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Single-cell sequencing and
spatial transcriptomics reveal the
evolution of glucose metabolism
in hepatocellular carcinoma and
identify G6PD as a potential
therapeutic target
Deyang Xi1,2†, Yinshuang Yang1†, Jiayi Guo1,2, Mengjiao Wang1,2,
Xuebing Yan2 and Chunyang Li*,2

1Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China, 2Department of Infectious
Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
Background: Glucose metabolism reprogramming provides significant insights

into the development and progression of malignant tumors. This study aims to

explore the temporal-spatial evolution of the glucose metabolism in HCC using

single-cell sequencing and spatial transcriptomics (ST), and validates G6PD as a

potential therapeutic target for HCC.

Methods: We collected single-cell sequencing data from 7 HCC and adjacent

non-cancerous tissues from the GSE149614 database, and ST data from 4 HCC

tissues from the HRA000437 database. Pseudotime analysis was performed on

the single-cell data, while ST data was used to analyze spatial metabolic activity.

High-throughput sequencing and experiments, including wound healing, CCK-

8, and transwell assays, were conducted to validate the role and regulatory

mechanisms of G6PD in HCC.

Results: Our study identified a progressive upregulation of PPP-related genes

during tumorigenesis. ST analysis revealed elevated PPP metabolic scores in the

central and intermediate tumor regions compared to the peripheral zones. High-

throughput sequencing and experimental validation further suggested that
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G6PD-mediated regulation of HCC cell proliferation, migration, and invasion is

likely associated with glutathione metabolism and ROS production. Finally, Cox

regression analysis cofirmed G6PD as an independent prognostic factor for

overall survival in HCC patients.

Conclusion: Our study provides novel insights into the changes in glucose

metabolism in HCC from both temporal and spatial perspectives. We

experimentally demonstrated that G6PD regulates proliferation, migration, and

invasion in HCC and propose G6PD as a prognostic marker and therapeutic

metabolic target for the HCC.
KEYWORDS

hepatocellular carcinoma, metabolic reprogramming, carbohydrate metabolism,
prognostic biomarker, bioinformatics
Introduction

Hepatocellular carcinoma (HCC) is the most prevalent malignant

liver tumor, ranking as the sixth most common cancer and the third

leading cause of cancer-related mortality worldwide (1, 2). Over the

past few decades, the incidence of HCC has risen, particularly in the

Asia-Pacific region and parts of Africa, where there is a high prevalence

of hepatitis B and C viruses (3). With improved living standards, liver

cancers arising from metabolic liver diseases are also on the rise (4).

HCC is highly aggressive, and most patients are diagnosed at an

advanced stage with a poor prognosis (5). Although targeted therapies

have extended survival times to some extent, their high cost and severe

side effects limit their widespread clinical use (6).

Cancer cells adapt their energy metabolism to optimize the

rapid consumption and utilization of glucose to support their rapid

proliferation and growth needs (7–9). This metabolic mode, known

as the Warburg effect, entails a preference for glycolysis over

oxidative phosphorylation even in the presence of adequate

oxygen, thereby efficiently generating energy to promote tumor

growth and survival (10, 11). Through metabolic reprogramming,

cancer cells can rapidly synthesize intermediates such as nucleic

acids, lipids, and proteins to continually support their proliferation

and spread (12). Hence, targeting glucose metabolism—including

glycolysis, the pentose phosphate pathway (PPP), and the TCA

cycle—is considered an attractive approach to cancer therapy (13).

