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Circular RNAs (circRNAs) are multifaceted molecules that play a pivotal role in

regulating gene expression at both transcriptional and post-transcriptional levels.

Their expression is highly tissue-specific and developmentally regulated, making

them critical players in various physiological processes and diseases, particularly

cancer. In colorectal cancer, circRNAs exhibit significantly dysregulated

expression patterns and profoundly influence disease progression through

diverse molecular mechanisms. Unraveling the complex roles of circRNAs in

modulating colorectal cancer immunotherapy outcomes highlights their

potential as both promising biomarkers and therapeutic targets. Moving

forward, advancements in circRNA-based therapeutic strategies and delivery

systems are poised to transform precision medicine, enabling early colorectal

cancer diagnosis and improving patient prognosis.
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1 Introduction

According to the latest data from the International Agency for Research on Cancer

(IARC), approximately 1.926 million new cases of colorectal cancer (CRC) were projected

globally in 2022, accounting for about 9.6% of all malignant tumors. CRC-related deaths

were estimated at 904,000, representing 9.3% of all cancer-related fatalities (1). CRC ranks

as the third most diagnosed cancer worldwide, following lung and breast cancers, and is the

second leading cause of cancer-related deaths, surpassed only by lung cancer. In China, the

2022 National Cancer Center report identified CRC as the second most frequently

diagnosed cancer and the fourth leading cause of cancer-related mortality (2). Overall,

CRC remains a major public health challenge, ranking among the top five cancers in both

incidence and mortality globally and in China, and contributing significantly to the global

disease burden.
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The management of CRC combines surgical and non-surgical

therapies. Surgical resection remains the cornerstone and primary

curative option. However, approximately 25% of patients present

with distant metastases, complicating treatment. Evidence suggests

that resecting the primary tumor can improve survival (3, 4).

Treatment strategies vary by disease stage. For locally advanced

rectal cancer, neoadjuvant radiotherapy enhances complete

resection rates and reduces recurrence risk. Patients achieving

clinical complete remission (cCR) may opt for a watch-and-wait

approach, avoiding surgery (5, 6). Stage III CRC patients benefit from

adjuvant chemotherapy to lower recurrence rates. For metastatic

CRC, personalized therapy, including RAS and BRAF mutation

testing, is standard. Immunotherapy, now the fifth major treatment

modality, has shown promising results, particularly in neoadjuvant

settings for locally advanced and metastatic CRC (4, 7–9).

Recent studies highlight the unique expression profiles of

circRNAs in various cancers, making them promising tools for

early tumor detection (10). CircRNAs, a distinct class of non-

coding RNAs, form closed-loop structures through back splicing,

lacking a 5’ cap and 3’ poly(A) tail. This structure provides

exceptional stability and conservation, as they resist exonuclease

degradation (10–12). Produced via exon or intron cyclization,

circRNAs play critical roles in cancer by acting as miRNA sponges,

translation templates, and gene expression regulators (13, 14). In

CRC, circRNAs show distinct expression patterns in serum, tissues,

and exosomes, significantly influencing disease progression (15). For

instance, circPTK2 promotes epithelial-mesenchymal transition

(EMT) in CRC by interacting with waveform proteins, serving as a

potential biomarker and therapeutic target for metastatic CRC (16).

Similarly, circZNF800 enhances tumor stem cell properties and CRC

progression, with CRISPR Cas13d-based knockdown showing

therapeutic potential (17). Additionally, circRERE-AAV inhibits

tumor growth and enhances anti-PD-1 therapy efficacy,

highlighting its role in CRC immunotherapy (18). This review

explores the emerging roles of circRNAs in CRC, focusing on their

diagnostic, prognostic, and therapeutic applications, particularly in

immunotherapy. Advancing understanding of circRNA biology may

lead to innovative CRC management strategies.
2 Biological structure and function of
circRNAs

2.1 Definition and structure

In 1976, German scientists, including Heinz L. Sanger,

discovered circRNA, a ring-shaped RNA molecule with a covalent

bond linking its 3’ and 5’ ends, formed via back-splicing or a lasso

mechanism. This circular structure enhances stability by resisting

ribonuclease degradation, surpassing linear RNAs in durability.

Most circRNAs are cytoplasmic, with a smaller fraction localized

in the nucleus. They play key roles in neural development,

tumorigenesis, immune responses, and gene regulation (19).

CircRNAs possess distinctive features (10): (1) Strong stability,

(2) Specificity, (3) Enrichment, (4) Evolutionary conservation, (5)
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Non-cap-dependent translation, and (6) Low immunogenicity.

