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in the TG3 mouse model in
a sex-dependent manner
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Introduction: Strong evidence suggests links between Parkinson’s Disease (PD)

andmelanoma, as studies have found that people with PD are at an increased risk of

developingmelanoma and thosewithmelanoma are at increased risk of developing

PD. Although these clinical associations are well-established, the cellular and

molecular pathways linking these diseases are poorly understood. Recent studies

have found a previously unrecognized role for the neurodegeneration-associated

protein alpha-synuclein (aSyn) in melanoma; the overexpression of aSyn promotes

melanoma cell proliferation andmetastasis. However, to our knowledge, no studies

have investigated the role of aSyn in in vivo melanoma models outside of a

xenograft paradigm.

Methods: Our study created and characterized Snca knockout in the

spontaneously developing melanoma TG3 mouse line, TG3+/+Snca-/-.

Results: We show that aSyn loss-of-function significantly delays melanoma

onset and slows tumor growth in vivo in males. Furthermore, decreased tumor

volume is correlated with a decreased DNA damage signature and increased

apoptotic markers, indicating a role for aSyn in modulating the DNA damage

response (DDR) pathway.

Discussion: Overall, our study may suggest that targeting aSyn and its role in

modulating the DDR and melanomagenesis could serve as a promising new

therapeutic target.
KEYWORDS
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Introduction

The association between Parkinson’s Disease (PD) and

melanoma has been well established. Many epidemiological

studies have found a significant increase in the risk of melanoma

among individuals with PD compared to healthy individuals,

ranging from 1.4-20-fold (1–17). Likewise, there is also an

increased risk for PD in melanoma patients, ranging from 1.7-4.2

fold (9, 12, 18–20). Altogether, it is clear that common

environmental, genetic, and/or molecular mechanisms are at play

to influence this clinical association, yet the underlying mechanism

is still poorly understood.

One potentially promising avenue of investigation is the

biological function of the neurodegeneration-associated protein,

alpha-synuclein (aSyn). Misfolded and aggregated forms of aSyn
are found in cytoplasmic inclusions called Lewy bodies, which are

neuropathological hallmarks in PD and other Lewy body disorders

(21–23). Lewy bodies are found primarily in the central nervous

system, where their presence in dopaminergic neurons in the

midbrain is associated with the degeneration of these cells in PD

(24). aSyn is not only found in the central nervous system, but can

also be found in the periphery, including in melanocytes (25, 26)

and therefore could be a key molecular link between these disease

pathologies. In primary and metastatic melanoma, ~85% of biopsies

show high expression of aSyn1 (2, 27–29). Since this initial

characterization, there have been several studies investigating the

role of aSyn in melanoma growth and metastasis; the majority of

these being in vitro studies. Overall, these studies using human and

mouse melanoma cell lines have found that aSyn expression is

important in cell proliferation1 (30–32), motility (33), and protects

against cell death (32, 34), through multiple potential mechanisms,

such as altering the inflammatory response (35–37), autophagy

pathways (32, 34), and DNA damage repair1.

Fewer studies have investigated the role of aSyn in in vivo

melanoma mouse models and all this previous in vivo work, to our

knowledge, has used a xenograft paradigm. In general, these

xenograft studies corroborate previous in vitro work and find that

aSyn is important in melanoma tumor growth and metastasis.

Specifically, aSyn knockout (KO) human/mouse melanoma cells

implanted as xenografts in mice exhibited slower growth and

increased apoptosis (30), and reduced tumor-induced mechanical

allodynia (38). Furthermore, WT melanoma cells in aSyn
overexpressing mice show increased metastasis (31). Lastly, human

melanoma xenografts implanted in mice and treated with an aSyn
aggregation inhibitor (anle138b) led to increased cell death (32) and

upregulation of anti-melanoma immune responses (35). Despite this

substantial data linking aSyn to melanoma tumor growth in vivo,

whether aSyn expression within melanocytes influences

tumorigenesis is still not understood. In our current study, we

aimed to create and characterize a new TG3 Snca-/- mouse line to
1 Arnold MR, Cohn GM, Oxe KC, Elliott SN, Moore C, Laraia PV, et al.