Reprogramming of glucose metabolism provides a better

understanding of the onset and progression of malignancies,

further clarifying the complexities of cancer (14, 15). This study

aims to explore the evolution of glucose metabolism in HCC

through detailed analysis using single-cell RNA sequencing

(scRNA-seq) and spatial transcriptomics (ST) and to ascertain the

role of G6PD in the malignant transformation of HCC, thereby

providing suitable metabolic targets for drug development.
02
Materials and methods

Single-cell sequencing data acquisition
and processing

We retrieved data from the GEO database, specifically dataset

GSE149614, which included cancer and adjacent non-tumor tissues

from 10 HCC patients. Patients 1 and 2, who only had cancer tissue

samples without corresponding adjacent non-tumor tissues, were

excluded from the analysis. We utilized the R packages “Seurat” and

“SingleR” to analyze the scRNA-seq data (16, 17). Mitochondrial gene

expression levels are typically associated with cellular health. When the

proportion of mitochondrial genes exceeds 10%, it often indicates that

the cell is under stress or undergoing apoptosis (18–20). To ensure the

inclusion of high-quality cellular data, cells with gene counts outside

the 2% to 98% percentile range and those with mitochondrial gene

content exceeding 10% were excluded. Anomalies in patient 7’s cancer

tissue, which only contained 489 cells, suggested clinical sample issues,

leading to their exclusion. Ultimately, data from 7 cancer tissues and

their corresponding adjacent non-tumor tissues were included. We

normalized the scRNA-seq data using the “NormalizeData” function in

the Seurat R package. The normalized data were then converted into

Seurat objects, and the top 5000 variable genes were identified using the

“FindVariableFeatures” function. Dimensionality reduction of the

scRNA-seq data was performed using the “RunPCA” function for

principal component analysis (PCA). To mitigate batch effects between

samples, we applied the “harmony” R package. Cell clustering was

accomplished using the “FindNeighbors” and “FindClusters” functions

with a resolution parameter of 0.5, followed by visualization of the

results using the t-SNE method. Cell type annotation was refined using

the “SingleR” R package, which predicts cell types based on their

correlation with a reference database, continuously eliminating the least

correlated types (21).
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Pseudotime analysis

We employed the “Monocle2” R package to infer the

developmental trajectory of our target cells through gene

conversion into reverse graph embedding and dimensionality

reduction techniques, arranging cells in a pseudotime sequence

(22). To explore the evolutionary differentiation of glucose

metabolism in HCC, we extracted a hepatocyte subgroup from all

cells and conducted trajectory analysis using “Monocle2.” The

“DDTree” method was used for dimensionality reduction of these

cells. Cell ordering was performed using the “orderCells” function.

The results were visually analyzed using the “plot_cell_trajectory”

function to understand the dynamic changes in cellular states across

the developmental continuum (23, 24).
Acquisition and processing of spatial
transcriptomics data

The ST data were sourced from the HRA000437 database (25).

During the quality control phase, we eliminated genes expressed in

fewer than 5 spots, spots with fewer than 300 detected features, and

spots where mitochondrial gene content exceeded 10%.

Normalization was performed using the SCTransform method

with default parameters in the Seurat R package. Dimensionality

reduction and clustering of the data were achieved using the

RunPCA, FindNeighbors, FindClusters, and RunUMAP functions

in Seurat.

Spatial data visualization was conducted using the

“SpatialDimPlot” function, with the center of the tumor serving

as the center for spatial plotting of transcriptomics cells. First, we

calculated the distance of each cell from the tumor center using the

formula (Distance =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x − xcenter)

2 + (y − ycenter)
2

p
), Subsequently,

we divided the spatial domain into three regions using tertiles to

ensure that each region contained approximately one-third of

the cells:
Fron
• First region (Central Core): Includes cells from the

minimum distance up to the first tertile.

• Second region (Intermediate zones): Spans from the first to

the second tertile.

• Third region (Out Periphery): Ranges from the second

tertile to the maximum distance.
For quantifying metabolic activity at a single-cell resolution, we

employed the “scMetabolism” R package, applying it to measure the

metabolic activities across all hepatocytes (26).
Cell transfection

HepG2 and Hep3B cells were cultured in Dulbecco’s Modified

Eagle’s Medium (Gibco, USA) supplemented with 10% fetal bovine

serum (Gibco, USA) and 1x penicillin/streptomycin (Biyuntian,
tiers in Oncology 03
China). All cultures were maintained at 37°C in a 5% CO2 incubator