Their low immunogenicity reduces innate immune activation and

dendritic cell maturation, preventing immune responses to encoded

therapeutic proteins. CircRNAs are synthesized in eukaryotic cells

through two pathways: (1) back-splicing, where the downstream

splice donor joins the upstream splice acceptor, forming a closed

loop, or (2) intronic lasso formation during linear splicing. Research

highlights their critical roles in maintaining stem cell pluripotency

and directing differentiation, as well as in tissue development,

maintenance, and regeneration (20, 21).
2.2 Function and regulation

CircRNAs exhibit robust and stable biological activities, playing

diverse roles in physiological and pathological pathways. They can

significantly influence the tumor microenvironment, affecting

tumor growth and progression (22)(Figure 1). CircRNAs also

impact the stem-like properties of cancer cells, contributing to

cancer progression (23, 24). Dysregulated circRNA expression has

been observed in various common and rare cancers (25, 26)

(Figure 1). Exploring these alterations can deepen our

understanding of circRNAs in cancer initiation and progression.

Furthermore, specific tumor-associated circRNAs show promise as

diagnostic biomarkers for cancer detection (27–29).

CircRNAs regulate gene expression through diverse mechanisms

(30–32) (Figure 2): 1. miRNA Sponges: CircRNAs can act as

competing endogenous RNAs (ceRNAs) by binding to miRNAs via

enriched binding sites, modulating their activity. They may also serve

as miRNA reservoirs or facilitate intracellular transport (10, 33). 2.

Protein Sponges: Certain circRNAs bind RNA-binding proteins

(RBPs), such as circMBL, which interacts specifically with MBL

protein to regulate its own synthesis. This interaction depends on

conserved binding sites within circMBL and its intronic sequences

(19). 3. Protein Scaffolding: CircRNAs can bridge enzymes and

substrates. For example, circFOXO3 binds both p53 and MDM2,

enabling MDM2 to ubiquitinate p53 (34–36). 4. Template for

Translation: CircRNAs with internal ribosome entry sites (IRES)

can encode peptides. For instance, circPPP1R12A encodes a peptide

that promotes colon cancer progression via Hippo-YAP signaling,

while circFNDC3B-derived protein suppresses tumors by enhancing

FBP1 activity (37–39). 5. Transcription Regulation: EIciRNAs, bound

to U1snRNP, interact with RNA polymerase II to enhance

transcription of their parental genes (40). 6. RNA Stability:

circRNAs stabilize other RNAs, such as mRNAs and lncRNAs,

often through protein interactions. For instance, circZNF609

recruits ELAV1 (HuR) to enhance mRNA stability and translation,

while circXPO1 stabilizes CTNNB1 mRNA via IGF2BP recruitment,

promoting lung adenocarcinoma progression (10, 41). 7. RBP

Modulation: circRNAs can sequester RBPs in the cytoplasm,

preventing their nuclear translocation or modulating their activity.

In NSCLC, circNDUFB2 scaffolds TRIM25 and IGF2BPs to facilitate

ubiquitination and degradation of IGF2BPs, activating anti-tumor

immunity (42). Though most circRNAs are non-coding, some have

translational potential under two conditions: the presence of open
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reading frames (ORFs) and IRES, or m6A modifications in their

5’UTR. Examples include circE-Cad, which encodes C-E-Cad to

promote glioblastoma tumorigenicity via EGFR-STAT3 signaling,

and circRNAs from oncogenic viruses like circE7, which translates

the E7 oncoprotein in cervical and head and neck cancers (43–45).

In summary, an increasing body of research is delving into the

biogenesis and functionality of circRNAs, with a particular focus on

the cellular processes that give rise to circRNAs and the

mechanisms by which they exert their influence on development

and disease. These studies underscore the potential of circRNAs to

serve as valuable diagnostic and prognostic biomarkers.
3 The interplay between circular RNAs
and colorectal cancer

3.1 Variations in expression profiles

Research indicates that over 70 circRNAs are significantly

upregulated in CRC, actively contributing to its initiation and

progression. For example, circHERC4 is highly expressed in CRC

tissues and correlates with lymph node metastasis and advanced

tumors (46). CircHIPK3 is overexpressed in hepatocellular
Frontiers in Oncology 03
carcinoma, breast, CRC, and lung cancers, with elevated levels in

CRC linked to poorer prognosis (47–49). Similarly, circALG1 is

associated with CRC metastasis, while circPTK2 overexpression

correlates with metastasis, advanced staging, and chemotherapy

resistance (16, 50, 51). Increased circ5615 expression is linked to

advanced T stage and poor prognosis in CRC (52). Conversely,

downregulated circRNAs often exhibit anti-tumor effects in CRC.

