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Traditional Chinese Medicine, Capital Medical University, Beijing, China, 3Guang’anmen Hospital,
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Background: This study aimed to construct and validate diagnostic models for

the Operative Link on Gastritis Assessment (OLGA) and Operative Link on Gastric

Intestinal Metaplasia Assessment (OLGIM) staging systems using three different

methodologies based onmagnifying endoscopy with narrow-band imaging (ME-

NBI) features, to evaluate model performance, and to analyse risk factors for

high-risk OLGA/OLGIM stages.

Methods: We enrolled 356 patients who underwent white-light endoscopy and

ME-NBI at the Department of Gastroenterology, Dongzhimen Hospital, Beijing

University of Chinese Medicine, between January 2022 and September 2023.

Clinical data were recorded. Chi-square or Fisher’s exact tests were used to

analyse differences in endoscopic features between OLGA/OLGIM stages.

Variables showing statistical significance underwent collinearity diagnosis

before model inclusion. We constructed predictive models using Bayesian

stepwise discrimination, random forest, and XGBoost algorithms. Receiver

operating characteristic (ROC) curves were plotted using Python 3.12.4. Model

accuracy, area under the ROC curve (AUC), sensitivity, and specificity were

calculated for comprehensive validation.

Results: All three models demonstrated excellent diagnostic performance, with

random forest and XGBoost models showing marginally superior accuracy, AUC

values, and sensitivity compared with the Bayesian stepwise discrimination

model. For OLGA staging, the AUC values were 0.928, 0.958, and 0.966, with

accuracies of 0.854, 0.902, and 0.918 for Bayesian, random forest, and XGBoost

models, respectively. For OLGIM staging, the corresponding AUC values were

0.924, 0.975, and 0.979, with accuracies of 0.910, 0.938, and 0.927. Risk factors

for high-risk OLGA included lesion location (subcardial and lower body greater

curvature), intestinal metaplasia patches, lesion size, demarcation line (DL), and

margin regularity of micro-capillary demarcation line (MCDL). Risk factors for

high-risk OLGIM included Helicobacter pylori infection status, mucosal

condition, lesion location (lesser curvature and lower body greater curvature),

erosion, lesion size, DL, vessel and epithelial classification (VEC), white globe

appearance (WGA), and MCDL margin regularity.
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Conclusions: All three models demonstrated robust accuracy and predictive

capability, confirming that conventional white-light endoscopy combined with

ME-NBI features provides valuable diagnostic reference for clinical risk

assessment of precancerous gastric lesions.
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1 Introduction

Gastric cancer is the fifth most common malignant tumour

globally and ranks fourth among cancer-related deaths, accounting

for 7.7% of total cancer mortality and posing a serious threat to

human health (1). Helicobacter pylori (H. pylori) has been classified

as a Group 1 carcinogen by the World Health Organisation and the

International Agency for Research on Cancer consensus group (2).

Studies have shown that H. pylori infection is associated with both

intestinal and diffuse types of gastric cancer (3), making it the most

common risk factor. H. pylori infection leads to persistent chronic

active mucosal inflammation, potentially progressing to chronic

atrophic gastritis (CAG), intestinal metaplasia (IM), and dysplasia

(Dys) (4). Advanced stages of CAG, IM, and Dys are recognised as

precancerous conditions (5, 6). Therefore, early and accurate

diagnosis of precancerous gastric lesions is crucial for identifying

high-risk patients.

The Operative Link on Gastritis Assessment (OLGA) and

Operative Link on Gastric Intestinal Metaplasia Assessment

(OLGIM) systems, evolved from the Sydney System (7, 8), reflect

the severity of atrophy and intestinal metaplasia and assess gastric

cancer risk. These systems have significant clinical value in gastric

cancer screening and precancerous lesion surveillance (9). OLGA

and OLGIM staging systems are based on histopathological

examination following endoscopic forceps biopsy (EFB). Whilst

histopathological examination remains the ‘gold standard’, this

method presents notable limitations. EFB, being a point-sampling

technique with limited specimen size, often fails to fully represent

tumour cell heterogeneity, resulting in diagnostic deviation rates of

1.5%-8.0% (10–12). Although increasing the number of biopsies

may enhance diagnostic accuracy, this approach can lead to

mucosal injury and fibrosis, potentially compromising subsequent

endoscopic interventions. Hence, there is an urgent need for a more

comprehensive method to accurately determine lesion

characteristics, extent, and identify high-risk mucosa. Endoscopic

examination, compared to EFB histopathological assessment, offers

the advantage of obtaining more comprehensive information about

gastric mucosal lesions.

Magnifying endoscopy (ME) enables real-time observation of

mucosal surface microstructures, whilst narrow-band imaging (NBI)

is an emerging optical technology that aids in detecting early cancer

and precancerous lesions (13, 14). The combination of ME and NBI
02
provides clearer visualisation of fine mucosal surface microstructures

and microvascular patterns, serving as a powerful tool for

characterising gastric mucosal lesions and detecting early gastric

cancer (15–17). The combination of conventional white-light

endoscopy (C-WLE) and magnifying endoscopy with narrow-band

imaging (ME-NBI) enables more sensitive detection of high-risk

gastric mucosa through detailed mucosal characterisation. This

approach also facilitates targeted EFB sampling, thereby improving

the identification of precancerous gastric lesions. However, the

predictive value of endoscopic mucosal features for high-risk

OLGA/OLGIM stages is still uncertain, representing a critical gap

in current diagnostic methods. This study is designed as both a

development and validation study to address this gap by developing

and validating diagnostic machine learning models. Indeed, the

application of AI in the diagnosis and management of gastric

diseases is rapidly expanding (18). To enhance OLGA/OLGIM risk

stratification, artificial intelligence (AI) methodologies present a

compelling advancement in diagnostic capabilities. Through

systematic analysis of features obtained via magnifying endoscopy

with narrow-band imaging (ME-NBI), AI systems can deliver more

objective, consistent, and precise classification of precancerous lesion

risk. This enhanced analytical approach facilitates more accurate

patient risk stratification, potentially leading to optimised clinical

decision-making and improved patient outcomes.

This study aims to stratify patients into OLGA/OLGIM stages

and to construct and validate diagnostic models based on

conventional white-light endoscopy (C-WLE) and ME-NBI

features, employing Bayesian stepwise discrimination, random

forest, and XGBoost algorithms. These models were selected for

their complementary strengths: Bayesian models offer

interpretability, random forests excel in feature selection, and

XGBoost is renowned for its high predictive accuracy and ability

to handle complex non-linear relationships, offering a

comprehensive approach compared to relying solely on

traditional endoscopic assessment or more complex ‘black-box’

deep learning models which may be less transparent and require

larger datasets. Analysing endoscopic risk factors for high-risk

OLGA/OLGIM patients will provide evidence for improved

endoscopic identification of high-risk H. pylori-related

precancerous lesions. The ultimate goal is to provide

gastroenterologists with a practical, AI-enhanced tool that can

improve the real-world clinical diagnosis of precancerous gastric
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lesions, potentially leading to more targeted biopsies, earlier

detection of high-risk patients, and improved patient

management strategies.
2 Materials and methods

2.1 Study population

This study collected clinical data from 356 patients who

underwent C-WLE and ME-NBI examinat ions wi th

histopathological results at the Endoscopy Centre of Dongzhimen

Hospital, Beijing University of Chinese Medicine, between January

2022 and September 2023. Patient identifiers, including names,

addresses, and contact information, were anonymised. The study

was approved by the Ethics Committee of Dongzhimen Hospital,

Beijing University of Chinese Medicine. The sample size (n=356) is

comparable to similar machine learning studies in this field (19, 20).