(Thermo Fisher Scientific, USA). Gene knockdown of G6PD was

achieved using small interfering RNA (siRNA), specifically si-

G6PD#1 and si-G6PD#2. The mRNA levels of G6PD were

quantified relative to b-Actin mRNA levels using RT-qPCR and

Western Blot (WB) to assess transfection efficiency. For the WB

analysis, the membrane strips were initially trimmed and

subsequently individually hybridized with antibodies, with four

markers retained on each membrane. The full WB image is a

composite created after antibody hybridization. Relative gene

expression levels were calculated using the 2^-DDCt method. All

primers were supplied by Sangon Biotech (Sangon Biotech, China),

with sequences listed in Supplementary Table 1. This study was

reviewed and approved by the Ethics Committee of the Affiliated

Hospital of Xuzhou Medical University (No: XYFY2024-

KL283-01).
CCK-8 Assay, wound healing assay, and
transwell assay

CCK-8 Assay: 1×10^3 cells were cultured in each well of a 96-

well plate. A 1% CCK-8 solution (Meilunbio, China) was added to

each well, and the cells were incubated at 37°C in a 5% CO2

incubator for 1 hour to assess cell proliferation. Absorbance at

OD450 was measured daily from day 1 to day 7 using a microplate

reader (Synergy H1, USA).

Wound healing assay: Cells were cultured in 6-well plates until

95% confluence. A sterile 200 ml plastic pipette tip was used to

scratch a straight line in each well. The wells were gently washed

twice with PBS to remove unattached cells and debris. Cell

migration was observed at 0h and 48h. Images of the scratch

wounds were taken at 0 hours and 48 hours using Image J

software, and the cell migration rate was calculated (Migration

rate= (Width at 48h−Width at 0h)/Width at 48h).

Transwell assay: Treated cells (2×10^5) were seeded into the

upper chamber of a 24-well plate and incubated for 48 hours. To

assess cell migration and invasion capabilities, the upper surface of

the insert was either left uncoated or pre-coated with matrix gel

solution (LYNJUNE, China). After removing cells from the surface,

the remaining cells on the bottom were fixed with 4%

paraformaldehyde and stained with 0.1% crystal violet

(VICMED, China).
G6PD knockdown HepG2 Cell Line
construction and RNA sequencing

Cells were seeded in 24-well plates for gene knockdown

experiments. Using Lipofectamine 2000, recombinant lentivirus

particles were transfected into 293T cells to produce lentivirus.

The p lasmids conta ined G6PD-spec ific shRNA (5 ’ -

GCCGTGTACACCAAGATGA-3’). HepG2 cells were transfected

with lentiviral particles and selected with puromycin to generate
frontiersin.org
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stable cell lines. Total RNA was isolated and purified using TRIzol,

and RNA libraries were sequenced on the Illumina NovaseqTM

6000 platform (LC Bio Technology CO., Ltd., Hangzhou, China)

according to standard procedures. Differential analysis was

performed using DESeq2, and GSEA enrichment analysis was

conducted using the “clusterProfiler” R package (27).
NADP/NADPH measurement and
ROS detection

NADP/NADPH measurement: NADP/NADPH levels were

measured using the BIOSS (AK302) kit. Cells were collected into

centrifuge tubes and treated with alkaline/acidic extraction solution.

After centrifugation, the supernatant was collected, and absorbance was

measured at OD570 nm using a microplate reader (Synergy H1, USA).

ROS Detection: DCFH-DA (Beyotime, China) was diluted in

serum-free medium at a 1:1000 ratio to achieve a final

concentration of 10 µM. After removing the culture medium

from the cells, they were washed with PBS, and then 1.5 mL of

the diluted DCFH-DA was added to each well. The cells were

incubated at 37°C in a 5% CO2 incubator for 20 minutes. After the

incubation, cells were washed three times with serum-free medium,

fixed with paraformaldehyde, and the fluorescence intensity was

measured using a flow cytometer (FACScanto II*, USA) with an

excitation at 488 nm and emission at 525 nm. Analysis was

performed using FlowJo software.
Pan-cancer analyses of differential G6PD
expression and survival analysis

We collected G6PD mRNA levels and clinical information from

tumor and normal tissues across 33 cancer types available in the

TCGA database. Differential expression of the gene was analyzed

using the ‘ggplot2’ R package. Bar charts were utilized to display the

expression level differences across various cancers.