CircPTEN1 and circLPAR1 are both under expressed in CRC tissues,

with the latter linked to reduced tumor weight and size (53, 54).

CircPLCE1 downregulation is associated with poorer survival and

advanced staging (45, 55, 56). CircEXOC6B, significantly

downregulated in CRC, negatively correlates with tumor size,

lymphatic metastasis, and TNM stage (57). CircLHFPL2 is also

under expressed in PIK3CA-mutated CRC, with its downregulation

linked to poor prognosis (58). Overall, the abnormal expression

patterns of circRNAs in CRC highlight their potential as

biomarkers for diagnosis and prognosis.
3.2 The mechanism of action

CircRNAs influence cancer development through various

mechanisms shaped by their sequence, stability, post-
FIGURE 1

Changes in circRNA expression levels in colorectal cancer and their impact on tumor biological behavior. The left side of the figure illustrates
circRNA upregulation, where the proliferation and invasion & metastasis capabilities of tumor cells are significantly enhanced. In contrast, the right
side depicts circRNA downregulation, leading to the suppression of tumor cell proliferation and invasion & metastasis. Overall, the differential
expression levels of circRNAs regulate the malignant phenotypes of colorectal cancer cells, providing potential targets for subsequent diagnostic and
therapeutic strategies.
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transcriptional modifications, secondary structure, and

accumulation patterns under specific conditions. They play

critical roles in modulating tumor signaling pathways such as

PI3K/AKT, Wnt/b-catenin, JAK/STAT, GEF-H1/RhoA, and TGF-

b/Smad. CircRNAs regulate these pathways by upregulating

oncogenes, downregulating tumor suppressor genes, or

modulating downstream protein levels (49, 54, 59–63). As a

result, circRNAs hold significant potential as biomarkers for

CRC diagnosis.

This study reveals for the first time that circIL4R expression is

significantly elevated in CRC cells, tissues, and serum, highlighting

its potential as a diagnostic and prognostic biomarker. TFAP2C

transcriptionally induces circIL4R expression, which competitively

binds miR-761, thereby upregulating TRIM29. This process targets

PHLPP1 for ubiquitin-mediated degradation, activating the PI3K/

AKT pathway and promoting CRC progression (62). In contrast,

circPTEN1 acts as a CRC suppressor by interfering with the TGF-b/
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Smad signaling pathway. CircPTEN1 binds to the MH2 domain of

Smad4, disrupting its interaction with phosphorylated Smad2/3,

thereby curbing metastasis driven by TGF-b signaling. Targeting

TGF-b signaling could serve as an effective therapeutic strategy,

with circPTEN1 emerging as a promising candidate for preventing

metastatic CRC (52). Additionally, a positive feedback loop

involving HIF1A, RRAGB, and mTORC1 plays a key role in CRC

development. CircEXOC6B binds to RRAGB, disrupting its

interaction with RRAGC/D and inhibiting this loop. This

suppression hampers CRC cell growth and enhances 5-

fluorouracil (5-FU)-induced apoptosis, offering new insights into

therapeutic targets involving the HIF1A and mTORC1 pathways

(64). The circular RNA circGPRC5A is significantly elevated in

CRC tissues compared to normal counterparts and is strongly

associated with tumor size, stage, and lymph node involvement.

In vitro and in vivo studies revealed that circGPRC5A enhances

CRC cell proliferation, migration, and metastasis. Mechanistically,
FIGURE 2

Multiple mechanisms of circRNA in tumor immunomodulation and immunotherapy. 1. miRNA Sponge: circRNAs (e.g., circIL4R) bind to specific
miRNAs (e.g., miR-761), alleviating the translational repression of target mRNAs, thereby influencing tumor cell proliferation and invasion. 2. Signaling
Pathway Regulation: circRNAs participate in regulating key signaling pathways (e.g., TGFb/SMAD) by modulating the activity of transcription factors
(e.g., SMAD2/3/4), further affecting cell proliferation, differentiation, and immune responses. 3. Immune Cell Polarization: Certain circRNAs (e.g.,
circPOLQ) can influence the polarization of macrophages into M1 or M2 phenotypes, shaping the immune landscape of the tumor
microenvironment through the secretion of cytokines (e.g., IL-10, TGFb, M-CSF, IL-35). 4. Immune Evasion: circRNAs (e.g., circ_0020397) interact
with immune checkpoint pathways such as the PD-1/PD-L1 axis, promoting tumor cell evasion from immune surveillance and destruction. 5.
Potential Therapeutic Targets: circRNAs (e.g., circPTK2) play a critical role in regulating tumor cell proliferation and immune responses, making them
promising targets for novel strategies in tumor immunotherapy through modulation of their expression or function.
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circGPRC5A binds to PPP1CA, inhibiting its ubiquitination by