Alphasynuclein regulates nucleolar DNA double-strand break repair in

melanoma. bioRxiv. in press. doi: 10.1101/2024.01.13.575526
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better understand the function of aSyn in melanomagenesis, tumor

growth, and metastasis in a spontaneous melanoma-forming mouse

line. TG3 mice display melanin-pigmented lesions after a short

latency and with complete penetrance (39–42). This model is

driven by multiple tandem insertions of a transgene into intron 3

of Grm1 (metabotropic glutamate receptor 1) with concomitant

deletion of an intronic sequence that increases expression of Grm1.

Homozygous TG3 mice form primary melanoma tumors on pinna

and perianal regions, in addition to metastatic tumors in lymph

nodes, lung, and liver (39–42). The TG3 line also has the advantage of

being mono-allelic, therefore making breeding to other genetically

modified mice practical.

Our previous work has shown aSyn’s role in modulating nuclear

DNA damage response (DDR) pathways in human melanoma cells1

and other cell types (43, 44). Specifically, we found a novel function of

aSyn in DNA double-strand break (DSB) repair, where aSyn
colocalizes with DSB repair components and its knockout leads to

increased DSBs and their slowed repair1 (43). In this study, we aimed

to investigate whether similar mechanisms are important for

melanomagenesis and growth using the TG3+/+Snca -/- mouse

model to test whether aSyn loss-of-function dysregulated DNA

damage pathways and led to downstream cell death phenotypes.
Materials and methods

Mice

The transgenic TG3 mice (39–42), were established at the

Department of Chemical Biology, Rutgers University, Piscataway,

USA and provided by Dr. Suzie Chen. aSyn KO mice (C57BL/

6N-Sncatm1Mjff/J) were obtained from Jackson Laboratories (strain

#016123, RRID: IMSR_JAX:016123). Homozygous aSyn KO mice

were crossed with TG3 heterozygous mice and double heterozygote

F1 mice were crossed to each other to generate F2 mice for analysis.

Genotyping of mice was carried out by Transnetyx Inc. and primer

sequences and protocols are available upon request. For all analyses,

homozygous transgenic TG3 Snca+/+ and TG3 Snca-/- animals

(litter mates) were used. Mice were housed in OHSU’s Department

of Comparative Medicine (DCM) facilities in a light-dark cycle

vivarium. Animals were maintained under ad libitum food and

water diet. All animal protocols were approved by OHSU IACUC,

and all experiments were performed with every effort to reduce

animal lives and animal suffering, according to the US National

Research Council’s Guide for the Care and Use of Laboratory

Animals, the US Public Health Service’s Policy on Humane Care

and Use of Laboratory Animals, and Guide for the Care and Use of

Laboratory Animals.
Tumor growth analysis

Starting at P30, mice underwent isoflurane anesthesia every 10

days to assess weight and tumor growth. Researchers were blinded

to condition. To quantitate the severity of melanoma progression,
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detailed observation and photodocumentation was used to assign

numerical scores of 0 to 5 to the thickness of pinna tumors (see

Supplementary Figure S2 for detailed description) or quantitative

measurements for thickness of perianal tumors. For pinna tumors,

0=tumor not palpable or visible; 1=individual small, clearly

recognizable nodes or elevations in skin; 2=small, numerous

recognizable nodes or elevations; 3=significantly thickened ears,

clearly nodular tumors; 4=severely thickened ears or coarse tumors;

5=extreme tumor growth with risk of ulceration. Tumor onset was

designated as time when tumor changed from 0 to 1. For perianal

tumors, a ruler was used to manually measure the length of the

perianal tumor in centimeters.
Immunofluorescence staining

For immunofluorescence staining of perianal tumors, 5mm
sections of formalin-fixed and paraffin-embedded tissue blocks were

deparaffinized and bleached in a H2O2 solution for 1 hour at room

temperature (1% dipotassium phosphate, 0.5% potassium hydroxide,

3% hydrogen peroxide). Tissue underwent antigen retrieval overnight

at 56C (10 mMTris base, 1mM EDTA solution, 0.05% Tween 20, pH

9.0). Samples were permeabilized in 0.25% Triton X-100 in PBS for

10 minutes and blocked in 2% FBS/1% BSA in PBS for 2 hours and

then placed in the primary antibody overnight at 4C. The next

morning, samples were washed in 1x PBS and placed in secondary

antibody for 1 hour at 37C. Samples were washed 4 times in 1x PBS.