For survival analysis, univariate Cox regression was conducted

using the “survival” and “forestplot” R packages to evaluate the

prognostic relevance of G6PD expression with respect to overall

survival (OS), disease-specific survival (DSS), progression-free

interval (PFI), and disease-free interval (DFI) across different

cancer types. Additionally, clinical and transcriptomic data were

collected for 319 HCC patients from the TCGA database, 229 HCC

patients from the ICGC database, and 177 HCC patients from the

GSE14520 database. Both univariate and multivariate Cox

regression analyses were performed to identify independent risk

factors affecting overall survival in HCC patients.
Statistical analysis

All statistical analyses were conducted using R version 4.3.1. For

continuous data, comparisons between two groups were made using

either the independent samples t-test or the Mann-Whitney U test.
Frontiers in Oncology 04
Univariate and multivariate Cox regression analyses were

performed using the “survival” R package to identify independent

risk factors. The threshold for defining statistical significance was

set at P<0.05 (*P < 0.05, **P < 0.01, ***P < 0.001; ns: not significant).
Results

Single-cell atlas and intercellular
communication analysis

To comprehensively identify the cellular composition and

structure of HCC and adjacent non-tumor tissues, we conducted

single-cell sequencing analysis on samples from 7 HCC patients.

After stringent quality control measures to exclude low-quality cells, a

total of 49,324 cells from these tissues for in-depth analysis. Using t-

distributed stochastic neighbor embedding (t-SNE) clustering, we

organized these cells into 22 distinct clusters (Figure 1A). Cell types

within the single-cell atlas were annotated using “SingleR” R package,

categorizing the cells into 9 types (Figure 1B) including smooth

muscle cells (ACTA2, TAGLN, RGS5), B cells (CD79A, MS4A1,

IGHD), dendritic cells (HLA-DPB1, CLEC9A, CD83), NK cells

(NKG7, GNLY, GZMB), T cells (CD3D, CD2, CD3E), monocytes

(S100A8, AREG, FCN1), hepatocytes (ALB, TTR, TF), endothelial

cells (CLEC4G, ENG, PECAM1), and macrophages (CD68, CD163,

CD14) (Supplementary Figure 1A). The expression of marker genes

in the single-cell map was also displayed (Supplementary Figure 1B).

Supplementary Figures 2A, B shows the cellular composition of both

HCC and adjacent non-tumor cells from the 7 cases. We noted a

higher proportion of macrophages and a reduced proportion of T

cells and NK cells in the tumor tissue compared to the adjacent non-

tumor tissue.
Pseudotime analysis reveals the evolution
of glucose metabolism in HCC

To better explore the evolution of glucose metabolism in

hepatocytes, we constructed a pseudotime cell trajectory for 11

clusters of hepatocytes (Figure 1C) and mapped a bifurcated

trajectory representing the development from non-malignant to

malignant cells (Figure 1D). Cluster 6 (C6), almost exclusively

derived from adjacent non-tumor tissue, was identified at the lower

right of the trajectory, serving as the initial state’s starting point. This

trajectory then bifurcated into two distinct cell fates. Through our

pseudotime analysis, we identified three different transformation

patterns, colored red (gene expression progressively increasing), blue

(gene expression progressively decreasing), and pink (gene expression

initially increasing then decreasing) (Supplementary Figure 2C).

