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Subregion-based radiomics
analysis for predicting the
histological grade of clear
cell renal cell carcinoma
Xue Lv †, Xiao-Mao Dai †, Dai-Quan Zhou, Na Yu,
Yu-Qin Hong and Qiao Liu*

Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University,
Chongqing, China
Purpose: We explored the feasibility of constructing machine learning (ML)

models based on subregion radiomics features (RFs) to predict the histological

grade of clear cell renal cell carcinoma (ccRCC) and explore the molecular

biological mechanisms associated with RFs.

Methods: Data from 186 ccRCC patients from The Cancer Imaging Archive

(TCIA) and 65 ccRCC patients from a local hospital were collected. RFs were

extracted from entire tumor regions and subregions, which were segmented via

a Gaussian mixture model (GMM). ML models and radiomics scores (radscores)

were developed on the basis of candidate RFs. A RFs-related gene module was

identified. Key signaling pathways were enriched, and hub genes were identified.

Results: Two subregions were segmented. The logistic regression (LR) and

support vector machine (SVM) models constructed using 3 candidate RFs

selected from subregion 1 demonstrated the best predictive performance, with

AUCs of 0.78 and 0.77 for the internal test set and 0.74 and 0.77 for the external

validation set, respectively. Radscores stratified ccRCC patients into high- and

low-risk groups, with high-risk individuals exhibiting poorer overall survival (OS)

for the internal test set. Radiogenomic analysis revealed that RFs were associated

with signaling pathways related to cell migration, cell adhesion, and signal

transduction. The hub genes CTNNB1 and KDR were identified as being

associated with RFs.

Conclusion: We revealed an association between RFs and tumor biological

processes. The proposed subregional radiomics models demonstrated

potential for predicting the histological grade of ccRCC, which may provide a

novel noninvasive predictive tool for clinical use.
KEYWORDS

clear cell renal cell carcinoma, histological grade, radiomics, machine learning,
molecular biological mechanisms
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Introduction

Renal cell carcinoma (RCC) is one of the most common

urological tumors worldwide, with clear cell renal cell carcinoma

(ccRCC) representing the most prevalent subtype. This subtype

accounts for approximately 70%-85% of RCC cases (1, 2). The

World Health Organization/International Society of Urological

Pathology (WHO/ISUP) have classified ccRCC into four grades on

the basis of the prominence of nucleoli, with higher grades having

poorer prognoses than lower grades do (3–5). Early and accurate

grading is crucial for determining therapeutic strategies and

predicting patient outcomes. In clinical practice, the preoperative

pathological grade relies mainly on invasive tissue biopsy, which may

present some risks and complications, such as bleeding, local

infection and tumor seeding along the needle tract (6). Noninvasive

imaging techniques such as ultrasound, CT, and MRI have been

widely used, but they lack clear quantitative standards. Therefore, the

development of a new noninvasive, quantitative method for

predicting pathological tumor grade is highly clinically important.

Radiomics, an emerging field in medical imaging, involves the

extraction of high-throughput information from medical images,

offering a novel avenue for the noninvasive characterization of

tumor phenotypes (7–10). Some studies have confirmed the role of

radiomics in predicting the tumor-node-metastasis (TNM) stage,

pathological grade, distant metastasis, and prognosis of ccRCC (11–

14). However, to our knowledge, ccRCC quantitative feature analysis

has focused on the entire tumor region without considering

intratumoral variation in different subregions. To better capture the

intratumoral heterogeneity of ccRCC, this study employs an

innovative approach by segmenting tumors into multiple distinct

subregions and extracting RFs from each subregion for model

construction. This subregional radiomics analysis strategy provides

richer biological information than traditional methods do, whichmay

enhance the accuracy of ccRCC pathological grade prediction.

Despite its potential for enhancing predictive and prognostic

accuracy, the poor interpretability of RFs has significantly hindered

their clinical application. Therefore, this study explores the

associations between RFs and potential biological mechanisms and

the biological significance underlying RFs. This study contributes to

revealing the molecular mechanisms underlying these features,

thereby enhancing their practicality in clinical decision-making.