Whilst modest for complex models, especially with class imbalance,

we employed SMOTE to mitigate this limitation. Larger, multi-

centre validation is planned for future research.
2.2 Inclusion criteria
Fron
(1) Age ≥18 years

(2) Completion of both C-WLE and ME-NBI examinations

(3) Availability of standardised biopsy histopathological results

suitable for OLGA/OLGIM staging

(4) Complete clinical data, including basic demographic

characteristics, endoscopic findings, and pathological diagnoses
2.3 Exclusion criteria
(1) Autoimmune gastritis (type A chronic atrophic gastritis)

(2) Inadequate pathological sampling preventing OLGA/

OLGIM staging

(3 ) Concur r en t ga s t roduodena l u l ce r o r upper

gastrointestinal bleeding

(4 ) Prev ious gas t r i c su rge ry or h i s to ry o f any

gastrointestinal tumours

(5) Other conditions deemed unsuitable for inclusion

by investigators
These exclusion criteria were necessary to ensure a

homogeneous study population focused on H. pylori-related

precancerous lesions and to obtain reliable endoscopic and

histopathological data. Specifically, autoimmune gastritis was

excluded due to its distinct pathogenesis, whilst conditions such

as ulcers and bleeding were excluded to prevent compromise of

endoscopic image quality and biopsy accuracy. Whilst these
tiers in Oncology 03
exclusions strengthen internal validity, we acknowledge they

may limit the model ’s generalisabil ity , which will be

discussed further.
2.4 Data collection and quality control
1. Demographic characteristics: sex, age

2. Endoscopic lesion characteristics: According to the Kyoto

Classification of Gastritis (21), C-WLE and ME-NBI

features were described as follows:
i. H. pylori infection status (none, current, or past

infection), Figure 1

ii. Lesion location and orientation (subcardial, lesser

curvature of the gastric body, gastric fundus, gastric

angle, gastric antrum, anterior and posterior walls of

the upper gastric body, greater curvature of the

lower gastric body, pre-pyloric region)

iii. C-WLE features: mucosal status (none, map-like

redness, chicken skin appearance, diffuse redness,

mucosal oedema), number of lesions, size, border

clarity, gross morphology (elevated, flat, or

depressed), colour (compared with surrounding

mucosa: same, pale, or red), surrounding mucosal

conditions (erosion, surface nodularity, ulceration,

or intestinal metaplasia patches)

iv. ME-NBI features: presence or absence of

demarcation line (DL), irregular microvascular

pattern (IMVP), irregular microsurface pattern

(IMSP), light blue crest (LBC), white opaque

substance (WOS), white globe appearance (WGA),

vessels within epithelial circle (VEC) pattern, and

multiple convex demarcation line (MCDL), as well

as the c lar i ty and regular i ty of the DL

boundary (Figure 2).
3. Histopathological Diagnosis: According to the 2019

European Guidelines on Management of Precancerous

Conditions and Lesions in the Stomach (22) and the 2022

Chinese Guidelines for Chronic Gastritis (23), histological

results were staged with OLGA/OLGIM stages 0-II defined

as low-risk and stages III-IV as high-risk.
To establish the reliability of endoscopic feature interpretation

and histopathological staging, we conducted a comprehensive inter-

observer agreement analysis. Two experienced endoscopists

independently evaluated all images whilst blinded to clinical and

pathological data. Concurrently, two senior pathologists

independently performed OLGA/OLGIM staging. Any

discrepancies were resolved through consensus discussion.

Cohen’s kappa (k) coefficients were calculated for all endoscopic

features and staging classifications. The resultant analyses, detailed

in the Results section, demonstrated exceptional agreement, thereby

substantiating the robustness of both image interpretation and

staging methodologies.
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2.5 Research methods

(1) Feature Selection: Chi-square tests or Fisher’s exact tests

were used to analyse correlations between endoscopic features and

predictive variables (OLGA and OLGIM staging). Features with

statistical significance (P < 0.05) were included in the candidate

variable set for model construction.

(2) Collinearity Diagnosis: Following feature selection, variance

inflation factor (VIF) analysis was performed to reduce the impact

of highly collinear variables. A VIF threshold of 10 was used to

identify potentially problematic collinearity, as this is a widely

accepted criterion in many fields, including medical research

(24, 25).

Variables with VIF > 10 were considered for removal or

combination to ensure independence or low correlation among

model variables. Specifically, VIF analysis identified demarcation

line (DL), multiple convex demarcation line (MCDL) border size,

and MCDL border regularity as having VIF values exceeding 10.

However, given the clinical dependency of MCDL assessment on

the presence of DL, and to maintain the clinical relevance of these

features, all features, including those with high VIF values, were

retained for model construction.
Frontiers in Oncology 04
(3) Model Construction and Performance Evaluation: Three

models were constructed: Bayesian stepwise discrimination,

random forest, and XGBoost.

Initially, Bayesian stepwise discrimination analysis was

performed using SPSS 30.0, employing stepwise variable

introduction to generate discriminant functions. The model was

validated through self-validation, leave-one-out cross-validation,

and receiver operating characteristic (ROC) curve analysis.

Subsequently, random forest and XGBoost models were

constructed using Python 3.12.4. Following data standardisation,

Synthetic Minority Over-sampling Technique (SMOTE) was applied

to address class imbalance. To assess the models’ generalisation

capability, we implemented a systematic data partitioning protocol.

The dataset underwent random stratification into a training cohort

(comprising 80% of patients) and a testing cohort (comprising the

remaining 20%). Stratified random sampling methodology was

employed to preserve the proportional distribution of low-risk and

high-risk OLGA/OLGIM cases across both cohorts. The training

cohort facilitated model development, incorporating hyperparameter

optimisation through 5-fold cross-validation protocols. The testing

cohort was reserved exclusively for independent evaluation of the

finalised models’ performance metrics. For robust validation, a 5-fold
FIGURE 1

Characteristic features of H. pylori infection status. (A) Absence of Helicobacter pylori infection. (A1) (C-WLE): The gastric body mucosa exhibits a
distinct regular arrangement of collecting venules (RAC), characteristically indicative of H. pylori-negative status. (A2) (ME-NBI): The gastric fundus
glands display regular architectural arrangement with readily discernible glandular apertures. (B) Active Helicobacter pylori infection. (B1) (C-WLE):
Diffuse mucosal redness manifests as extensive erythematous alterations throughout the gastric mucosa, suggesting active inflammatory processes.
(B2) (ME-NBI): The inflammatory response is characterised by obscured glandular apertures accompanied by epithelial oedema at the glandular
margins. (C) Post-Helicobacter pylori infection status. (C1) (C-WLE): Map-like redness presents as irregular erythematous regions within the gastric
mucosa, displaying geographical patterning characteristic of post-eradication status. (C2) (ME-NBI): The mucosa demonstrates absence of normal
glandular architecture concurrent with extensive intestinal metaplasia, corresponding to the observed map-like redness pattern.
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cross-validation was incorporated during the grid search process for

hyperparameter tuning of both random forest and XGBoost models.