Enrichment analysis of the biological processes associated with

these transformation patterns revealed that the red module was

primarily associated with major metabolic processes, including

carbohydrate metabolism, fatty acid metabolism, and amino acid

metabolism. The blue module was mainly related to immune
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FIGURE 1

Cell atlas and pseudotime analysis of cancerous and adjacent non-tumor tissues in HCC. t-SNE plots depicting 22 cell populations (A) and 9
annotated cell types (B) from 7 HCC tissues and paired adjacent non-tumor tissues. (C) t-SNE plot of 11 re-clustered hepatocyte populations.
Pseudotime analysis (D) reveals dynamic expression patterns of glycolysis-related genes (E), PPP-related genes (F), and TCA cycle-related genes (G).
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responses and cell differentiation, while the pink module was

associated with protein folding, refolding, and modification.

Mapping glucose metabolism-related genes onto the cell

trajectory, we observed trends in the developmental process of the

malignancy. Glycolysis-related genes (GPI, ALDOA, PFKL)

(Figure 1E) and TCA cycle-related genes (PDHA1, IDH2, FH)

(Figure 1F) both showed trends of initially increasing and then

decreasing. In contrast, genes related to thePPP (G6PD, 6PGD,

TKT) (Figure 1G) exhibited a consistently increasing trend

throughout the development of the tumor (28).
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Spatial evolution of glucose metabolism in
the HCC Microenvironment

Spatial transcriptomics preserves transcriptional data within a

spatial context, facilitating the analysis of metabolic pathway

activities in localized regions (29). Prior to this study, the spatial

dynamics of glucose metabolism within HCC had not been explored.

We collected a complete series of tumor sections from HCC patients

(HCC5) listed in HRA000437, dividing them into four parts

(Figure 2A). After removing stromal cells, the sections were further
FIGURE 2

HCC section division diagram (A). Spatial partitioning and glucose metabolism evolution in four cases of HCC (B–E).
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divided into three regions using the tertile method: the central core,

intermediate zones, and outer periphery.

Using the scMetabolism tool, we assigned metabolic scores to each

cell. For HCC5A (Figure 2B), we observed an initial increase followed

by a subsequent decrease in the metabolic activity of glycolysis, the

PPP, and the TCA cycle from the central core to the outer periphery. In
Frontiers in Oncology 07
HCC5B (Figure 2C), glycolysis and TCA cyclemetabolic scores showed

a trend of initially decreasing and then increasing towards the out

periphery, while the PPP activity consistently decreased. For HCC5C

and For HCC5C and HCC5D (Figures 2D, E), both glycolysis and

TCA cycle activities exhibited an increasing trend, whereas PPP activity

consistently decreased from the central core to the outer periphery.
FIGURE 3

Downregulation of G6PD inhibits proliferation, migration, and invasion in HCC cells (HepG2 and Hep3B). (A, E) Western blot (Please refer to
Supplementary Figure 3b for the detailed WB images) verify the efficiency of G6PD knockdown. (B, F) Wound healing assays demonstrate reduced
migration rates in HCC cells with lowered G6PD expression. (C, G) CCK8 assays indicate that downregulating G6PD inhibits cell proliferation. (D, H).
Transwell assays show reduced migration and invasion of HCC cells following G6PD knockdown. (*P < 0.05, **P < 0.01, ***P < 0.001; ns:
not significant).
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Knockdown of G6PD inhibits proliferation,
migration, and invasion in HCC cells

Glucose-6-phosphate dehydrogenase (G6PD) acts as

the rate-limiting enzyme in the PPP and plays a crucial

role in the development and progression of cancer (30–32).

Our study revealed that liver cancer cells (HepG2 and

Hep3B) exhibit high endogenous expression of G6PD.

Therefore, we constructed G6PD-knockdown HepG2 cells
Frontiers in Oncology 08
(Figure 3A) and Hep3B cells (Figure 3E, Supplementary

Figure 3a).