UBA1 and preventing proteasomal degradation. This stabilizes

PPP1CA, increas ing i t s phosphatase act iv i ty , which

dephosphorylates YAP at Ser127 and Ser109. Dephosphorylated

YAP translocates to the nucleus, interacts with TEAD transcription

factors, and activates target gene expression, promoting tumor

progression. Immunohistochemical analysis further demonstrated

elevated Ki-67 and PPP1CA expression in tumors with high

circGPRC5A levels, consistent with its role in enhancing cell

proliferation. Silencing circGPRC5A reduced these protein levels,

confirming its involvement in CRC progression and tumorigenesis

(65). A study confirmed the cyclic structure and intracellular

localization of circFNDC3B, highlighting its reduced expression

in colon cancer and its association with poorer patient survival. The

research demonstrated that lower levels of circFNDC3B suppressed

colon cancer progression. Analysis through circRNADb revealed

that circFNDC3B contains ORFs and IRES, enabling it to encode

proteins. Specifically, circFNDC3B-218aa was shown to inhibit

metastasis and EMT in colorectal cancer by modulating the Snail/

FBP1 signaling pathway, thereby suppressing tumor growth.

Moreover, circFNDC3B-218aa promotes a metabolic shift from

glycolysis to oxidative phosphorylation, further impeding EMT

progression. These findings provide new insights into the

mechanisms of colorectal cancer development (39).

Recent studies have revealed several critical roles of circRNAs in

CRC. CircYAP, encoding the oncogenic protein YAP-220aa,

promotes liver metastasis in CRC by inhibiting LATS1-mediated

YAP phosphorylation, thereby enhancing YAP activity. Notably,

circYAP is overexpressed in CRC with liver metastases and

correlates with poor prognosis, positioning it as a potential

prognostic biomarker and therapeutic target (66). CircHERC4,

another oncogenic driver, is significantly upregulated in CRC

tissues and linked to increased proliferation, migration, and

invasiveness of CRC cells. Elevated circHERC4 levels are

associated with metastasis and poor survival outcomes.

Mechanistically, circHERC4 may inhibit miR-556-5p, thereby

upregulating CTBP2 and suppressing E-cadherin activation.

These findings suggest that targeting circHERC4 could offer novel

therapeutic strategies (46). Conversely, circFBXW4 functions as a

tumor suppressor in CRC by regulating the miR-338-5p/SLC5A7

axis, presenting a new avenue for therapy (67). Additionally,

exosome-derived circLPAR1 suppresses CRC growth by binding

to eIF3h, disrupting the METTL3-eIF3h interaction, and reducing

BRD4 translation, providing new insights into early diagnosis and

disease mechanisms (53). Finally, circFMN2 promotes CRC cell

proliferation and migration through the miR-1182/hTERT

pathway, highlighting the intricate regulatory network between

circRNAs, miRNAs, and mRNAs in CRC progression (68).

In aggregate, these findings indicate that individual circRNAs

could exert both pro- and anti-cancer effects in the context of

colorectal carcinogenesis, metastasis, and drug resistance, mediated

by diverse molecular pathways. Consequently, they may represent

promising and valuable biomarkers for the clinical diagnosis,

treatment, and prognostic evaluation of cancer.
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4 The potential of circRNA in
immunotherapy for CRC

4.1 Immunomodulation

4.1.1 The role of circRNAs in modulating immune
responses within the tumor microenvironment

CircRNAs play a crucial role in modulating immune responses

within the tumor microenvironment (TME) (69). Studies show that

various immune cells, including monocytes, neutrophils, B-cells,

and platelets, can internalize extracellular circRNAs, with

monocytes exhibiting the highest uptake efficiency. The uptake of

circRNAs is particularly enhanced in differentiated macrophages

and dendritic cells (DCs), indicating their key role in recognizing

and processing circRNAs (70). CircRNAs positively regulate

macrophage function and, when derived from tumor cells, can

induce M2 polarization in macrophages (71). This polarization is

governed by pathways such as JAK1/STAT3 and PI3K-AKT, with

circRNAs actively participating in these processes (72, 73). M2

macrophages, in response to tumor-associated cytokines, lose their

antitumor function and instead secrete immunosuppressive factors

like IL-10, TGF-b, and IDO, promoting immune evasion (74).