The third wash contained DAPI (2.5µg/ml) for 20min. Coverslips

were mounted using CFM2 antifade reagent and sealed with BioGrip.

All immunofluorescence images were taken on a Zeiss Laser-

Scanning Confocal Microscope 980 with Airyscan and analyzed in

Arivis Software. Mean intensity was measured after imposing DAPI

masks over each nucleus. All cells within a 63x image were analyzed

and numbers of n are provided in each figure legend. Statistical

significance was assigned using T-test.

Antibody specifics were as follows: LB509 (Abcam #27766, RRID:

AB_727020, 1:500), RPA32 (Bethyl #A300-245A, RRID: AB_210547,

1:1000), gH2AX (Cell Signaling #9718, RRID: AB_2118009, 1:500),

53BP1 (BD Biosciences #612522, RRID: AB_2206766, 1:1000).
Quantitative RT-PCR

Pinna tumors, perianal tumors, and lymph nodes were

homogenized in RNeasy mini kit buffer (Qiagen) using a hand-

held tissue homogenizer followed by Qiashredder centrifugation

(Qiagen). Total RNA was isolated using the RNeasy mini kit

(Qiagen) according to the manufacturer’s instructions. RNA

concentration was measured with a NanoDrop spectrophotometer

and cDNA was synthesized from 500ng RNA with M-MLV reverse

transcriptase (Promega). Analysis of mRNA expression was

performed using quantitative Real-Time PCR on the QuantStudio

3 (Applied Biosystems). A volume of 1 ml cDNA template, 1 ml of
forward and reverse primers (each 10 mM) and 10 ml of SYBR Green

I (Roche) were combined to a total volume of 20 ml. Primers used
Frontiers in Oncology 03
are described in Supplementary Table S1. Each sample was analyzed

in duplicates. The target cDNA was normalized to b-Actin levels.

Statistical significance was assigned using T-test.
Statistical analysis

Beyond individualized analysis within each assay methodology,

all data was processed using GraphPad Prism version 9.0 (RRID:

SCR_002798). Data was analyzed using T-test, unless stated

otherwise, and considered statistically significant if p < 0.05. All

data was presented as a mean +/- standard error of the mean (SEM).
Results

Loss of alpha-synuclein delays melanoma
onset and decreases tumor growth in vivo

To study the role of aSyn in melanoma tumorigenesis in vivo,

TG3 mice (39) were crossed with Snca-knockout mice. The

generated TG3+/+Snca+/+ (“wildtype”) and TG3+/+Snca-/-

(“homozygous KO”) mice were then analyzed for tumor growth

from P30 to P100, at which point the mice were sacrificed and

dissected for tissue processing (Figure 1A). There was no significant

difference in weight of the mice between wildtype and homozygous

KO genotypes (Supplementary Figure S1). Melanoma tumor onset

was evaluated, and homozygous KO mice developed melanoma

significantly later compared to the wildtype control group

(Figure 1B). Wildtype mice on average exhibited tumors at P43,

whereas melanoma onset was observed on average at P50 for

homozygous KO mice. This difference is driven primarily by male

mice, since when stratified by sex there was no significant difference

between genotypes in female mice but there was in male mice

(Figure 1B). Further, the progression of melanoma growth on pinna

and perianal regions were followed for ~70 days. Here, a graded

scoring system from minimal (0) to extreme tumor growth (5) was

used to quantify melanoma progression on pinna as previously

described (45) (Supplementary Figure S2) and quantitative size

measurement was used to quantify melanoma progression in

perianal regions. This analysis revealed no significant differences

in tumor progression of the pinna between wildtype and

homozygous KO genotypes, even when stratified by sex

(Figure 1B). However, homozygous KO mice display decreased

perianal tumor growth compared to wildtype mice, which becomes

significant at later time points (Figure 1C). Again, this difference is

driven primarily by male mice when stratified by sex (Figure 1C).
Experimental genotypes display similar
pigment formation and Grm1 expression

Wenext wanted to confirm the presence of melanoma-like cells in

the primary tumors of these mice through histopathological analysis.