Hyperparameter tuning for random forest and XGBoost models was

conducted using grid search. For the random forest model, the tuned

hyperparameters were ‘max_depth’: None, ‘min_samples_leaf’: 1,

‘min_samples_split’: 10, and ‘n_estimators’: 100. For the XGBoost

model, the tuned hyperparameters were ‘colsample_bytree’: 0.8,

‘learning_rate’: 0.3, ‘max_depth’: 5, ‘n_estimators’: 100, and

‘subsample’: 0.8. Unless specified during grid search, default

parameter settings in the scikit-learn and XGBoost libraries were

used. Data were split into 80% training and 20% test sets. Grid search

was employed for hyperparameter tuning of both models. The model

validation protocol encompassedmultiple metrics, including accuracy,

sensitivity, specificity, AUC, F1-score and Precision-Recall curves. To

address the inherent class imbalance, particular emphasis was placed

on F1-scores and PR curves for evaluating performance in the

minority high-risk OLGA/OLGIM classifications

External validation was not performed in this study due to its

single-centre nature and the limitations in accessing external

datasets. Future studies will focus on validating these models

using multi-centre datasets to assess their generalizability. The

dataset used in this study is available upon reasonable request

from the corresponding author, subject to ethical approval and data

protection regulations, as detailed in the ‘Availability of data and

material’ section. The code for the developed machine learning
Frontiers in Oncology 05
models will be made available in a public repository upon

publication to ensure reproducibility.
3 Results

3.1 Clinical demographic characteristics

The study included 356 patients with complete C-WLE, ME-

NBI, and histopathological biopsy results. No significant differences

were observed in sex and age distribution across OLGA/OLGIM

stages (P > 0.05), as detailed in Supplementary Table 1.

Supplementary Table 1 presents the demographic

characteristics of the study cohort stratified by OLGA and

OLGIM risk categories. No statistically significant differences in

age or sex distribution were observed between low-risk and high-

risk groups for either staging system (P > 0.05). This indicates

demographic homogeneity across risk strata, suggesting these

factors are unlikely to confound the analysis of endoscopic features.

The inter-observer agreement analysis revealed remarkable

consistency between both endoscopists and pathologists. For

OLGA-related assessments, Cohen’s kappa (k) coefficients ranged
from 0.849 (MCDL border regularity) to 1.000 (H. pylori infection

status), with the majority of values exceeding 0.90. Analogously,

OLGIM-related assessments yielded k values ranging from 0.840
FIGURE 2

Typical Lesion Features Under C-WLE and ME-NBI. (A) (C-WLE): Intestinal metaplasia presents as a flat or marginally elevated white plaque (yellow
arrow). (B) (ME-NBI): Light blue crest (LBC), a pathognomonic feature of intestinal metaplasia, manifests as delicate, light-blue linear structures or
networks within the intervillous regions (yellow arrow). (C) (ME-NBI): The vessels within epithelial circle (VEC) pattern is observed, suggestive of
potential dysplastic changes or early-stage carcinoma (yellow arrow). (D) A distinct demarcation line (DL) delineates the interface between the
lesional and adjacent normal mucosal tissue (yellow arrow). (E) (ME-NBI): Multiple convex demarcation line (MCDL) demonstrates elevated
demarcation boundaries at the epithelial margin of the surrounding mucosa. The morphological characteristics of these boundaries serve as crucial
parameters in assessing lesional malignancy potential (yellow arrow). (F) (ME-NBI): White globe appearance (WGA) manifests as diminutive spherical
white structures situated beneath the gastric epithelium. Histopathologically, these correspond to distended glandular lumina containing
fragmentary necrotic epithelial debris (yellow circle).
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(prepyloric location) to 1.000 (H. pylori infection status), with most

coefficients similarly surpassing 0.90. Notably, the k values for

OLGA and OLGIM staging demonstrated particularly high

concordance at 0.953 and 0.948, respectively. These consistently

elevated k coefficients across all assessed parameters provide robust

evidence for the reliability of both the endoscopic interpretation and

histopathological staging protocols.
3.2 Comparison of C-WLE and ME-NBI
features between OLGA stages

Among the 356 patients, 52 (14.6%) were classified as high-risk

OLGA and 304 (85.4%) as low-risk. Under C-WLE, statistically

significant differences between low-risk and high-risk OLGA

patients were observed in H. pylori infection category, mucosal

status, number of lesions, gross morphology, presence of intestinal

metaplasia patches, and lesion size (all P < 0.001). Under ME-NBI,

significant differences were found in the presence of DL (P < 0.001),

presence of LBC (P = 0.003) and WOS (P = 0.002), MCDL border

regularity (P < 0.001), and border size (P < 0.001) between OLGA

stages (Supplementary Tables 2, 3).

Supplementary Table 2 compares C-WLE lesion characteristics

between OLGA stages. Significant differences (P < 0.001) were

found in H. pylori infection history, mucosal status, lesion

number and size, morphology, IM patches. High-risk OLGA was

associated with past H. pylori, map-like redness, multiple lesions,

depressed morphology, IM patches, and larger size, highlighting

macroscopically visible features indicative of advanced stages.

Supplementary Table 3 details ME-NBI features and OLGA

stage. Significant differences (P < 0.001) were observed for DL,

MCDL border regularity and size, and LBC andWOS presence (P ≤

0.003). High-risk OLGA showed increased DL, LBC, WOS,

irregular MCDL border, and larger MCDL size, demonstrating

ME-NBI’s ability to detect microstructural features associated

with advanced OLGA.
3.3 Comparison of C-WLE and ME-NBI
features between OLGIM stages

Of the 356 patients, 116 (32.6%) were classified as high-risk

OLGIM and 240 (67.4%) as low-risk. Under C-WLE, statistically

significant differences were found in H. pylori infection category,

mucosal status, number of lesions, gross morphology, lesion border

clarity, presence of intestinal metaplasia patches, and lesion size (all

P < 0.001), lesion colour (P = 0.012), presence of erosion (P =

0.002), and surface nodularity (P = 0.032). Under ME-NBI,

significant differences were observed in the presence of DL, LBC,

WOS, and WGA, MCDL border regularity and size (all P < 0.001),

and presence of VEC pattern (P = 0.006) between OLGIM stages

(Supplementary Tables 4, 5).

Supplementary Table 4 presents C-WLE lesion characteristics

by OLGIM stage. Significant differences (P < 0.05) were found for
Frontiers in Oncology 06
H. pylori history, mucosal status, lesion number and size,

morphology, border clarity, IM patches, colour, erosion, and

surface nodularity. High-risk OLGIM correlated with similar C-

WLE features as high-risk OLGA, reinforcing the macroscopic

endoscopic markers for advanced precancerous lesions.

Supplementary Table 5 details ME-NBI features and OLGIM

stage. Significant differences (P < 0.001) were observed for DL,

LBC, WOS, WGA, MCDL border regularity and size, and VEC

pattern (P = 0.006). High-risk OLGIM exhibited increased DL,

LBC, WOS, WGA, irregular MCDL border, larger MCDL size, and
TABLE 1 Endoscopic feature variable coding.

Endoscopic
Feature

Coding

H. pylori infection (X1) 0=None, 1=Current, 2=Past

Mucosal status (X2)
0=None, 1=Map-like redness, 2=Patchy redness,
3=Chicken skin appearance, 4=Diffuse redness,
5=Mucosal oedema

Gross morphology (X3) 0=None, 1=Elevated, 2=Flat, 3=Depressed

Number of lesions (X4) 0=None, 1=Single, 2=Multiple

Lesion colour (X5) 0=None, 1=Same, 2=Pale, 3=Red

Location-Subcardial (X6) 0=Absent, 1=Present

Location- Lesser
curvature of the gastric
body (X7)

0=Absent, 1=Present

Location- Greater
curvature of the lower
gastric body (X8)

0=Absent, 1=Present

Location-Gastric
angle (X9)

0=Absent, 1=Present

Location- Gastric
antrum (X10)

0=Absent, 1=Present

Location-Pre-pyloric
region (X11)

0=Absent, 1=Present

Clear border (X12) 0=Absent, 1=Present

Erosion (X13) 0=Absent, 1=Present

Surface nodularity (X14) 0=Absent, 1=Present

IM patches (X15) 0=Absent, 1=Present

Lesion size (X16) 0=None, 1=<1cm, 2=≥1cm

DL (X17) 0=Absent, 1=Present

LBC (X18) 0=Absent, 1=Present

WOS (X19) 0=Absent, 1=Present

VEC (X20) 0=Absent, 1=Present

WGA (X21) 0=Absent, 1=Present

MCDL border size (X22) 0 = 0, 1=>0 to <1/3, 2=≥1/3 to <2/3, 3=≥2/3

MCDL border
regularity (X23)

0=None, 1=Regular, 2=Irregular
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VEC pattern, further emphasizing ME-NBI’s role in identifying

microvascular and mucosal changes in advanced OLGIM stages.
3.4 Feature selection and collinearity
diagnosis for C-WLE and ME-NBI
characteristics

Based on chi-square and Fisher’s exact tests results, features

significantly associated with OLGA/OLGIM staging from sections

2.2 and 2.3 were assigned values (Table 1). Collinearity analysis was

performed on these features (Tables 2, 3), with final variable

selection requiring VIF < 10. DL, MCDL border size, and border

regularity showed VIF > 10, confirmed by feature correlation matrix

analysis (Figures 3, 4). However, given that MCDL assessment

clinically depends on DL presence, indicating a structural

dependency, these features were retained for subsequent

model construction.