Additionally, exosomal circRNAs from macrophages, such as

circMERTK, enhance IL-10 production in tumor-associated

macrophages (TAMs), which suppresses CD8+ T-cell function

and contributes to the immunosuppressive TME. Targeting this

mechanism could offer therapeutic potential in colorectal

cancer (75).

CircRNAs play a key role in enhancing tumor immunity by

promoting T cell recruitment and activation (Figure 3). For

example, circDNA2v, frequently overexpressed in CRC, prevents

its own ubiquitination and degradation by binding to IGF2BP3,

stabilizing c-Myc mRNA and influencing the oncogenic traits of

CRC cells. Knockdown of circDNA2v activates the JAK-STAT1

pathway and increases the secretion of CXCL10 and IL-9, which

enhance the chemotactic and cytotoxic functions of CD8+ T cells,

boosting anti-tumor immunity, as shown in in vitro and in vivo

models (76). On the other hand, certain circRNAs, such as

circRNF216, can inhibit CRC progression and enhance tumor

immunity. circRNF216 promotes CD8+ T cell infiltration by

upregulating ZC3H12C, triggering an immune response that

helps limit tumor growth (77). Thus, circRNAs may serve as

potential biomarkers for CRC treatment by modulating

tumor immunity.

A study found that transfection of circARGL into CRC cells

enhances their proliferation and migration. Exosomal circARGL

also affects TGF-b expression, suggesting its role in tumor

progression (78, 79). TGF-b, a multifunctional cytokine, regulates

immune functions and is linked to tumorigenesis and metastasis. In

the tumor microenvironment, TGF-b suppresses N1 neutrophil

differentiation while promoting N2 neutrophils, aiding tumor

progression (80, 81). Exosomal circRNAs from tumors modulate

TGF-b expression through miRNA sponging, contributing to the

N1 to N2 switch and supporting tumor growth (82).
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Natural Killer (NK) cells, crucial to immune defense, are

impacted by exosomal circRNAs such as circFOXO3 and

circRHOT1, which sequester miRNAs, leading to NK cell

senescence and tumor progression (83). Exosomes from cancer

cells, carrying circUHRF1, impair NK cell function and contribute

to resistance to anti-PD1 therapy in hepatocellular carcinoma.

Additionally, elevated circFAT1 expression activates STAT3,

reducing CD8+ T cell infiltration and diminishing PD1-blocking

immunotherapy efficacy, promoting immune evasion (84). Targeting

circRNAs and modulating immune cells in the tumor

microenvironment could enhance immunotherapy efficacy and

improve patient survival. In summary, circRNAs play a central role

in regulating tumor-associated macrophages, regulatory T cells, CD8

+ T cells, neutrophils, and NK cells in the tumor microenvironment.

4.1.2 The role of circular RNAs in modulating
immune responses and facilitating or impeding
immune evasion

The TME enables tumor cells to infiltrate blood and lymphatic

vessels, evading immune surveillance and resisting T cell

cytotoxicity, leading to metastasis and tumor growth (64). In
Frontiers in Oncology 06
CRC, circ_0020397 sponges miR-138, upregulating TERT and