Hematoxylin and eosin (H+E) staining revealed significant levels of
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FIGURE 1

Alpha-synuclein knockout significantly delays tumor onset and slows tumor progression. (A) Schematic representing experimental timeline.
(B, C) Pinna melanoma onset in TG3+/+Snca+/+ (n=15) and TG3+/+Snca-/- (n=14). Pinna and perianal tumor progression of the TG3+/+Snca-/-
compared to the TG3+/+Snca+/+ after tumor onset. The grading system to evaluate the progression of tumor growth at the pinna region until endpoint
at P110 is further described in Supplementary Figure S2. Analysis was further stratified by sex with TG3+/+Snca+/+ male (n=10), TG3+/+Snca+/+ female
(n=5), TG3+/+Snca-/- male (n=7), and TG3+/+Snca-/- female (n=7). Error bars represent Standard Error of the Mean (SEM). *p<0.05 by unpaired T-test
for tumor onset or Two-way ANOVA for tumor progression.
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pigmented cell growth in the primary pinna and perianal tumors of

both wildtype and homozygous KOmice compared to control C57BL/

6 wildtype mice without tumors (Figure 2A). qRT-PCR analyses

revealed comparable Grm1 mRNA expression levels between the

wildtype and homozygous KO pinna and perianal primary tumors.

This suggests that mice express the Grm1 transgene at similar levels

regardless of Snca expression (Figure 2B). These levels were compared

to positive control cerebellum tissue where Grm1mRNA expression is

known to be high.

Additionally, H+E staining confirmed the presence of pigmented

melanoma cells in the lymph nodes of both wildtype and

homozygous KO mice, indicating lymph node metastasis had

occurred in both genotypes (Figure 2A). The Grm1 mRNA

expression in lymph node tissues of wildtype and homozygous KO

mice was analyzed as a marker for melanoma cell dissemination.

There was no significant difference in Grm1 expression in lymph

nodes between the homozygous KO mice compared to wildtype

mice (Figure 2B), although larger cohorts would be needed to detect

differences in metastasis given inter-animal variability.
Frontiers in Oncology 05
Loss of alpha-synuclein decreases DNA
damage signatures in the melanoma tumor