Table 1 outlines the coding scheme for endoscopic features used

in subsequent statistical analyses and model construction. This

standardisation ensures consistent variable representation for

quantitative analysis and facilitates model interpretability.

Table 2 presents the collinearity analysis for endoscopic

features related to OLGA staging. High VIF values (>10) for

DL indicate multicollinearity, while the VIF values for MCDL
Frontiers in Oncology 07
border size are close to 10 (9.877), suggesting a potential concern

for multicollinearity. Despite this, these features were retained

due to the clinical dependency of MCDL assessment on DL

presence , reflec t ing the i r s t ruc tura l re l a t ionsh ip in

endoscopic evaluation.

Table 3 shows the collinearity analysis for endoscopic features

related to OLGIM staging. Similar to OLGA, high VIF values (>10)

were observed for DL, MCDL border size, and border regularity,

indicating multicollinearity. These features were retained due to

their clinical relevance and structural dependency in endoscopic

assessment, despite statistical collinearity.
3.5 Construction and validation of Bayesian
stepwise discrimination model

To develop high-performance predictive models for

precancerous gastric lesion risk, we employed rigorous feature

selection criteria encompassing four key dimensions: statistical

significance (P < 0.05 between low-risk and high-risk cohorts),

clinical relevance (demonstrated association with OLGA/OLGIM

staging pathophysiology or established diagnostic utility from

previous investigations), endoscopic feasibility (reliable

assessment during routine C-WLE and ME-NBI examinations),

and multicollinearity considerations (generally VIF < 10).
TABLE 2 Collinearity analysis of endoscopic features based on OLGA staging.

Model

Unstandardised
Coefficients

Standardised
Coefficients

t P-value

Collinearity
Statistics

B
Standard
Error

b Tolerance VIF

(Constant) 0.015 0.066 0.222 0.824

H. pylori infection -0.009 0.030 -0.018 -0.296 0.768 0.475 2.106

Mucosal status -0.023 0.014 -0.070 -1.616 0.107 0.900 1.111

Number of lesions -0.025 0.061 -0.037 -0.407 0.684 0.207 4.835

Location-Subcardial 0.156 0.063 0.106 2.478 0.014 0.912 1.096

Location-Lesser curvature of the gastric body -0.001 0.037 -0.001 -0.025 0.980 0.622 1.608

Location-Gastric angle 0.040 0.051 0.052 0.789 0.430 0.384 2.606

Location-Gastric antrum 0.007 0.050 0.008 0.144 0.885 0.565 1.769

Location-Greater curvature of the lower
gastric body

0.329 0.085 0.168 3.860 0.000 0.885 1.129

Morphology -0.013 0.025 -0.030 -0.538 0.591 0.547 1.829

IM patches 0.153 0.049 0.135 3.096 0.002 0.877 1.140

Lesion size 0.059 0.032 0.097 1.852 0.065 0.618 1.618

DL -0.335 0.174 -0.474 -1.924 0.055 0.028 36.138

LBC -0.012 0.054 -0.011 -0.230 0.819 0.761 1.314

WOS -0.012 0.040 -0.015 -0.309 0.757 0.750 1.333

MCDL border size -0.020 0.037 -0.070 -0.546 0.586 0.101 9.877
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The selected features represent complementary diagnostic

modalities: C-WLE features, including mucosal status, lesion size/

morphology, and IM patches, characterise macroscopic mucosal

alterations, whilst ME-NBI features, comprising demarcation line,

light blue crest, white opaque substance, MCDL border regularity,

and VEC, elucidate microstructural details. This dual-modality

approach yields a comprehensive representation of pathological

alterations, thereby enhancing the model’s predictive capability for

high-risk OLGA/OLGIM stages.

Features excluded from the final models met one or more

elimination criteria: insufficient statistical significance (P ≥ 0.05),

excessive multicollinearity (generally VIF > 10; notably, DL, MCDL

border size, and regularity were retained owing to the clinical
Frontiers in Oncology 08
dependency of MCDL assessment on DL presence), inadequate

clinical significance or assessment feasibility.

Based on features selected in section 3.4, comprehensive

diagnostic models for OLGA/OLGIM staging of precancerous

gastric lesions were established. Variables X1, X2, X3, X4, X6, X7,

X8, X9, X10, X15, X16, X17, X18, X19, X22, and X23 were used for

the OLGA staging diagnostic model, whilst X1 through X23 were

used for the OLGIM staging model.

3.5.1 Bayesian stepwise discrimination analysis
model

Using stepwise forward selection in Bayesian stepwise

discrimination analysis, classification function coefficients for
TABLE 3 Collinearity analysis of endoscopic features based on OLGIM staging.

Model

Unstandardised
Coefficients

Standardised
Coefficients

t P-value

Collinearity
Statistics

B
Standard
Error

b Tolerance B

(Constant) -0.069 0.072 -0.963 0.336

H. pylori infection 0.063 0.032 0.094 1.985 0.048 0.437 2.286

Mucosal status 0.007 0.015 0.015 0.447 0.655 0.871 1.147

Number of lesions -0.061 0.067 -0.068 -0.915 0.361 0.176 5.680

Location-Subcardial 0.015 0.065 0.008 0.234 0.815 0.895 1.117

Location-Lesser curvature of the gastric body 0.096 0.040 0.103 2.435 0.015 0.553 1.810

Location-Gastric angle 0.020 0.054 0.020 0.370 0.712 0.346 2.886

Location-Gastric antrum 0.023 0.066 0.019 0.353 0.725 0.338 2.962

Location-Greater curvature of the lower
gastric body

0.308 0.091 0.119 3.372 0.001 0.795 1.258

Location-Pre-pyloric region -0.024 0.081 -0.015 -0.297 0.767 0.411 2.433

Morphology -0.016 0.032 -0.027 -0.497 0.619 0.345 2.897

Colour 0.024 0.030 0.037 0.798 0.425 0.460 2.175

Erosion -0.105 0.069 -0.054 -1.531 0.127 0.788 1.269

Surface nodularity -0.095 0.060 -0.058 -1.587 0.113 0.747 1.339

Clear border 0.034 0.040 0.034 0.860 0.390 0.647 1.545

IM patches 0.055 0.051 0.037 1.087 0.278 0.862 1.160

Lesion size 0.058 0.033 0.071 1.751 0.081 0.596 1.677

DL -0.870 0.183 -0.928 -4.762 0.000 0.026 38.454

LBC 0.039 0.058 0.025 0.669 0.504 0.694 1.440

WOS 0.026 0.042 0.023 0.609 0.543 0.714 1.400

WGA 0.210 0.082 0.087 2.558 0.011 0.852 1.173

MCDL border size -0.009 0.039 -0.022 -0.219 0.827 0.095 10.483

MCDL border regularity 0.743 0.073 1.337 10.193 0.000 0.057 17.445

VEC 0.196 0.064 0.101 3.040 0.003 0.903 1.108
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OLGA and OLGIM staging models were obtained (Tables 4, 5),

yielding the following prediction model equations:

