beina and cultured in

RPMI-1640 medium supplemented with 10% fetal bovine serum

and 1% antibiotics at 37°C in a 5% CO2 incubator. PLV-NK4-Flag

plasmid was constructed by the research team in the earlier stage.

Human embryonic kidney cells (HEK-293T), psPAX2 (Addgene,

12260), and pMD2.G (Addgene, 12259) were generously provided

by the Lanzhou Veterinary Research Institute of the Chinese

Academy of Agricultural Sciences.
2.2 Reagents and antibodies

RPMI 1640 cell culture medium (Gibco) and 0.25% EDTA (Gibco)

trypsin were purchased from Gansu Pengcheng Biotechnology

Development Co. Ltd. Fetal bovine serum (FBS) was purchased from

Guangzhou Lucheng Biotechnology Co. Ltd. Polyplus jet PRIME

transfection reagent was purchased from Gene Biotechnology Co.

Ltd. Western antibody dilution buffer was purchased from Biotime

Biotechnology Co. Ltd. Mouse anti-Flag antibody was purchased from

Sigma-Aldrich (Shanghai) Trading Co. Ltd., and the protein pre-

stained marker was purchased from Invitrogen.
2.3 Construction and validation of NK4-
overexpressing laryngeal squamous cell
carcinoma TU212 cell line

After reviving HEK-293T cells to the second generation, the

cells were found to be in good condition and seeded at a density of 5
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× 106 cells in a 100-mm culture dish. When the cell density reached

approximately 70%, 3 mg of pLV-puro-3×-Flag-JMJD6 plasmid, 2

mg of psPAX2 packaging plasmid (Addgene, 12260), and 1 mg of

pMD2.G envelope plasmid (Addgene, 12259) were transfected

using jetPRIME transfection reagent. The supernatants containing

the lentivirus were collected 24 and 48 h post-transfection, filtered

for purification, and the packaged lentivirus was used to infect the

TU212 cells. After 48 h, the cells were digested with trypsin, and the

medium containing 10 mg/ml of puromycin was added for selection.

The medium was changed after 24 h, and the medium containing 5

mg/ml of puromycin was added to continue selection. Finally, the

surviving cells were subcloned using the limiting dilution method,

and the selected monoclonal cells were expanded and

cryopreserved. Cells cultured for five generations were mixed with

loading buffer, and 20 ml of the protein sample was used for SDS-

PAGE. After electrophoresis, the proteins were transferred onto a

nitrocellulose membrane at a constant voltage of 100 V. The

membrane was blocked at room temperature for 2 h with 5%

non-fat milk solution prepared in TBST followed by overnight

incubation at 4 C with the corresponding primary antibody. After

washing with TBST, the secondary antibody was added and

incubated at room temperature for 2 h. Finally, an ECL

chemiluminescent solution was used for fully automated

chemiluminescent imaging (Figures 1A, B). Cells that were

continuously passaged for 10 generations were subjected to
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indirect immunofluorescence analysis. The results were observed

using a laser confocal microscope (×60) (Figure 1C).
2.4 Functional validation of laryngeal
squamous cell carcinoma cell lines stably
expressing NK4

2.4.1 The effect of PLV-NK4-TU212 on cell
migration and apoptosis

Western blot analysis was performed to detect EMT markers

(E-cadherin, Snail, MMP9, and Slug) for PLV-NK4-TU212, with b-
actin as the internal control (Figure 2A), and to show expression of

P53 and Bcl-2 genes related to apoptosis (Figure 2B).

2.4.2 MTT assay to detect the proliferative
capacity of stably transformed cell lines

The cell concentration was adjusted to 2 × 104 ml followed by

inoculation into a 96-well plate and culturing for 24 h. The original

culture medium was removed, the MTT solution was added, and

the cells were incubated at a constant temperature for 4 h. The

resulting supernatant was discarded before adding 100 ml of DMSO

solution to each well. The cultures were shaken thoroughly for 10

min, and then the absorbance was measured at 570 nm. All cultures

were continuously monitored for 7 days (Figure 2C).
FIGURE 1

Construction and validation of NK4-overexpressing laryngeal squamous cell carcinoma TU212 cell line. (A) In the first-generation cell line screening,
3, 4 and 6 demonstrated successful expression of NK4-Flag, while 10,11, and 12 showed no detectable NK4-Flag expression. (B) Fifth generation cell
line. (C) NK4 gene is stably expressed and localized in the nucleus.
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2.4.3 Scratch healing assay to detect the
migratory ability of stabilized transient cell lines