aSyn has been previously linked to DNA DSB repair, since

knocking out aSyn significantly increases DNA damage levels in

SK-Mel28 cells1, Hap1 cells (43, 44), and mouse brain (43) due to less

efficient DNA DSB repair. We wanted to investigate whether there

were differences in DNA damage burden and repair mechanisms

between TG3+/+Snca +/+ (“wildtype”) and Snca -/- (“homozygous

KO”) mice. Formalin-fixed paraffin-embedded perianal primary

tumor samples from wildtype and homozygous KO mice

underwent immunofluorescence (IF) staining. Genotypes were first

validated via IF when stained using an aSyn antibody, LB509, where

homozygous KO tissue showed significantly reduced levels of staining

compared to wildtype mice (Figure 3A). In addition, when analyzing

the localization of aSyn labelling in the wildtype samples, discrete

nuclear foci were seen in the melanoma tumor cells, similar to our

previous studies where these foci are implicated in DNA damage

repair processes1 (43, 44). Given these findings and previous data,
FIGURE 2

Alpha-synuclein knockout does not interfere with Grm1 expression. (A) Formalin-fixed paraffin-embedded pinna and perianal primary tumors and
lymph nodes were stained for hematoxylin and eosin in TG3-/-Snca+/+, TG3+/+Snca+/+, or TG3+/+Snca-/- mice. Stained samples were imaged
on the Zeiss ApoTome2 microscope. Scale bar=100µm, except for TG3-/-Snca+/+ perianal scale bar=200µm and lymph node scale bar=50µm.
(B) Total RNA was isolated from pinna and perianal primary tumors and lymph nodes from TG3+/+Snca+/+ or TG3+/+Snca-/- mice. Using primers
against the Grm1 gene, qRT-PCR amplification was determined when normalized to beta-actin. For pinna and perianal analysis, TG3+/+Snca+/+
(n=5) and TG3+/+Snca-/- (n=6). For lymph node analysis, TG3+/+Snca+/+ (n=12) and TG3+/+Snca-/- (n=9). Cerebellum samples (n=3). Each
sample was run with 2 technical replicates. Statistical analysis via unpaired T-test.
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these samples were next stained for DNA damage and damage repair

markers: gH2AX, RPA32, and 53BP1.

gH2AX, a phosphorylated form of histone H2AX, is involved in

the early stages of DNA DSB detection and is a sensitive marker for

DNA damage burden. IF staining for gH2AX revealed a significant

decrease in mean intensity of gH2AX signal, number of nuclear

gH2AX foci, and density of nuclear gH2AX foci in the homozygous

KO group compared to the wildtype group (Figure 3B). These trends

remained similar when stratified by sex. RPA32, replication protein

A2, binds and stabilizes single-stranded DNA intermediates that form

during DNA repair and is important in homologous recombination

(HR) DSB repair. IF staining for RPA32 revealed no significant

differences in the mean nuclear intensity, number of nuclear RPA32

foci and their density in the homozygous KO group compared to the

wildtype group (Figure 3C). Interestingly when stratified by sex, there

were significant, but opposite, differences in mean nuclear intensity of

RPA32 between the wildtype and homozygous KO group, despite no

significant differences when combined. Male homozygous KO mice

exhibited a significant increase in mean nuclear RPA32 intensity
Frontiers in Oncology 06
compared to wildtype mice, whereas female homozygous KO mice

exhibited a significant decrease in mean nuclear RPA32 intensity

compared to wildtype mice (Figure 3C). Lastly, 53BP1, p53-binding

protein 1, is an important regulator of DNADSB repair and promotes

non-homologous end-joining (NHEJ) DSB repair. IF staining for

53BP1 revealed a significant increase in mean nuclear 53BP1 intensity

in homozygous KO mice compared to wildtype mice, driven by both

male and female mice (Figure 3D). Homozygous KO female mice

showed a significant increase in number and density of 53BP1 foci

compared to wildtype mice, but male mice showed no

genotype differences.
DNA damage signature correlates to cell
death phenotypes

There is evidence from previous publications that aSyn KO

upregulates in vivo melanoma xenograft apoptosis at the protein

level, via the TUNEL assay (30) and autophagy-related protein, p62
FIGURE 3

Alpha-synuclein loss-of-function leads to lower DNA damage signature in P110 perianal tumors. (A–D) Formalin-fixed paraffin-embedded perianal
primary tumors from TG3+/+Snca+/+ (n=5) and TG3+/+Snca-/- (n=5) were stained for LB509, gH2AX, RPA32, 53BP1, or DAPI. Stained samples
were imaged on the Zeiss 980 confocal microscope with Airyscan processing. Mean intensity, number of foci, and density of foci within DAPI masks
were analyzed using Arivis. *p<0.05, **p<0.01, *** p<0.001, ****p<0.0001 by unpaired T-test. Error bars denote SEM. Scale bar=5µm (A) or 2µm (B–
D). Quantification from 5 biological replicates (separate animals) per group were performed (n=163-249 nuclei analyzed per condition).
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(38). To further understand the downstream cellular consequences

of altered DNA damage repair mechanisms in aSyn homozygous

KO mice, we assayed various cell death markers via qRT-PCR.