OLGA low − risk = −1:101 + 0:626X6 + 0:655X8

+0:557X15 + 2:163X16 − 0:25X23

OLGA high − risk = −5:021 + 2:789X6 + 5:346X8

+2:696X15 − 4:139X16 + 5:696X23

OLGIM low − risk 

=   − 4:668  +  2:443X1  −  0:819X7  −  1:12X8  +  1:085X13 

+  3:523X16  +  1:615X17  −  0:284X20  +  0:222X21 

−  0:583X23

OLGIM high − risk 

=   − 11:442  +  3:196X1  +  0:424X7  +  2:898X8  −  0:621X13 

+  4:38X16  −  10:463X17  +  2:485X20  +  2:888X21 

+  9:806X23

Table 4 displays the classification function coefficients derived from

the Bayesian stepwise discriminant model for OLGA staging. These

coefficients quantify the contribution of each selected endoscopic

feature (location-subcardial, location-greater curvature of lower body,
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IM patches, DL, MCDL border regularity) to the prediction of low-risk

and high-risk OLGA stages within the Bayesian model.

Table 5 presents the classification function coefficients from the

Bayesian stepwise discriminant model for OLGIM staging. These

coefficients indicate the weight of each selected endoscopic feature

(H. pylori status, location-lesser curvature and greater curvature of

lower body, erosion, size, DL, WGA, MCDL border regularity,

VEC) in predicting low-risk and high-risk OLGIM stages within the

Bayesian model.

3.5.2 Validation of Bayesian discrimination model
For self-validation, the overall accuracy rates were 85.4% for the

OLGA staging prediction model and 91.0% for the OLGIM staging

prediction model. In cross-validation, the overall accuracy rates

were 85.1% for OLGA and 91.0% for OLGIM. Both models

demonstrated high accuracy (Table 6).

Table 6 summarises the validation results of the Bayesian

stepwise discriminant models for OLGA and OLGIM staging.

Both self-validation and cross-validation demonstrated high

overall accuracy (OLGA: ~85%, OLGIM: ~91%), indicating

robust performance of the Bayesian models in classifying

precancerous gastric lesions.

ROC curves were constructed to evaluate the performance of

both prediction models (Figure 5), with detailed parameters shown

in Table 7. The OLGA model achieved an AUC value of 0.928 (95%

CI: 0.901-0.955), with sensitivity of 0.942 and specificity of 0.842.
FIGURE 3

Correlation matrix analysis of endoscopic features based on OLGA staging.
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The OLGIMmodel achieved an AUC value of 0.924 (95% CI: 0.896-

0.951), with sensitivity of 0.942 and specificity of 0.839.

Table 7 details the performance metrics of the Bayesian models.

Both OLGA and OLGIM models achieved high AUC values (~0.92),

sensitivity (~0.94), and specificity (~0.84), confirming their excellent

discriminatory ability for identifying high-risk precancerous gastric

lesions based on Bayesian stepwise discrimination.
3.6 Construction and validation of random
forest model

3.6.1 Establishment of OLGA/OLGIM staging
diagnostic models based on random forest

Random forest algorithms were employed to construct

prediction models for both OLGA and OLGIM staging. Following

data standardisation and class balancing, Synthetic Minority Over-

sampling Technique (SMOTE) was applied to address the

imbalance between low-risk and high-risk classifications. Grid

search and cross-validation methods were utilised during model

training to optimise parameters for optimal predictive performance.

3.6.2 Random forest model performance
ROC curves were constructed to evaluate model performance.

On the test set, the OLGA and OLGIM staging diagnostic models

achieved accuracy rates of 0.902 and 0.938, respectively; AUC values
Frontiers in Oncology 10
of 0.958 and 0.975; precision of 0.855 and 0.938; sensitivity of 0.967

and 0.938; specificity of 0.836 and 0.938; and F1 scores of 0.908 and

0.938 (Table 8). The ROC curves for both models deviated

substantially from the diagonal line, indicating robust predictive

performance (Figure 6).

Table 8 presents the performance metrics of the Random Forest

models. Both OLGA and OLGIM models demonstrated high

accuracy (~0.90 and ~0.94 respectively) and AUC values (~0.96

and ~0.975 respectively), along with balanced sensitivity and

specificity, indicating strong predictive capability for risk

stratification using Random Forest algorithms.
TABLE 4 Classification function coefficients for stepwise discriminant
model of OLGA staging.

Feature Variable
Low-risk
OLGA

High-risk
OLGA

Location-Subcardial 0.626 2.789

Location-Greater curvature of the lower
gastric body

0.655 5.346

IM patches 0.557 2.696

DL 2.163 -4.139

MCDL border regularity -0.250 5.696

(Constant) -1.101 -5.021
FIGURE 4

Correlation matrix analysis of endoscopic features based on OLGIM staging.
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The Random Forest models demonstrated robust performance

in high-risk classification, achieving F1-scores of 0.908 (OLGA) and

0.938 (OLGIM). Figure 6 presents the Precision-Recall curves,

which elucidate the precision-recall trade-off for high-risk OLGA/

OLGIM classifications.

3.6.3 Random forest model stability assessment
To comprehensively evaluate the reliability of predictive results, we

conducted thorough stability testing. Through 100 random sampling

evaluations and 5-fold cross-validation, we obtained statistical

distributions of model performance metrics. The OLGA model

achieved a mean accuracy of 0.912 ± 0.019 and mean AUC value of

0.972 ± 0.010, whilst the OLGIM model achieved a mean accuracy of

0.901 ± 0.032 andmean AUC value of 0.934 ± 0.031. The small standard

deviations indicate stable predictive performance across different data

subsets. Furthermore, 5-fold cross-validation revealed mean validation

scores of 0.903 ± 0.007 for the OLGA model and 0.900 ± 0.013 for the

OLGIM model. This stable cross-validation performance further

confirms model reliability, demonstrating consistent high predictive

accuracy across different patient populations (Figures 7, 8).
3.6.4 Analysis of key predictive features in
random forest models

Feature importance analysis revealed the relative contributions

of different endoscopic characteristics to the prediction models. In
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the OLGA model, the top three features were MCDL border

regularity (28.15%), MCDL border size (15.64%), and presence of

DL (14.42%). For the OLGIM model, the most important features

were MCDL border regularity (25.84%), mucosal status (15.75%),

and MCDL border size (10.77%). These results indicate that these

specific endoscopic features have high predictive value for assessing

precancerous gastric lesion risk (Supplementary Figure 1, 2).

To gain deeper insight into the relationships between

endoscopic features and model predictions, SHAP (SHapley

Additive exPlanations) value analysis was performed to reveal the

direction and magnitude of each feature’s impact on prediction

outcomes (Figures 9, 10). We found that certain features, such as

MCDL border regularity and lesion size, demonstrated strong

positive predictive effects in both OLGA and OLGIM

diagnostic models.
3.7 Construction and validation of OLGA/
OLGIM prediction models based on
XGBoost

3.7.1 Model construction
XGBoost algorithm was employed to construct diagnostic

prediction models for OLGA and OLGIM staging. Following data

standardisation, Synthetic Minority Over-sampling Technique

(SMOTE) was applied to address class imbalance, ensuring

comprehensive feature learning for both risk levels.

3.7.2 Predictive model performance
The XGBoost models achieved accuracy rates of 0.918 and 0.927

for OLGA and OLGIM staging, respectively; specificity of 0.885 and

0.896; sensitivity of 0.951 and 0.958; precision of 0.892 and 0.902;

AUC values of 0.966 and 0.979; and F1 scores of 0.921 and 0.929.