Cells were seeded at a density of 2.5 × 106/mL in a six-well plate

and cultured in a complete medium until 100% confluence was

reached (Figures 4A, B). A sterile pipette tip was used to create

vertical scratches at the bottom of the well followed by washing with

PBS. Next, 2% serum-containing RPMI 1640 medium was added to

each well, and the plate was placed in a 37°C incubator with 5%

CO2. Images were captured at 0 and 48 h using an inverted light

microscope. The scratch healing rate was calculated as follows:

Scratch healing rate = (0 h − 48 h)/0 h × 100% (Figure 3).

2.4.4 Statistic analysis
Results are expressed as mean ± standard deviation. All data

were analyzed using GraphPad Prism 9 (GraphPad Software, Inc.,

CA) (Figure 4C). Intergroup differences were assessed using

Student’s t-test or unpaired two-tailed t-test. Two-way analysis of
Frontiers in Oncology 04
variance (ANOVA) was used for comparisons among multiple

groups. A p-value <0.05 was considered statistically significant.
2.5 RNA-seq

2.5.1 RNA sample preparation, library
construction, and sequencing

The cells, WT-TU212 and PLV-NK4-TU212, were resuscitated

and cultured in a medium containing 10% FBS and 1% dual

antibiotics until the third generation. Total RNA was extracted

using the TRIzol method, and eukaryotic mRNA was enriched with

a poly (A) tail using magnetic beads with Oligo(dT) and then

fragmented with a buffer. Using fragmented mRNA as a template

and random oligonucleotides as primers, the first strand of cDNA

was synthesized using the M-MuLV reverse transcriptase system.

Subsequently, the RNA strand was degraded with RNase H, and the
FIGURE 2

Functional validation of laryngeal squamous cell carcinoma cell lines stably expressing NK4. (A) Effect of overexpression of NK4 on TU212 cell
migration. (B) Effect of NK4 overexpression on apoptosis in TU212 cells. (C) Effect of NK4 overexpression on the proliferation ability of TU212.
FIGURE 3

Scratch healing assay to detect the migratory ability of stabilized transient cell lines. (A) The wound area of TU212 cells was measured at 0 h and 24
h. (B) Quantification of cell migration. The effect of NK4 overexpression on the migratory ability of TU212 cells was examined using a wound healing
assay. (*P<0.05; **P<0.01).
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second strand of cDNA was synthesized in a DNA polymerase I

system using dNTPs as raw materials. Purified double-stranded

cDNA underwent end repair, A-tailing, and ligation of sequencing

adapters. AMPure XP beads were used to select cDNA of

approximately 200 bp, perform PCR amplification, and purify the
Frontiers in Oncology 05
PCR products again using AMPure XP beads to obtain the library

and conduct quality control.

Clean data were obtained by removing adapters ,

polynucleotides, and low-quality sequences from the raw data.

The total number of bases in the sample sequencing data was
FIGURE 4

Data quality control, expression abundance distribution, sample PCA analysis, and correlation analysis. (A) Data preprocessing distribution chart
(percentage), (B) Data preprocessing distribution chart (numerical), (C) Comparison reference area statistical chart, (D) Gene expression violin plot,
(E) Sample Principal Component Analysis, (F) Sample Correlation Heatmap, (G) Sample Reproducibility Scatter Plot, and (H) Venn diagram.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1553626
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Huo et al. 10.3389/fonc.2025.1553626
filtered to obtain a high-quality database (Figures 4A, B). The short-

read alignment tool Bowtie2 (20) was used to align the clean reads

to the ribosomal database of the species removing reads aligned to

the ribosome without allowing mismatches. The remaining

unmapped reads were used for subsequent transcriptome analysis.

HISAT2 software was used to perform alignment analysis based on

the reference genome. The distribution of reads in the exonic,

intronic, and intergenic regions of the reference genome was

determined based on the total mapped read alignment results

(Figure 4C).