PD-L1 expression (85). CiR7 increases PD-L1 levels through

miRNA-independent modulation of CMTM4 and CMTM6 (64),

while hsa_circ_0136666 and circ-KRT6C enhance PD-L1

expression by targeting miR-497 and miR-485-3p, respectively

(86, 87). Elevated TERT expression promotes CRC cell

proliferation, while PD-L1 suppresses T cell activation, aiding

immune evasion and cancer progression (88). Silencing

circPGPEP1 boosts T cell proliferation and inhibits CRC tumor

growth (64). Overexpression of circQSOX1 promotes glycolysis and

reduces the effectiveness of anti-CTLA-4 therapy, aiding immune

escape (89). These findings suggest that circRNAs could serve as

promising diagnostic biomarkers for CRC.
4.2 Therapeutic

4.2.1 Therapeutic targeting of circRNAs and
immunotherapeutic strategies

CircRNAs have emerged as critical regulators in colorectal

cancer (CRC), serving as both therapeutic targets and
FIGURE 3

Multifunctionality of circRNAs in colorectal cancer immunotherapy. 1. Biomarkers: circRNAs can be utilized for early diagnosis and prognosis
evaluation. For instance, by detecting circRNA expression levels in blood or tissue samples and correlating them with clinical survival curves, patients
can be stratified into high-risk and low-risk groups. 2. Immune Regulation: circRNAs influence the balance of the tumor immune microenvironment
by modulating the functions of various immune cells, including regulatory T cells (Tregs), macrophages, and natural killer cells (NK cells). They also
promote or suppress tumor progression by inducing or inhibiting the secretion of cytokines (e.g., IL-10, TGF-b). 3. Therapeutic Targets: Molecular
interventions targeting circRNAs hold promise for improving tumor treatment efficacy. The figure contrasts "Non-response" and "Response,"
illustrating that some patients achieve better therapeutic outcomes under circRNA-targeted strategies. This highlights the potential of circRNAs as
emerging targets for precision therapy in colorectal cancer.
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immunomodulators. Oncogenic circRNAs, such as CDR1as and

circHIPK3, promote CRC progression by sponging tumor-

suppressive miRNAs (e.g., miR-7) and activating pathways like

EGFR/IGF1R and FAK/YY1 (90, 91). Silencing these circRNAs

using siRNAs or shRNAs (e.g., against circPTK2 and circMETTL3)

effectively suppresses tumor growth and metastasis (15, 92–94).

Additionally, circRNAs like circKRT6C and circQSOX1 modulate

immune evasion mechanisms, such as the miR-485-3p/PD-L1 axis

and Treg-mediated immunosuppression, highlighting their

potential to enhance immunotherapy (87, 89). Tumor-suppressive

circRNAs, including circDDX17 and circ-FBXW7, inhibit CRC

proliferation when overexpressed, offering alternative therapeutic

strategies (90).

CircRNA-based immunotherapies are showing promising

preliminary outcomes (Table 1). For instance, combining PD-1/

PD-L1 blockade with CDR1as targeting enhances immunotherapy

efficacy by upregulating PD-L1 expression (15, 92). Small molecules

YAP inhibitors suppress circPPP1R12A-73aa impairing tumor

metastasis (95). Exosome-derived circRNAs and radiation-

induced circRNA modulation (e.g., carbon ion irradiation)

provide novel diagnostic and therapeutic biomarkers (96, 97).

Furthermore, CRISPR-based editing (e.g. , circZNF800

knockdown) and circRNA cloning into plasmid vectors

demonstrate potential in CRC treatment (17, 92).

These advancements underscore the dual role of circRNAs as

therapeutic targets and immunomodulators. By targeting

oncogenic circRNAs and leveraging tumor-suppressive circRNAs,

researchers are developing innovative strategies to improve CRC

outcomes. The integration of circRNA-based therapies with

existing treatments, such as immune checkpoint inhibitors and

small molecules, holds significant promise for advancing CRC

immunotherapy and reducing disease burden (64, 86, 88, 89, 93,

98–101).
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4.3 Prognostic evaluation

4.3.1 The potential of circular RNA as a
prognostic biomarker in immunotherapy for CRC

CircRNAs are emerging as promising biomarkers for cancer

prognosis due to their high abundance and stability in cancer cells,

solid tumors, and body fluids, including serum, plasma, and urine

(15). Certain circRNAs correlate with clinicopathological features like

lymphatic metastasis, distant metastasis, and recurrence, making them

potential prognostic biomarkers for CRC (92). For example,

upregulation of circ3823 is linked to enhanced proliferation,

metastasis, and angiogenesis, while circ5615 correlates with T-

staging (15). CircHIPK3, when upregulated, boosts CRC cell

proliferation, migration, invasion, and apoptosis. circSPARC’s

overexpression associates with larger tumors, deeper infiltration, and

poor survival (15). Conversely, downregulation of circPTEN1

promotes metastasis and invasion, serving as an independent

predictor of poor survival outcomes (102). Other circRNAs,

including circ_0009361, can suppress CRC growth and metastasis,

indicating their potential as prognostic biomarkers (15). CircRNAs

like circCCDC66, circPPP1R12A, ciRS-7, and circ_0014717 correlate

with reduced survival rates, emphasizing their prognostic value in

CRC (90). A circular RNA-based classifier (cirScore) using four

circRNAs (hsa_circ_0122319, hsa_circ_0087391, hsa_circ_0079480,

hsa_circ_0008039) has been developed to predict CRC recurrence (92,

103). Additionally, hsa_circ_0005075 and circFADS2 serve as

independent predictors of CRC prognosis (104, 105). CircHIPK3

and circCCDC66 are particularly promising, with roles in CRC cell

growth and metastasis, and their expression is inversely related to

clinical outcomes (106). Finally, hsa_circRNA_102958 promotes CRC

cell proliferation and invasion, suggesting it may also be a biomarker

for poor prognosis. Overall, circRNAs offer exciting potential for

prognostic assessment and therapeutic targeting in CRC (107).
TABLE 1 CircRNA-mediated immunotherapy in CRC.