Detailed performance metrics for both staging diagnostic models

are presented in Table 9, with ROC curves shown in Figure 11. The

XGBoost models demonstrated robust predictive capability for both

OLGA and OLGIM staging, effectively discriminating between low-

risk and high-risk OLGA/OLGIM patients.

Among the three models evaluated, XGBoost and Random Forest

both demonstrated exceptional performance, with XGBoost

exhibiting marginally superior metrics. As illustrated in Table 9,

XGBoost achieved the highest accuracy (OLGA: 91.8%, OLGIM:

92.7%) and AUC values (OLGA: 0.966, OLGIM: 0.979). Random

Forest also yielded excellent results, with accuracy (OLGA: 90.2%,

OLGIM: 93.8%) and AUC values (OLGA: 0.958, OLGIM: 0.975) that

were comparable to those of XGBoost. Given their high accuracy and
TABLE 6 Bayesian stepwise discriminant results for OLGA/OLGIM staging diagnostic models (Self-validation and Cross-validation).

Validation Method Predictive Model Overall Accuracy Low-risk Accuracy High-risk Accuracy

Self-validation
OLGA 85.4% 83.9% 94.2%

OLGIM 91.0% 96.3% 80.2%

Cross-validation
OLGA 85.1% 83.9% 92.3%

OLGIM 91.0% 96.3% 80.2%
TABLE 5 Classification function coefficients for stepwise discriminant
model of OLGIM staging.

Feature Variable
Low-risk
OLGIM

High-risk
OLGIM

H. pylori infection status 2.443 3.196

Location-Lesser curvature of the
gastric body

-0.819 0.424

Location-Greater curvature of the
lower gastric body

-1.120 2.898

Erosion 1.085 -0.621

Size 3.523 4.380

DL 1.615 -10.463

WGA 0.222 2.888

MCDL border regularity -0.583 9.806

VEC -0.284 2.485

(Constant) -4.668 -11.422
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AUC values, both XGBoost and Random Forest models show

considerable promise for clinical application in risk stratification of

precancerous gastric lesions. Whilst XGBoost demonstrates a slight

advantage in performance metrics, the robust performance of

Random Forest warrants acknowledgement. Therefore, based on a

comprehensive evaluation of accuracy, AUC and overall robustness,

we propose that both XGBoost and Random Forest models represent

excellent candidates for real-world clinical implementation, with

XGBoost potentially offering slight advantages due to its marginally

superior performance.

To comprehensively evaluate clinical utility, we analysed both

false positive (FP) and false negative (FN) outcomes across all

models. In OLGA staging, the Bayesian model demonstrated

notably high rates, with 48 false positives and 3 false negatives.

Similarly, for OLGIM staging, the Bayesian model produced 49 false

positives and 3 false negatives. The Random Forest model, however,

exhibited markedly improved performance in OLGA staging,

reducing false positives to 10 whilst maintaining only 2 false

negatives. When applied to OLGIM staging, the Random Forest

model yielded 3 false positives and 3 false negatives. The XGBoost

model demonstrated promising results, with 7 false positives and 3

false negatives in OLGA staging, whilst in OLGIM staging, it

produced 5 false positives and merely 2 false negatives. Notably,

whilst the Random Forest model achieved optimal performance in

OLGA staging with the lowest false negative count, the XGBoost

model demonstrated superior overall balance across both staging

systems, particularly in OLGIM staging where it combined minimal

false negatives with relatively few false positives.

In the clinical management of precancerous gastric lesions,

minimising false negatives is crucial, as failing to identify high-

risk individuals requiring prompt intervention may result in
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delayed diagnosis and potential disease progression. Whilst less

critical than false negatives, elevated false positive rates warrant

consideration, as they may lead to unnecessary endoscopic

procedures and biopsies in low-risk patients, thereby increasing

healthcare expenditure and patient anxiety (26).

Table 9 details the performance metrics of the XGBoost models.

Both OLGA and OLGIMmodels achieved high accuracy (~0.92 and

~0.93 respectively) and AUC values (~0.966 and ~0.979

respectively), with high sensitivity and specificity, demonstrating

robust and slightly superior performance compared to Random

Forest and Bayesian models for risk prediction using XGBoost.

The XGBoost models exhibited exceptional performance in

identifying high-risk cases, yielding F1-scores of 0.921 (OLGA)

and 0.929 (OLGIM). Figure 11 illustrates the corresponding

Precision-Recall curves, providing detailed insights into the

precision and recall dynamics for high-risk cohorts.

3.7.3 Key predictive feature analysis
XGBoost algorithm was used to rank the importance of key

predictive features in OLGA and OLGIM staging, with higher scores

indicating greater diagnostic significance and contribution to

predictive accuracy. Feature importance rankings and specific

scores are shown in Supplementary Figure 3 and 4. These findings

provide a basis for clinical focus on endoscopic features with higher

numerical values in identifying high-risk precancerous gastric lesions.

SHAP scatter plots for the XGBoost models are presented in

Figures 12 and 13. In both OLGA and OLGIM staging diagnostic

models, MCDL border irregularity and lesion size demonstrated

strong positive predictive effects, whilst MCDL border size showed

negative predictive effects. These results indicate that irregular

MCDL and lesions ≥1cm are risk factors for high-risk OLGA/

OLGIM, whereas larger MCDL border size serves as a protective

factor for high-risk OLGA/OLGIM patients.
4 Discussion

Chronic inflammation induced by H. pylori infection can

damage cells and promote gastric carcinogenesis through
TABLE 7 Performance of bayesian stepwise discriminant OLGA and
OLGIM staging diagnostic models.

Model AUC 95% CI Sensitivity Specificity

OLGA Model 0.928 0.901-0.955 0.942 0.842

OLGIM Model 0.924 0.896-0.951 0.942 0.839
FIGURE 5

ROC curves for bayesian stepwise discriminant OLGA and OLGIM staging diagnostic models.
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abnormal immune cell activation and increased inflammatory

cytokine levels, making it a representative aetiological factor for

gastric cancer (27). The progression from chronic gastritis to gastric

cancer follows Correa’s cascade (28), where persistent inflammation

drives progression towards gastric cancer, with CAG, IM, and Dys

carrying risks for malignant transformation. Therefore, early

screening and risk assessment of patients with potential for

gastric cancer development remains an urgent clinical challenge.

The OLGA and OLGIM systems provide a basis for predicting

gastric cancer risk associated with atrophic gastritis and intestinal

metaplasia, guiding clinical surveillance. ME-NBI clearly visualises

superficial mucosal and vascular patterns, with studies showing

sensitivity of 88% and specificity of 96% in distinguishing cancerous

from non-cancerous lesions (29). The combination of C-WLI and

ME-NBI enhances gastric cancer detection rates, laying the

foundation for “endoscopic pathology”.

In this study, we employed three models: the linear Bayesian

stepwise discrimination analysis and two non-linear models

(random forest and XGBoost), to construct OLGA and OLGIM
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staging prediction models based on C-WLI and ME-NBI

endoscopic features. The comparative performance metrics of

these models are summarised in Table 10.