2.5.2 Expression abundance distribution, sample
PCA analysis, and correlation analysis

Based on the TPM values of each gene, the expression

distribution of different sample genes or transcripts are

displayed (Figure 4D). Principal component analysis was

conducted using R (http://www.r-project.org/) (Figure 4E). The

Pearson correlation coefficient between the expression levels of any

two samples was calculated, and the correlation between any two

samples was displayed in the form of a heatmap to examine the

reproducibility among repeated samples within the test group

(Figure 4F). The correlation coefficient between pairs of samples

was calculated using the FPKM/TPM values of genes in the samples

to assess the reproducibility of samples within the group

(Figure 4G). Genes were selected based on gene abundance, and a

Venn diagram was used to identify shared and unique genes

between groups (Figure 4H).
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2.5.3 Differential gene analysis
DESeq2 software was used to normalize the read count,

calculate the probability of hypothesis testing (p-value) according

to the model, and finally correct for multiple hypothesis testing to

obtain the FDR value (false discovery rate), with the following

conditions for difference screening: p-value < 0.05, |log2FC| > log2
(1.5) (Figures 4A, B).

2.5.4 GO and KEGG enrichment analysis
Differential genes were mapped to each term of the GO database

(http://www.geneontology.org/), and the number of differential

genes per term was calculated to obtain a list of differential genes

with a certain GO function. The number of differential genes was

used to generate statistics of GO entries that were significantly

enriched in differential genes. KEGG is the main public database on

pathways, which identifies the top biochemical metabolic pathways

and signaling pathways in which differential genes are involved

through significant pathway enrichment.

2.5.5 DO and reactome enrichment analysis
DO (Disease Ontology) is a database that describes the

relationship between gene functions and diseases. We map the

differentially expressed genes to the terms in the DO database

(http://disease-ontology.org/) and calculate the number of

differentially expressed genes for each term resulting in a list of

differentially expressed genes associated with a specific DO function

and a count of these genes. We then apply hypergeometric testing to
IGURE 5F

Differential gene analysis and GSEA analysis. (A) Differential basic analysis volcano plot, (B) Difference basic analysis radar chart, (C) GO enrichment,
(D) GSEA-GO analysis, (E) KEGG enrichment, (F) GSEA-KEGG analysis, (G) DO enrichment, (H) GSEA-DO analysis, (I) Reactome enrichment, and (J)
GSEA-Reactome analysis.
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identify DO entries that are significantly enriched among the

differentially expressed genes compared to the entire background.

The Reactome database gathers various reactions and biological

pathways from several species. We mapped the differentially

expressed genes to the various terms in the Reactome database

(https://reactome.org/) and calculated the number of differentially

expressed genes for each term resulting in a list of differentially

expressed genes with a specific Reactome function and a count of

these genes. We then applied hypergeometric testing to identify

Reactome entries that are significantly enriched among the

differentially expressed genes compared to the entire background.

2.5.6 Transcription factor statistics and variable
shear analysis

The transcription factor database (http://bioinfo.life.hust.edu.cn/

AnimalTFDB4/#/) was used to annotate genes for transcription

factors (TF), to determine whether a gene is a member of a specific

transcription factor family, and summarize how many genes are in

each TF family.

Alternative splicing (AS) is an important gene regulationmechanism

in eukaryotes. We used rMATS to detect five types of alternative splicing

events as follows: SE, RI, MXE, A5SS, and A3SS. We can perform

differential AS analysis on samples with biological replicates.
3 Results

3.1 Identification of stable lentiviral cell
lines expressing NK4

The lentiviral NK4 overexpression cell lines selected under

pressure with puromycin were passaged (Figure 1A), and fifth-

generation cell lines were identified by western blotting (Figure 1B),

as shown in Figures 1A, B. NK4 was stably expressed in passaged

cell lines 3, 4, and 6. The remaining cells were further cultured to the

10th generation, and the expression of the NK4 gene in the cell lines

was detected using an indirect immunofluorescence assay

employing a mouse-derived anti-Flag tag antibody and an anti-

488 fluorescent antibody as the primary and secondary antibodies,

respectively, to verify the expression of the NK4 gene in the cell

lines. The results showed that NK4 was stably expressed and

localized in the nucleus.
3.2 Functional validation of laryngeal
squamous cell carcinoma cell lines stably
expressing NK4

3.2.1 The effect of PLV-NK4-TU212 on cell
migration and apoptosis

We performed Western blot analysis of several EMT

(epithelial–mesenchymal transition) markers (E-cadherin, Snail,
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MMP9, and Slug) for cell line. The expression of the proteins

Snail, MMP9, and Slug was decreased in PLV-NK4-TU212, which

proved that overexpression of the NK4 gene inhibited the process

of EMT (Figure 2A). Immunoblotting showed that, compared to

the control group, the expression of the apoptosis-related genes

P53 and Bcl-2 was upregulated in PLV-NK4-TU212. These

results indicate that NK4 gene overexpression induces

apoptosis (Figure 2B).