Wound healing assays (Figures 3B, F) revealed that, following

G6PD downregulation, both HepG2 and Hep3B cells exhibited slower

migration rates. Consistent with these findings, CCK8 assays

(Figures 3C, G) demonstrated that G6PD knockdown significantly

inhibited the proliferation of HepG2 and Hep3B HCC cells. Similarly,

in Transwell assays (Figures 3D, H), cells with reduced G6PD

expression also displayed weaker migration and invasion capabilities.
FIGURE 4

Potential mechanisms by which G6PD promotes proliferation and differentiation in HCC cells. (A, B) GSEA enrichment analysis revealed the possible
mechanism of G6PD regulation of HCC. (C) Downregulation of G6PD leads to increased NADP+/NADPH levels within the HCC cells. (D)
Downregulation of G6PD leads to increased ROS levels in HCC cells, which could be reversed after NAC treatment. Wound healing assays (E), CCK8
assay (F) and transwell assay (G) confirmed that ROS can partially regulate the proliferation, migration and invasion of hepatocellular carcinoma. (*P
< 0.05, **P < 0.01, ***P < 0.001; ns: not significant).
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Potential mechanisms by which G6PD
promotes malignant progression in HCC

To preliminarily explore the possible mechanisms by which

G6PD promotes hepatocellular carcinoma (HCC) cell proliferation

and differentiation, transcriptomic sequencing was performed on the

constructed shG6PD HepG2 cells. Notably, GSEA enrichment
Frontiers in Oncology 09
analysis revealed differential metabolism of the pentose phosphate

pathway between the two groups (Figure 4A). Additionally,

significant differences were observed in glutathione metabolism

(Figure 4B). We measured NADP+/NADPH levels between the

two groups and found that the NADP+/NADPH ratio was higher

in the shG6PD group compared to the NC group (Figure 4C). As

NADPH serves as a reducing equivalent and regulates cellular
FIGURE 5

Pan-cancer analysis demonstrating that G6PD is a prognostic biomarker across various cancers. (A) Differences in G6PD expression between
different tumors and adjacent non-tumor tissues. (B) Prognostic analysis of G6PD across various cancers. (C) Univariate and multivariate Cox
regression analyses reveal that G6PD is an independent risk factor for overall survival in HCC.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1553722
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xi et al. 10.3389/fonc.2025.1553722
reactive oxygen species (ROS) stability, we next measured ROS levels

and found that downregulation of G6PD led to an increase in ROS in

HCC cells (Figure 4D). This increase was normalized after treatment

with N-acetylcysteine (NAC,1mM). To further investigate whether

ROS affects HepG2 cell proliferation, migration, and invasion, we

performed wound healing assays (Figure 4E), which showed slower

migration in the shG6PD cells, and migration was restored following

NAC treatment. CCK-8 assays (Figure 4F) indicated that shG6PD

inhibited HepG2 cell proliferation, which could be partially reversed

by NAC treatment. Consistent with the wound healing results,

Transwell assays (Figure 4G) showed that shG6PD cells had

impaired migration and invasion abilities, and these abilities were

partially restored after NAC treatment.
High expression of G6PD correlated with
poor prognosis in HCC patients

To explore the specific expression of G6PD in cancer and its

clinical implications, we analyzed the differences in G6PD

expression levels between tumor tissues and adjacent normal

tissues using data from the TCGA database. Our results

(Figure 5A) demonstrated that G6PD expression is significantly

elevated in multiple cancers, including BLCA, BRCA, CHOL,

COAD, ESCA, HNSC, KICH, KIRP, LIHC, LUAD, LUSC, READ,

STAD, and UCEC. The abbreviations and full names of tumors can

be found in Supplementary Table 2.

Subsequently, we utilized univariate Cox regression analysis to

clarify the relationship between G6PD levels and patient prognosis

in the TCGA cohort (Figure 5B). We found that G6PD expression is

correlated with prognosis across several cancers, identifying G6PD

as a risk factor for overall survival (OS), disease-specific survival

(DSS), progression-free interval (PFI), and disease-free interval

(DFI) in HCC patients. To further validate the correlation
Frontiers in Oncology 10
between G6PD expression and prognosis in HCC patients, we

collected transcriptomic and clinical data from liver cancer

patients across three major databases: TCGA, ICGC, and GEO.