In the Bayesian stepwise discrimination model, we employed

stepwise variable selection to eliminate redundant variables,

simplifying model structure and enhancing predictive accuracy,

successfully constructing linear regression equations for OLGA and

OLGIM staging (see Results section 3.5.1). This method’s advantage

lies in producing intuitive linear regression equations with good

interpretability. The Bayesian models demonstrated high predictive

accuracy (0.854 and 0.910) and sensitivity (both 0.942) for OLGA

and OLGIM staging. However, their relatively low precision (0.505

and 0.500) indicates that whilst the models effectively avoid false

negatives, approximately half of low-risk patients were misclassified

as high-risk, risking over-treatment. We attribute this to the

complex diversity of C-WLI and ME-NBI endoscopic features

and their potentially complex non-linear relationships with

OLGA and OLGIM staging. Consequently, we employed random

forest and XGBoost non-linear models for further analysis.
FIGURE 6

ROC and precision-recall curves for random forest OLGA and OLGIM staging diagnostic models.
TABLE 8 Performance of random forest OLGA and OLGIM staging diagnostic models.

Model Accuracy AUC Specificity Sensitivity Precision F1 Score

OLGA Model 0.902 0.958 0.836 0.967 0.855 0.908

OLGIM Model 0.938 0.975 0.938 0.938 0.938 0.938
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As shown in Table 10, the random forest algorithm achieved

excellent results in OLGA and OLGIM staging prediction, with

accuracy rates of 0.902 and 0.938, and sensitivity of 0.967 and 0.938,

respectively. Precision improved significantly compared to the

Bayesian model, reaching 0.855 and 0.938. These results further

confirm the complex non-linear relationships between C-WLI and

ME-NBI endoscopic features and OLGA/OLGIM staging. XGBoost,

an emerging gradient boosting method, excels in handling complex

non-linear relationships and data imbalance (30, 31). Its predictive

performance for OLGA and OLGIM staging was comparable to the

random forest model, achieving accuracy rates of 0.918 and 0.927,

sensitivity of 0.951 and 0.958, and precision of 0.892 and 0.902,

significantly outperforming the Bayesian model.

Overall, all three models demonstrated exceptionally high

accuracy and sensitivity, but with notable differences in precision.

Whilst all models effectively reduce the risk of missed diagnoses,

random forest and XGBoost models show superior clinical utility by

significantly reducing over-diagnosis risk compared to the Bayesian

model. Each model offers unique advantages: Bayesian stepwise

discrimination excels in model interpretability, random forest in
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feature selection, and XGBoost in capturing complex variable

relationships. Together, these models provide reliable theoretical

foundations for clinical application.

The primary clinical utility of our models resides in their

application as a triage instrument during endoscopic evaluation.

Whilst not designed to supplant histopathological examination for

definitive OLGA/OLGIM staging, incorporation of these models

into real-time endoscopic systems may assist clinicians by providing

immediate risk stratification. This integration could facilitate

targeted sampling of high-risk lesions, potentially enhancing

diagnostic yield and procedural efficiency, whilst supporting

contemporaneous clinical decision-making regarding patient

management and surveillance protocols.

Our investigation encompasses several notable limitations.

Principally, the single-centre nature of the study necessitates

multi-centre validation to establish broader generalisability.

Additionally, external validation utilising independent datasets is

essential to further substantiate model robustness. Furthermore,

real-time clinical evaluation is requisite to assess the practical

applicability of these models during live endoscopic procedures.
FIGURE 8

Stability assessment of the random forest OLGIM staging diagnostic model.
FIGURE 7

Stability assessment of the random forest OLGA staging diagnostic model.
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Whilst the sample size (n=356) is relatively modest for complex

machine learning models, particularly considering the inherent

class imbalance in OLGA/OLGIM staging, it remains comparable

to analogous investigations in AI-assisted endoscopic diagnosis (19,

20). We implemented SMOTE methodology to address this

imbalance specifically, thereby augmenting the minority class

(high-risk stages) effectively. The robust performance metrics of

our models, notably the elevated sensitivity in detecting high-risk

cases (exceeding 0.94 across all models), suggest that the sample

size, in conjunction with SMOTE augmentation, proved sufficient

for this exploratory investigation. Further validation through larger,

multi-centre studies is scheduled for subsequent research.

The exclusion criteria (e.g., autoimmune gastritis, ulcers) may

constrain the model’s generalisability. Whilst necessary for internal

validity, these exclusions indicate that the model is primarily

validated for patients without these comorbidities. Future research

should evaluate the model’s performance in more diverse

populations to enhance its clinical utility.

Another significant limitation warranting acknowledgement is

this study’s dependence on histopathology as the reference standard

for OLGA/OLGIM staging, which itself demonstrates considerable

inter-observer variability. This inherent inconsistency in the

reference standard introduces an element of uncertainty into our
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model development and validation, potentially influencing the

absolute accuracy metrics. This limitation underscores the

necessity for subsequent investigations to explore more objective

diagnostic parameters or to quantify and address this variability

explicitly in methodological approaches.

Notwithstanding these constraints, our models demonstrate

considerable potential for clinical application. Integration into AI-

enhanced endoscopy systems could facilitate real-time OLGA/OLGIM

risk stratification, thereby augmenting gastroenterologists’ decision-

making processes during procedures. However, it is imperative to

emphasise that these models should serve as complementary tools

rather than substitutes for clinical judgment.

Regarding clinical implementation, model selection warrants

careful consideration of the balance between interpretability and

performance metrics. The Bayesian model offers superior

interpretability, albeit with reduced precision. Conversely,

Random Forest and XGBoost algorithms deliver enhanced

accuracy, with XGBoost demonstrating marginally superior

performance in our investigation. Random Forest exhibits

particular robustness in feature selection, whilst XGBoost

demonstrates exceptional capability in processing complex

datasets. Clinicians may opt for the Bayesian model when

transparency is paramount, or select machine learning models
FIGURE 9

SHAP value scatter plot for the random forest OLGA staging diagnostic model.
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when heightened accuracy is essential, contingent upon specific

clinical contexts and priorities. Comprehensive validation studies

remain necessary to inform optimal model selection and

implementation strategies.

Risk factors for high-risk OLGA staging across the three models

are shown in Table 11. Extensive gastric mucosal atrophy represents

a crucial risk factor for intestinal-type gastric cancer (32). The

OLGA staging system encompasses both the severity and extent of

atrophy, making it suitable for evaluating atrophic gastritis (33).

Kimura and Takemoto classified atrophy based on endoscopic
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atrophic border appearance into closed and open types. O-1

represents moderate atrophy, whilst O-2 and O-3 indicate severe

atrophy; O-1 extends beyond the cardia, O-2 reaches the gastric

fundus, and O-3 extends to the greater curvature of the lower gastric

body (34). In our study, lesions in the subcardial region and greater

curvature of the lower gastric body corresponded to moderate-

severe atrophy distribution, thus being incorporated as influential

factors in the high-risk OLGA diagnostic model. The severity and

extent of IM similarly serve as crucial indicators for predicting

gastric cancer risk. Research indicates that patients with concurrent
FIGURE 10

SHAP value scatter plot for the random forest OLGIM staging diagnostic model.
TABLE 9 Performance of XGBoost OLGA and OLGIM staging diagnostic models.

Model Accuracy AUC Specificity Sensitivity Precision F1 Score

OLGA Model 0.918 0.966 0.885 0.951 0.892 0.921

OLGIM Model 0.927 0.979 0.896 0.958 0.902 0.929
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H. pylori infection and IM face a 6.4-fold higher gastric cancer risk

compared to those with H. pylori infection alone (3). Whilst IM

diagnosis primarily relies on histological assessment, our study

found that some patients exhibited flat or slightly elevated white

patches under C-WLE (Figure 2A). ME-NBI examination of these

white patches revealed characteristic LBC (Figure 2B). Given LBC’s

close association with gastric cancer development and diagnosis, we

incorporated intestinal metaplasia patches observed under C-WLE

into the high-risk OLGA diagnostic model.