3.2.2 MTT assay to detect the proliferative
capacity of stably transferred cell lines

The results of the MTT assay showed that the OD value of the

PLV-NK4-TU212 group was significantly reduced compared with

that of WT-TU212, and the OD value of the PLV-NK4-TU212

group was significantly reduced compared with that of the PLV-

NC-TU212 group (Figure 5). It indicates that overexpression of

NK4 in laryngeal squamous cell carcinoma TU212 cell line

inhibited cell proliferation.

3.2.3 Scratch healing experiment
The scratch healing experiment tested the migration ability of

stable cell lines, and the results showed that, compared to the PLV-

NC-TU212 and WT-TU212 groups, the cell migration rate in the

PLV-NK4-TU212 group decreased at 48 h suggesting that NK4

overexpression can inhibit the migration ability of TU212 cells.

3.2.4 GO and KEGG enrichment analysis
We used RNA-seq to compare the gene expression profiles

between PLV-NK4-TU212 and WT-TU212 cell lines, and the

results showed that a total of 320 genes had significant differences

in expression, of which 189 genes were upregulated and 131 genes

were downregulated (Figures 4A, B). GO annotations were enriched

in terms of molecular function, cellular component, and biological

process. In the biological process, we mainly focused on cellular

process, biological regulation, regulation of biological process,

metabolic process, and response to stimulus; in the cellular

component, we only focused on cellular anatomical entity and

protein. anatomical entity and protein-containing complex. In

terms of molecular function, binding and catalytic activity were

differentially enriched (Figure 4C). KEGG enrichment analysis

showed that among the top 20 significantly enriched pathways,

they were mainly related to HIF-1, MAPK, and PI3K–AKt signaling

pathways (Figure 4D).

3.2.5 DO and Reactome enrichment analysis
The significant enrichment of organ system cancer and cell type

cancer in the Disease Ontology (DO) enrichment analysis of

differentially expressed genes suggests a dual regulatory

mechanism of differentially expressed genes in cancer occurrence

(Figure 4E). Differentially expressed genes are enriched in the

hemostasis pathway, and their abnormalities are closely related to

the process of tumor metastasis (Figure 4F).
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3.2.6 Transcription factor statistics and variable
shear analysis

Transcription factor statistics are mainly focused on zf-C2H2

(Figure 6A), and alternative splicing (AS) is an important gene

regulatory mechanism in eukaryotes. rMATS is used to detect five

types of alternative splicing events (SE, RI, MXE, A5SS, and A3SS),

and it can perform differential AS analysis on samples with

biological replicates. The analysis results show that exon skipping

accounts for the highest proportion (Figure 6B).
Frontiers in Oncology 08
4 Discussion

Laryngeal cancer is a malignant tumor originating in the

laryngeal tissues of the larynx (21). Clinical manifestations include

progressive hoarseness, a sensation of a foreign body in the throat,

difficulty breathing, difficulty swallowing, and enlargement of cervical

lymph nodes. Risk factors include long-term smoking, excessive

drinking, and human papillomavirus (HPV) infection (22).

Treatment for throat cancer emphasizes a balance between organ
FIGURE 6

Transcription factor statistics and variable shear analysis (A–D).
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function preservation and tumor control (23). However, the hidden

nature of the disease often leads to a delayed diagnosis (24). Long-

term throat edema caused by radiotherapy affects airway function

(25). Although research on gene expression markers (such as TP53

and PIK3CA mutations) and immunotherapy targets (such as PD-

L1) provides a direction for precise treatment, unified testing

standards for clinical applications are lacking (25). Therefore,

research on the utilization of gene expression profiles combined

with molecular typing and artificial intelligence data analysis to

promote personalized and advanced treatment optimization is of

great significance (25, 26).