circRNAs Immunotherapy relevance
Main biological pathways/
mechanisms

References

circRNA_0020397
Inhibition of PD-L1 expression and enhancement of T cell
activity by miR-138

miR-138/PD-L1 signaling axis (85)

circIL4R
Potential enhancement of T cell or NK cell function by
adsorption of miR-761, etc., attenuating inhibition of immune-
related genes

miRNA sponge mechanism (regulation of immune effector
gene expression)

(121)

circPOLQ
Modulation of macrophage M1/M2 polarization affects the
balance between immunosuppression and pro-inflammatory
responses in the tumor microenvironment

Inflammatory cytokine secretion (IL-10, TGF-b, etc.) (74)

circPTK2
Involved in the proliferation and metastasis of colon cancer
cells and may have a key regulatory role in immune cell
infiltration and therapeutic response

PTK2 signaling pathway (adhesion, migration and immune
cell recruitment)

(94)

circBtnl1
Negative regulation of intestinal stem cell self-renewal may
indirectly regulate the tumor microenvironment by affecting
stem cell stemness

Binding Atf4 mRNA inhibits its stability, downregulates Sox9
expression, and suppresses stem cell proliferation

(122)
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4.3.2 The role of circRNAs in predicting
treatment efficacy and disease progression

Numerous downregulated circRNAs play a critical role in

negatively regulating CRC growth and metastasis. Due to their

stability and long half-life, these tumor suppressor circRNAs could

have substantial antitumor effects when expressed in CRC cells or

tissues. Zheng et al. found that circLPAR1 expression was significantly

reduced in CRC tissues, and its overexpression decreased tumor

weight and size, suggesting its potential as a biomarker for poor

prognosis (15). Similarly, circRNF216, downregulated in CRC,

inhibits metastasis when overexpressed, both in vitro and in vivo

(77). CircRERE suppresses CRC malignancy by sequestering miR-

6837-3p, upregulating MAVS, and enhancing the type I IFN signaling

pathway, thus stimulating anti-tumor immunity. This effect is further

potentiated when combined with anti-PD-1 therapy (18).

Additionally, hsa_circRNA _00004677, upregulated in CRC tissues,

contributes to tumor progression by promoting eIF4A3-driven

translation of the c-Myc oncogene, correlating with poor patient

prognosis (108). In conclusion, circRNAs are crucial modulators of

tumorigenesis in various cancers. Their stability and tissue-specific

expression highlight their potential as molecular biomarkers and

therapeutic targets, meriting further investigation for early diagnosis,

treatment, and prognostic assessment in CRC (89).
5 Bioinformatics tools in circRNA
research

5.1 Integrating bioinformatics tools in
circRNA research

The integration of bioinformatics tools has significantly

advanced the study of circRNAs in CRC, providing robust

platforms to analyze circRNA-miRNA-mRNA networks and

regulatory interactions. Tools such as CircNet 2.0 and CircNetVis

enable comprehensive visualization and reconstruction of circRNA-

centered regulatory networks, identifying key sponging interactions

and downstreammRNA targets (109, 110). CircScan and EasyCircR

facilitate accurate circRNA identification and quantification from

RNA-seq data, distinguishing circRNAs from linear isoforms with

high precision (111). Specialized tools like circRNA-sponging and

CRAFT predict miRNA-binding sites and functional enrichment,

aiding in prioritizing circRNAs with high sponging potential or

disease relevance (112). Additionally, circMine and riboCIRC offer

user-friendly interfaces for exploring circRNA expression profiles,

clinical correlations, and cross-species conservation, streamlining

hypothesis generation (113, 114). These tools collectively enhance

the systematic exploration of circRNA roles in CRC pathogenesis.
5.2 Complementing experimental findings