Through both univariate and multivariate Cox regression analysis,

we established that G6PD is an independent risk factor affecting the

overall survival (OS) of HCC patients (Figure 5C).

In summary, our study suggests that the rate-limiting enzyme of

the PPP, G6PD, regulates NADPH production, which in turn

modulates glutathione metabolism and ROS generation. This

ultimately promotes tumor cell proliferation, migration, and

invasion (Figure 6).
Discussion

In this study, through scRNA-seq and ST, we unveiled the

dynamic evolution of glucose metabolism in HCC. We described

changes in glycolysis, the PPP, and the TCA cycle from both

temporal and spatial perspectives. Temporally, we observed an

initial increase followed by a decrease in glycolysis and TCA

cycle-related genes, whereas PPP-related genes consistently

increased. Spatially, from the core to the periphery, the metabolic

activity of glycolysis shows a gradual increase, while the activity of

the PPP gradually decreases. The metabolic changes observed in

HCC5A are inconsistent with those in the other samples; we suspect

this is because HCC5A is composed almost entirely of HCC cells

from the core region, with little to no representation of HCC cells

from the tumor periphery. Additionally, we confirmed through

cellular experiments that G6PD, a key enzyme in the PPP, can

regulate the proliferation, migration, and invasion of HCC cells and

preliminarily analyzed potential mechanisms by which G6PD

facilitates malignant progression in HCC.

Metabolic reprogramming in cancer cells allows for the

adjustment of intracellular metabolic pathways and the
FIGURE 6

Schematic representation of G6PD regulating glutathione metabolism in hepatocellular carcinoma cells.
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distribution of metabolic products, thereby modulating cell

function and physiological states (33, 34). The growth and

proliferation of cancer cells demand substantial energy and

resources (35). Reprogramming glucose metabolism helps adjust

glucose turnover within cells, enabling more efficient energy

production and synthesis of necessary macromolecules, thereby

supporting malignant proliferation and differentiation (36–39). Our

findings suggest that enhanced glycolysis in tumor cells presents an

initial rise followed by a decline, possibly due to several factors: 1.

Fast ATP production by glycolysis, which compensates for the

inhibited mitochondrial oxidative phosphorylation due to local

hypoxia or other factors (40). 2. Intermediate metabolic product

accumulation from glycolysis, such as pyruvate, which can be used

for lipid synthesis (41). 3. Acidification of the microenvironment by

lactate produced through glycolysis, facilitating tumor invasion and

immune evasion (42, 43). In the late stages of tumor development,

the decline in glycolysis-related gene expression could be linked to

extreme environmental stresses (like severe hypoxia or ischemia) or

a reduced metabolic state akin to dormancy due to internal or

external pressures. We observed a similar phenomenon at the

spatial level, where the glycolytic metabolic activity in the tumor

core region was less vigorous than in the tumor periphery. This may

also be related to the extreme stress environment and the internal

and external pressures that lead to tumor cell dormancy.

In clinical research, inhibition of G6PD has emerged as a

promising strategy for cancer therapy (44). G6PD is a pivotal

enzyme in the glycolytic pathway, primarily producing NADPH

via the pentose phosphate pathway (PPP), which is crucial for

maintaining cellular redox balance and influencing cellular

processes such as growth, differentiation, and apoptosis (45). The

upregulation of G6PD is not only associated with the enhanced

proliferation, migration, and invasion of tumor cells but also

promotes epithelial-mesenchymal transition (EMT) and

metastasis through the modulation of cellular redox status (46).

Furthermore, G6PD is closely linked to chemotherapy resistance in

various cancers, as it aids tumor cells in counteracting oxidative

stress and DNA damage induced by chemotherapeutic agents (47).