HGF/c-MET signaling is involved in the metabolic

reprogramming of tumor cells in head and neck squamous cell

carcinoma regulating cell proliferation and invasion capabilities and

affecting immune surveillance and activation in the tumor

microenvironment (27, 28). NK4 is an intramolecular fragment of

HGF that binds to MET but does not activate receptor signaling

(29). Previous studies have shown that NK4 adenovirus (Ad-NK4)

effectively inhibits the viability, invasiveness, and tumorigenicity of

human mesothelioma cells. Additionally, Ad-NK4 suppressed the

characteristics of cancer stem cells (30). Human placenta-derived

mesenchymal stem cells (PDMSCs) combined with NK4 inhibit the

proliferation ability of glioblastoma cells (15). Heightened HGF

expression in head and neck squamous cell carcinomas correlates

negatively with patient survival(4). Identification of prognostic

genes in the oral squamous cel l carc inoma (OSCC)

microenvironment revealed that HGF expression significantly

correlates with the infiltration levels of B cells, CD4⁺T cells,

CD8⁺T cells, macrophages, and neutrophils (31). Blood tests

conducted on grouped clinical patients showed that serum HGF

concentrations in patients with poorly differentiated tumors, high

tumor grades, and advanced clinical stages were significantly higher

than those in patients with well-differentiated tumors, low tumor

grades, and early clinical stages (p < 0.05) (32). In the present study,

we successfully constructed lentiviral vectors carrying FLAG-tagged

NK4 overexpression and negative control plasmids. These were

successfully packaged into lentiviruses and used to infect the

laryngeal squamous cell carcinoma TU212 cell line resulting in

the establishment of stable NK4 gene-expressing TU212 cell lines,

PLV-NK4-TU212 and PLV-NC-TU212. The stable transfection of

the NK4 gene in these cells overcomes the drawbacks of low

transfection efficiency and unstable gene expression, thus

providing an effective and convenient tool for further research.

This study validated the effects of the stable transfected cell lines on

migration, proliferation, and apoptosis induction capabilities

through MTT assays and immunoblotting to detect MET and

apoptotic molecular markers. Further validation of the

experimental conclusions by Zhang et al. showed that NK4 gene

overexpression can inhibit the proliferation, migration, and

invasion abilities of the laryngeal squamous cell carcinoma cell

line AMC-HN-8 inducing its apoptosis. NK4 not only negatively

regulates the HGF/c-Met signaling pathway but also inhibits tumor

angiogenesis independently of the HGF/c-Met pathway. Studies

show that NK4 inhibits VEGF-induced angiogenesis by suppressing
Frontiers in Oncology 09
the phosphorylation of ERK and ETS-1 in cultured endothelial cells

and in an in vivo rabbit model (33), and the anti-angiogenic effect of

NK4 is independent of c-Met. When NK4 is combined with globin,

it inhibits the extracellular assembly of fibronectin, thereby

suppressing the spread of fibronectin-dependent endothelial cells

(34).NK4 inhibits the paracrine loop of HGF, indirectly suppressing

the expression of VEGF in tumor cells, thereby exerting an anti-

angiogenic effect (35). RNA sequencing is an important technique

for analyzing differential gene expression in tumors. By analyzing

the expression of differential genes, key genes related to specific

biological processes can be identified. Total RNA was extracted

from PLV-NK4-TU212 and PLV-NC-TU212 cells followed by

library construction and sequencing using an Illumina platform.

The sequencing results revealed that NK4 caused significant

differences in the expression levels of 320 genes, with 189

upregulated and 131 downregulated genes (p < 0.05). Gene

Ontology enrichment analysis showed that the distribution of

differential genes was primarily focused on biological processes,

while Kyoto Encyclopedia of Genes and Genomes pathway

enrichment indicated that the pathways involved were mainly

related to the HIF-1, MAPK, and PI3K-Akt signaling pathways.

This suggests that the expression of the NK4 protein triggered a

strong cellular response.

The results obtained from experiments on laryngeal cancer cell

lines in this study are consistent with those of previous reports on the

anticancer effects of NK4 cells. This suggests thatNK4 could serve as a

potential anticancer gene and play an important role in counteracting

the growth, invasion, and metastasis of laryngeal cancers.

Due to time constraints, this study did not conduct in vivo

experimental validation or more in-depth pathway screening and

mechanism verification.
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