These included markers for apoptosis (Caspase-3, Caspase-9),

necroptosis (RIP3), autophagic cell death (LC3B), and senescence
Frontiers in Oncology 07
(Cdkn2a-p16). We found that perianal tumors of homozygous KO

mice exhibited significantly higher gene expression levels of

Caspase-9, LC3B, and p16 compared to wildtype tumors

(Figure 4A). There were no significant differences when stratified

by sex, therefore data in Figure 4 represent a combination of both
FIGURE 4

Alpha-synuclein knockout increases apoptosis, autophagy, and senescence marker expression. (A) Total RNA was isolated from perianal primary
tumors from TG3+/+Snca+/+ or TG3+/+Snca-/- mice. Using primers against the various genes described in Supplementary Table S1, qRT-PCR
amplification was determined when normalized to beta-actin internal control. For analysis, TG3+/+Snca+/+ (n=5) and TG3+/+Snca-/- (n=6). Each
sample was run with 2 technical replicates. *p<0.05 by unpaired Mann-Whitney T-test. (B) Simple linear regression analysis of mean nuclear
intensity, number of foci, and density of foci of RPA32 immunofluorescence (Figure 3) compared to gene expression of Caspase-9, LC3B, and p16.
Each point represents a single animal, with TG3+/+Snca+/+ (n=5, same animals from Figure 3) and TG3+/+Snca-/- (n=5, same animals from
Figure 3). *p<0.05 by simple linear regression with 95% confidence intervals.
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male and female mice. Furthermore, to directly correlate the DNA

damage signatures seen with immunofluorescence (Figure 3) with

Caspase-9, LC3B, and p16, we ran linear regression analyses.

Average nuclear mean intensity, foci number, and foci density of

gH2AX and 53BP1 showed no significant associations with these

cell death markers (data not shown). However, RPA32 nuclear

mean intensity and foci density significantly correlated with the

levels of p16, with mean foci number close to significance, but did

not correlate with Caspase-9 or LC3B levels (Figure 4B). This

indicates that mice with higher RPA32 levels potentially show

higher p16 mRNA levels and could suggest that aSyn loss-of-

function and the subsequent dysregulation of the DDR this causes

leads to a senescence-like phenotype, potentially driving the

impaired tumor growth we measured in vivo.
Discussion

In this study, we extend our knowledge of the molecular

connection between PD and melanoma, by uncovering roles for the

neurodegeneration-associated protein, aSyn, in melanoma formation

and growth. We developed a model to investigate aSyn deficiency on

melanomagenesis and metastasis in vivo in TG3 mice (39–42). Our

data suggest that aSyn loss-of-function significantly delayed

melanoma tumor onset in primary pinna tumors and growth of

primary perianal tumors. Furthermore, there was a non-significant,

but trending, decrease in the metastasis to lymph nodes as measured

by Grm1 mRNA expression. Immunofluorescence staining of the

primary perianal tumors revealed a significantly decreased DNA

damage signature in Snca KO mice, as measured by quantifying

nuclear gH2AX. Interestingly, there were sex-dependent differences in
nuclear 53BP1 and RPA32 levels in homozygous KO mice compared

to wildtype. Lastly, cell death marker analysis revealed that

homozygous KO perianal tumors exhibited significantly higher

levels of the apoptosis marker Caspase-9, autophagic marker LC3B,
Frontiers in Oncology 08
and senescence marker p16. In homozygous KO tumors, RPA32

immunofluorescence significantly correlated with p16 mRNA levels,

suggesting a potential senescence-like phenotype partly controlled by

dysregulated RPA32-dependent DDR.

These results fit into a larger landscape of links between cancer

growth, genomic instability, and DDR. Due to their highly

proliferative nature, cancers are especially vulnerable to replication-

induced DNA damage and genome instability. Inherently, this leads

to the high DNA damage signatures seen in many cancer types (46)

and melanoma cells upregulate DSB repair pathway proteins (47, 48)

to increase metastatic potential (49). Our findings suggest that when

aSyn is present (“wildtype” mice), DSB repair pathways remain

intact, allowing for cell survival and tumor growth. However, DNA

damage from hyperproliferation creates large DNA damage

signatures in late-stage tumors (Figure 5). In contrast, when aSyn
is not present (“homozygous KO”mice), there is impaired DSB repair