The demarcation line (DL) manifests as a distinct boundary

between lesional and non-lesional regions (35). Yao et al., in their

characterisation of endoscopic features of gastric atrophy, provided

detailed observations of microvascular and micro-glandular

structural alterations under ME-NBI examination within the

context of atrophic gastritis. These alterations culminate in the

formation of demarcation lines, establishing DL as an endoscopic

indicator of atrophy and thereby suggesting their intrinsic

association. Multiple convex demarcation line (MCDL) represents

a more refined manifestation of DL, presenting as multiple convex

demarcation boundaries along the surrounding mucosal epithelial

margin. Under ME-NBI examination, early gastric carcinoma

exhibits distinct microvascular morphological characteristics

compared to the surrounding non-neoplastic regions (typically

atrophic gastritis). The microvascular alterations observed in
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atrophic gastritis form the fundamental basis for demarcation line

formation, including MCDL. The regularity of these boundaries

holds particular significance in determining the malignant potential

of lesions. Studies have shown that MCDL border regularity

demonstrates sensitivity, specificity, and precision (positive

predictive value) of 38%, 91%, and 97%, respectively, for non-

cancerous lesions (36). In our Bayesian discrimination analysis,

MCDL border regularity was incorporated into the high-risk OLGA

diagnostic model with a substantial variable coefficient of 5.696.

This indicates that irregular MCDL borders correlate with higher

malignant transformation risk, consistent with previous research

findings. In random forest and XGBoost analyses, MCDL border

size showed negative predictive value for gastric cancer risk. This

finding aligns with previous studies suggesting MCDL border size as

a predictor of non-cancerous lesions. Research proposes a threshold

of two-thirds for MCDL border size in distinguishing non-

cancerous from cancerous lesions, with MCDL border size ≥2/3

considered a protective factor (37), highly consistent with

our findings.

Risk factors for high-risk OLGIM staging across the three models

are shown in Table 12. The high-risk OLGIM diagnostic model

considers lesions not only in the greater curvature of the lower gastric

body but also specifically in the lesser curvature. Research indicates

that IM occurring in the lesser curvature carries a higher risk of
FIGURE 11

ROC and precision-recall curves for XGBoost OLGA and OLGIM staging diagnostic models.
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gastric cancer development (38), supporting our inclusion of lesser

curvature IM as a predictive factor for high-risk OLGIM. VEC refers

to characteristic vessels within epithelial circles surrounded by

circular marginal crypt epithelium (Figure 2C). Studies suggest that

the VEC pattern may characterise papillary adenocarcinoma, serving

as an effective preoperative marker for high-grade malignancy (39).

Our incorporation of VEC into the high-risk OLGIM diagnostic

model confirms its value as an effective endoscopic predictor. WGA

appears as small white globular structures beneath the gastric

epithelium. Histopathologically, WGA represents dilated gland

lumina containing eosinophilic material with necrotic epithelial

fragments (40). A prospective study of WGA showed incidence

rates of 21.4% and 2.5% in cancerous and non-cancerous lesions

respectively (P<0.001), with accuracy, sensitivity, and specificity of

69.1%, 21.4%, and 97.5% for gastric cancer detection (41). Among

our 365 patients, 14 (3.9%) exhibited WGA. In the Bayesian analysis

high-risk OLGIM model equation, WGA’s coefficient of 2.888

confirms its significance as a predictive indicator.

Our statistics show that among high-risk OLGIM patients, 96.6%

exhibited past H. pylori infection status, and 76.7% showed map-like

and patchy redness, typical manifestations of past H. pylori infection

(21). Previous research indicates that map-like redness serves not

only as an independent factor for high-risk OLGA/OLGIM staging
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(42) but also as an independent risk factor for gastric cancer

development after H. pylori eradication (43). Based on these

findings, we incorporated H. pylori infection status as a significant

risk factor in the high-risk OLGIM diagnostic model.

Furthermore, to control for H. pylori infection as a potential

confounder and remove its influence on the results, we included H.

pylori infection status as an independent variable in all analytical

models (Bayesian stepwise discrimination, Random Forest, and

XGBoost). Through this methodological approach, we were able

to adjust for the influence of H. pylori infection during statistical

analyses, whether through calculating the independent effects of

individual variables on OLGIM staging in multivariate regression

models, or through capturing complex relationships and

interactions among various features in machine learning models.

This systematic adjustment enabled more precise evaluation of the

independent associations between endoscopic features and OLGIM

staging classifications.
5 Conclusion

In this study, we developed and validated diagnostic models

for OLGA and OLGIM staging of precancerous gastric lesions
FIGURE 12

SHAP value scatter plot for the XGBoost OLGA staging diagnostic model.
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using endoscopic features. Our findings demonstrate that

machine learning approaches, particularly random forest and

XGBoost algorithms, can effectively predict high-risk OLGA/

OLGIM stages based on conventional white-light endoscopy and
Frontiers in Oncology 19
magnifying endoscopy with narrow-band imaging features.

These models achieved high accuracy (>90%) and AUC values

(>0.95) , outperforming tradit ional Bayesian stepwise

discrimination analysis.
FIGURE 13

SHAP value scatter plot for the XGBoost OLGIM staging diagnostic model.
TABLE 10 Summary of specific performance of the three models.

OLGA OLGIM

Bayesian Stepwise
Discrimination

Random
Forest

XGBoost
Bayesian Stepwise
Discrimination

Random
Forest

XGBoost

Accuracy 0.854 0.902 0.918 0.910 0.938 0.927

AUC 0.928 0.958 0.966 0.924 0.975 0.979

Specificity 0.842 0.836 0.885 0.839 0.938 0.896

Sensitivity 0.942 0.967 0.951 0.942 0.938 0.958

Precision 0.505 0.855 0.892 0.500 0.938 0.902
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Key endoscopic risk factors for high-risk OLGA/OLGIM stages

included irregular multiple convex demarcation line borders, lesion

size ≥1cm, and specific lesion locations such as the greater curvature

of the lower gastric body. Additionally, features like white globe

appearance and vessel within epithelial circle patterns emerged as

significant predictors for high-risk OLGIM. The identification of

these risk factors provides valuable insights into the endoscopic

characteristics associated with advanced precancerous lesions.

These findings have important clinical implications, potentially

enabling more accurate risk stratification of patients with

precancerous gastric lesions using readily available endoscopic

techniques. This could lead to more targeted surveillance

strategies and earlier interventions for high-risk individuals,

potentially improving the early detection and management of

gastric cancer. The ability to predict OLGA/OLGIM stages based

on endoscopic features may also reduce the need for extensive

biopsy sampling in some cases, streamlining the diagnostic process.

However, our study has limitations that should be addressed in

future research. Notably, this was a single-centre study with internal

validation only. To establish the generalizability and robustness of

these models, multi-centre studies with larger, diverse patient

populations are needed. Additionally, prospective studies

evaluating the clinical impact of implementing these models in

real-world settings would be valuable.

In conclusion, our results suggest that machine learning-

based analysis of endoscopic features can provide valuable

diagnostic and prognostic information for precancerous gastric

lesions. This approach may complement histopathological

assessment and enhance risk prediction in clinical practice. By

combining advanced imaging techniques with sophisticated

analytical tools, we may be able to improve the accuracy and

efficiency of gastric cancer risk assessment. Future research

should focus on external validation, refinement of these models,
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and assessment of their impact on clinical outcomes to fully

realize their potential in improving gastric cancer prevention and

early detection strategies.
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TABLE 11 Risk factors for high-risk OLGA.

Model High-risk OLGA risk factors

Bayesian
Stepwise Discrimination
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Greater curvature of the lower

gastric body
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Random Forest MCDL border regularity MCDL border size DL Lesion size Gross morphology

XGBoost MCDL border regularity DL
Greater curvature of the lower

gastric body
MCDL

border size
Lesion size
TABLE 12 Risk factors for high-risk OLGIM.

Model High-risk OLGIM risk factors
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gastric body
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