Several small-molecule G6PD inhibitors, such as 6-aminohexose (6-

AN) and dehydroepiandrosterone (DHEA), have demonstrated

potential to suppress tumor growth (48–50). In experimental

settings, DHEA has been shown to enhance the sensitivity of

certain tumor cells to conventional chemotherapeutic agents like

paclitaxel and doxorubicin, and even to counteract chemotherapy

resistance in tumors (50, 51). However, inhibition of G6PD not only

impacts tumor cell metabolism but may also have detrimental

effects on normal cells. G6PD inhibition results in decreased

NADPH levels, thereby weakening the cellular antioxidant

capacity and increasing oxidative stress and DNA damage. This

effect could lead to damage in normal cells, with particularly

pronounced effects on organs such as the liver and bone marrow

(52). Currently, there is no consensus regarding the optimal timing

and administration methods for G6PD inhibitors in clinical

settings. Given the multifaceted role of G6PD in tumor cells, we

propose that simple G6PD inhibition may be insufficient to fully
Frontiers in Oncology 11
suppress tumor growth. However, combining G6PD inhibitors with

chemotherapeutic agents could offer a novel treatment strategy for

cancer patients. Presently, the administration of G6PD inhibitors

has certain drawbacks. For instance, 6-AN and DHEA are typically

administered orally; however, their significant side effects and

limited targeting capabilities significantly hinder their broad

clinical application (53). With the advancement of nanomaterials,

strategies involving local delivery or encapsulation of G6PD

inhibitors in nanoparticles may allow for targeted delivery to

tumor cells, minimizing systemic side effects while enhancing

therapeutic efficacy (54). In conclusion, G6PD, as a critical

metabolic regulator, is emerging as a novel target for cancer

therapy. While clinical research is still in its early stages, the

therapeutic opportunities and challenges it presents warrant

further exploration.

In our study, the metabolic activity of the PPP consistently

increased over time and was more pronounced in the core and

intermediate areas of tumors. The PPP, alongside glycolysis,

generates ribose-5-phosphate and NADPH, which can reduce

excessive ROS in cells, maintaining internal cellular balance and

normal growth conditions (55). However, when this balance is

disrupted, ROS can promote tumor development by increasing

genetic instability, but post-tumor establishment, it can limit cancer

cell survival and growth (56, 57). G6PD is the rate-limiting enzyme in

the PPP. Studies have shown that PBX3 binds to the G6PD promoter,

stimulating the PPP in colorectal cancer and increasing the

production of nucleotides and NADPH, thereby promoting the

biosynthesis of nucleic acids and lipids while reducing oxidative

stress (58). Consistent with our findings, knocking down G6PD

significantly inhibited proliferation, migration, and invasion of

HepG2 and Hep3B cells, likely linked to the production of ribose-

5-phosphate and NADPH (59). NADPH provides the reducing

equivalents necessary to convert oxidized glutathione (GSSG) back

to its reduced form (GSH), thereby maintaining cellular antioxidant

capacity. In turn, GSH plays a crucial role in mitigating the excessive

accumulation of ROS (60). Additionally, Min Li et al., through

transcriptomic analysis, demonstrated that Aldob directly binds to

G6PD and inhibits its activity, thereby suppressing the PPP and

exerting a novel tumor-suppressive role in HCC (61). Therefore,

G6PD inhibition represents a viable strategy for cancer treatment.

In conclusion, our integrated scRNA-seq and ST analysis

revealed the metabolic evolution of glycolysis, PPP, and TCA

cycle in HCC cells, confirming G6PD’s regulatory role on tumor

aggressiveness and its potential as a prognostic marker and

therapeutic target in HCC. Nonetheless, our study has inherent

limitations: single-cell and spatial transcriptomic data were not

from the same patient samples; and while bioinformatics analysis

and experimental validations were employed, more extensive

experimental validations are needed to corroborate these findings.

Although our study utilized two liver cancer cell lines for validation,

it still cannot replicate the heterogeneity of liver cancer. Further

experimental validation using primary cell cultures is needed.

Finally, our study also lacks further in vivo exploration,

particularly animal studies. Future work will focus on recruiting a
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larger cohort of HCC patients and conducting animal studies to

overcome these limitations and employ diverse methods to

rigorously analyze glucose metabolism alterations in HCC.
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