due to a decrease in DSB repair machinery1. Accumulation of

unrepaired DSBs ultimately leads to cell death and senescence

phenotypes, with data suggesting that RPA32 levels synergize with

senescence marker p16 upregulation. This could result in the

impaired tumor growth and a decreased DNA damage signature

(gH2AX) we detect, since the cells with a high DNA damage signature

die and are removed from late-stage tumors (Figure 5). As a

consequence of this unrepaired DNA damage and subsequent cell

death, remaining cells may upregulate DDR pathways components

53BP1 and RPA32 and this may be sex dependent. Overall, our

findings suggest that aSyn upregulation in melanoma may be part of

a mechanism to improve DSB repair, allowing cells to evade the

programmed cell death that would normally be triggered by high

DSB levels, similar to what is seen with the upregulation of other DSB

repair pathway proteins (47, 48).

Loss of aSyn resulted in upregulation of various cell death and

senescence markers, likely downstream of dysregulated DDR and

resulting in the decreased tumor growth in vivo. Caspase-9 is an

initiator caspase in the intrinsic apoptosis pathway that is activated
FIGURE 5

Schematic summary of proposed mechanism.
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when cytochrome c is released from mitochondria in response to

death signals (50). LC3B, microtubule-associated protein 1 light

chain-3B, is an autophagic protein that plays a role in cell death and

autophagy. Autophagic cell death, also known as type 2 cell death, is

characterized by large-scale autophagic vacuolization of the

cytoplasm (51, 52). In general, autophagy can protect cells from

stresses like nutrient depletion or starvation, but excessive

autophagy can lead to cell death. Furthermore, LC3B can also

promote apoptosis through interactions with the extrinsic

apoptotic factor Fas (53). Lastly, p16(INK4a) is a cyclin-

dependent kinase inhibitor that is often expressed in senescent

cells, which have stopped growing due to stress (54). This tumor

suppressor gene is commonly mutated in human tumors, allowing

precancerous lesions to bypass senescence (55). These processes

have all been associated with DNA damage accumulation and

implicated in melanoma, where suppression of Caspase-9 and p16

and over-s t imula t ion of LCB3 have been l inked to

melanomagenesis, contributing to disease progression and

resistance to therapy (56–65). Targeted therapy of some of these

modulators is currently being explored as potential therapeutic

strategies for melanoma (59, 66). Interestingly, our data could

suggest a significant synergistic effect of RPA32 protein levels and

p16 expression coincides with previous reports of “RPA

exhaustion”. This is a phenomenon by which persistent DNA

damage can lead to replication catastrophe and cells then acquire

senescent traits and is associated with various age-related

pathologies (67, 68). It is plausible that aSyn loss-of-function can

induce such a pattern, however further investigation is necessary to

elucidate mechanistic insight.

The mechanism of how aSyn regulates DNA DSB repair is still an

area for investigation. Our previous work uncovered a novel role for

aSyn in the recruitment of 53BP1 to ribosomal DNA DSBs,

downstream of gH2AX signaling and upstream of MDC1 activity, in

the SK-Mel28 melanoma cell line1. Furthermore, aSyn has been

implicated in regulating DSB repair through a DNA-PK-dependent

manner in Hap1 cells (44). These data suggest thataSynmaymodulate

the NHEJ repair pathway, where both 53BP1 and DNA-PK are

important. However, the choice between NHEJ and HR is

particularly interesting and at the intersection of neurodegeneration

and cancer. NHEJ is thought to be the primary DSB repair pathway in

post-mitotic cells, like neurons, since it does not require a sister

chromatid to act as a template, yet is more error prone (69). In

contrast, there is growing evidence that different cancers rely primarily

on the error-free HR to counteract the genomic instability associated

with replicative stress (70). Studies have shown that a high frequency of

melanoma patients harbor mutations in HR-associated genes (71–73),

making these tumors vulnerable to immunotherapies and treatments

that target HR (71, 72, 74). Yet, the choice between HR and NHEJ is a

growing topic in the field (75). In our data, aSyn loss-of-function

resulted in decreased gH2AX intensity and foci, sex-dependent

differences in RPA32 intensity (increased in males, decreased in

females), and an increase in nuclear 53BP1 (more robust response in

females). This potentially suggests that aSyn upregulation in the TG3

melanoma mouse line is important for functional DDR in a sex

dependent way and that when aSyn is no longer present and there
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is a buildup of unrepaired DNA breaks, male mice can better