Bioinformatics tools bridge the gap between high-throughput

data and mechanistic insights, complementing wet-lab experiments.
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For example, CircNet 2.0 can validate experimentally observed

circRNA-miRNA interactions by mapping them to established

networks, reinforcing their biological significance (91). CRAFT

and circRNA-sponging predict novel interactions that guide

targeted functional studies, reducing trial-and-error approaches

(87). Tools like riboCIRC integrate ribo-seq data to assess

circRNA translatability, supporting findings on oncogenic

circRNA-encoded peptides (95). Furthermore, circMine links

circRNA expression with patient survival data, helping prioritize

biomarkers for clinical validation (93, 94). By contextualizing

experimental results within larger regulatory frameworks, these

tools enhance the reproducibility and translational relevance of

circRNA studies.
5.3 Accelerating circRNA research and
clinical translation

The synergy between bioinformatics tools and experimental

research accelerates the discovery of circRNA-based diagnostics and

therapies. EasyCircR and CircScan standardize circRNA detection

pipelines, enabling consistent analysis across studies and cohorts

(111). CircNetVis generates interactive networks to visualize

circRNA-driven immune evasion mechanisms, aiding in the

design of combination therapies targeting circRNAs and immune

checkpoints (110). Databases like circMine provide pre-processed

multi-omics datasets, allowing researchers to explore circRNA-drug

interactions or repurpose existing therapies (115). Moreover,

riboCIRC’s integration of translatome data supports the

development of circRNA-encoded peptide-targeted therapies

(114). By offering scalable, data-driven insights, these tools reduce

research bottlenecks and foster innovation in CRC circRNA

biology, ultimately accelerating the translation of circRNA

discoveries into clinical applications.
6 Conclusions and prospects

The development of CRC is a multifactorial process driven by

genetic, environmental, dietary factors, and dysregulated gene

expression (Figure 4). As a novel class of non-coding RNAs,

circRNAs exert pleiotropic effects in the CRC tumor

microenvironment by regulating cell signaling, epithelial-

mesenchymal transition, angiogenesis, and immune evasion,

demonstrating potential as diagnostic/prognostic biomarkers (88,

106). Although research on circulating RNAs in CRC remains

nascent, circRNAs have shown unique therapeutic value: 1) acting

as competitive inhibitors of microRNAs to modulate immune

responses (77); 2) serving as stable vaccine vectors encoding

tumor antigens to enhance anti-tumor immunity via activation of

CD8+/CD4+ T cells and dendritic cells (116–118); and

3) synergizing with combination therapies such as CAR-T

(chimeric antigen receptor T-cell) (119, 120).

Current limitations and challenges include:
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Fron
1. Predominant reliance on in vitro models for mechanistic

studies and a lack of clinical-grade delivery systems;

2. Constraints in validating in vivo effects due to interspecies

microenvironmental disparities;

3. Clinical translation risks.
Proposed strategies for advancement:
1. Development of novel vectors to enable sustained

circRNA expression;

2. Integration of single-cell sequencing and spatial omics to

dissect spatiotemporal regulatory networks;

3. Establishment of standardized protocols for circRNA

synthesis, purification, and delivery.
Although current studies have preliminarily revealed the

potential of circRNAs in regulating immune responses in CRC,
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the hierarchy of evidence and clinical applicability still require

cautious evaluation. Most mechanistic investigations rely on in

vitro cell models, which fail to recapitulate the dynamic

interactions between immune cells and stromal components in

the tumor microenvironment. While animal experiments partially

validate in vivo effects, interspecies differences in immune

microenvironments may compromise the clinical extrapolation of

findings. Furthermore, clinical data directly linking circRNAs to

immunotherapy responses in CRC remain scarce. Some

mechanisms are extrapolated from other cancer types, and

existing clinical studies are predominantly limited by

retrospective designs and small sample sizes, rendering them

prone to confounding factors. Future research should integrate

single-cell sequencing, spatial transcriptomics, and prospective

cohorts to systematically dissect the spatiotemporal-specific roles

of circRNAs in the human CRC immune microenvironment.

Additionally, establishing standardized circRNA detection and
FIGURE 4

Future perspectives of circRNA in colorectal cancer immunotherapy. This framework outlines the multifaceted landscape of circRNA research and its
applications. Basic research focuses on functional exploration, particularly the roles of circRNAs in the tumor microenvironment (TME) and the
identification of therapeutic targets. Technology development encompasses optimizing RNA modification and delivery systems to enhance circRNA
stability, designing circRNA-based vaccines, and discovering combination therapies to amplify treatment efficacy. Clinical translation advances
circRNAs into practical use through biomarker-driven diagnostic and prognostic tests, as well as clinical trials evaluating the safety and efficacy of
circRNA-targeted therapies. Looking forward, future directions emphasize deepening mechanistic understanding through enhanced basic research,
expanding clinical trials to validate therapeutic potential, and updating technologies to refine circRNA applications. Collectively, these efforts bridge
fundamental discoveries to clinical innovations, positioning circRNAs as pivotal tools in advancing cancer diagnosis and precision therapy.
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functional validation protocols will be critical to enhance the

translational value of these findings.
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