upregulate HR machinery (RPA32) in the surviving cells, while

female mice can better upregulate NHEJ machinery (53BP1) in the

surviving cells to try to compensate. Further investigation is necessary

to uncover the specific mechanism of how aSyn is influencing the

DDR as a function of melanomagenesis and sex in vivo.

The sex differences we detect (in tumor onset, growth, and DDR

components) are interesting since male sex is a recognized risk factor

to the prevalence and outcome of both PD andmelanoma. In PD, the

prevalence is twice as high in males compared to females and is

frequently associated with earlier disease onset (76, 77); men may

develop a postural instability-dominant phenotype, which includes

freezing of gait and falling (77, 78); and men experience more sleep

and cognitive issues associated with the disease, such as REM sleep

behavior disorder (78) and mild cognitive impairment with a more

rapid progression to dementias (79, 80). In melanoma, men have a

higher risk of developing melanoma across all ages and ethnicities

(81); men exhibit a higher risk of melanoma progression and

metastasis than females (81, 82), with a greater risk of mortality

(82–84); and pathologically, thicker and more ulcerated tumors were

observed in men (85). In both diseases, there have been many

hypotheses as to what is driving these sex differences, including the

involvement of sex hormones, the immune system response, and

potential environmental exposures. However, in the context of our

study, it is interesting to note previously reported sex disparities in

DDR pathways. Others have found a greater accumulation of somatic

mutations in male cells compared to female cells (86), suggesting

decreased DNA damage repair. Females have an increased capacity to

repair DNA damage by base excision repair (BER) compared to

males in mice (87). Additionally, analysis of molecular difference in

13 cancers from The Cancer Genome Atlas database revealed that

DNA repair genes are expressed at higher levels in female patients

(88). Furthermore, steroid hormones can regulate DSB repair, both

NHEJ and HR (89). Specifically, androgen receptors stimulate the

activity and expression of DNA-PK in the NHEJ pathway (90),

estrogens positively regulate the expression of NBS1 (91), and

steroid hormones can regulate HR (92, 93). Our tumor growth and

immunofluorescence data suggest that aSyn plays a role in

modulating DSB repair pathways in a sex-dependent manner.

Females may be better at upregulating compensatory mechanisms

to counteract the unrepaired DNA damage (53BP1 upregulation),

and therefore are more resistant to negative effects of aSyn loss-of-

function in tumor onset and growth phenotypes. Males may be more

vulnerable to DNA damage dysregulation as a consequence of aSyn
loss-of function and serve as a more appropriate candidate for

therapeutics that target aSyn in melanoma treatment regimens. For

example, our data showed a direct relationship between RPA32

increase and p16 mRNA senescence marker upregulation in male

mice and our in vitro data, in the male human melanoma cell line,

SK-Mel28, aSyn KO significantly impaired growth phenotypes1.

In summary, the newly generated mouse model, TG3+/+Snca-/-,

allows for the investigation of the function of aSyn in malignant

melanoma. It is possible that individuals with upregulated expression

of aSyn may predispose them to Lewy body aggregation in neurons

(43, 94), but also melanocytic transformation and melanoma
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progression. The resulting loss-of-function due to aSyn aggregation

(in PD) or gain-of-function of aSyn by increased expression without

aggregation (in melanoma) would have differential effects on DNA

damage repair pathways, potentially contributing to either neuronal

cell death or melanoma cell growth, respectively. Our findings

demonstrate the impact of aSyn on melanoma onset, progression,

and metastasis in a sex-dependent manner and provide novel

therapeutic targets focused on reducing aSyn-mediated DNA

repair in melanoma.
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