This study aimed to extract RFs from each subregion to

construct machine learning (ML) models for predicting the

pathological grade of ccRCC and explore the underlying gene

expression patterns and key biological pathways associated with

RFs. We also compared the prediction accuracy of subregional

models with that of the entire regional model.
Materials and methods

Study design

Figure 1 depicts the schema of the present study, which includes

the following steps: (1) Data collection: Data from ccRCC patients
Frontiers in Oncology 02
were collected from two institutions. These data include CT images,

clinical characteristics, and transcriptomic data. (2) radiomics data

generation: The volume of interest (VOI) was delineated on the

parenchymal phase contrast-enhanced CT (CECT) images,

followed by subregion clustering and RF extraction from each

region. (3) Feature selection and model construction: Based on

the candidate RFs selected via Spearman correlation analysis and

least absolute shrinkage and selection operator (LASSO) regression

analysis, ML models and the radscore for predicting the

pathological grade of ccRCC were constructed and validated. (4)

Molecular biological mechanisms of RF exploration: Genes

associated with RFs were identified via weighted gene

coexpression network analysis (WGCNA). These genes were

subsequently subjected to gene ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analyses to explore their biological pathways.

Additionally, a protein–protein interaction (PPI) network was

employed to identify the hub genes.
Patients

This multi-institutional retrospective study involved a total of

186 patients with ccRCC in the discovery cohort. These patients

were randomly divided into a training set and an internal test set at

a 7:3 ratio. Parenchymal phase CECT images were collected from

The Cancer Imaging Archive (TCIA) database, and transcriptomic

data and relevant clinical information were extracted from The

Cancer Genome Atlas (TCGA). Institutional review board approval

was waived since patient data in TCIA and TCGA were

deidentified. A total of 64 patients from the local hospital

between July 2016 and December 2023 were used as an external

validation set. The histological grade was classified into a low-grade

group (grades 1 and 2) and a high-grade group (grades 3 and 4).

The inclusion criteria for all patients were as follows: (1)

confirmation of ccRCC with pathological grading on the basis of

postoperative pathology; (2) complete preoperative CECT images.

The exclusion criteria were as follows: (1) no parenchymal phase

CECT images; (2) inadequate quality of CT images; (3) incomplete

coverage of the tumor in CECT images; (4) presence of tumor

metastasis; and (5) inability to segment tumor subregions (Figure 2).

Imaging protocol

CT images from the local hospital were acquired using a multi-

slice spiral CT scanners (Revolution CT; GEhealthcare). All patients

were administered 400 ml of water orally 20 min before the

examination. For the enhanced scan, a high-pressure syringe was

used to inject a nonionic contrast agent (80–90 mL iohexol 350

mgI/mL, Hengrui Medicine Co., Ltd.) at a dose of 3 mL/s. After 60–

70 s, diaphragm-to-kidney images of the parenchymal phase were

obtained. The image parameters were as follows: matrix, 512 × 512;

rotation time, 0.5 s; tube voltage, 120 kV; tube current, 200–600

mA; detector coverage, 80 mm; pitch, 0.992:1; slice thickness, 2.5

mm; and reconstruction interval, 2.5 mm.
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VOI delineation and subregion clustering

VOIs were manually delineated by a radiologist (X.L. with 7 years of

experience in CT interpretation) via the open-source software 3D slicer

software (version 5.6.2) and were agreed upon by another radiologist

(X.M.D. with 20 years of experience in CT interpretation). The two

radiologists were blinded to the patients’ pathological grade. Intraclass

correlation coefficients (ICCs) were used to assess the reproducibility of
Frontiers in Oncology 03
the RFs. Twenty VOIs were delineated again by two radiologists (X.L.

and X.M.D.) one month later. The RFs with both intra- and

interobserver ICCs greater than 0.75 were retained. For additional

details on the ICC analysis, please refer to Supplementary Material S1.

A Gaussian mixture model (GMM) was used for clustering

subregions with similar RFs. The optimal number of clusters was

determined by the Bayesian information criterion (BIC). The

number of clusters from 2 to 10 was tested in this study (15, 16).
FIGURE 1

Workflow of the study.
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Feature extraction

Because the images originated from various CT scanners with

different imaging parameters, it was necessary to preprocess the

images to standardize the data analysis. The voxel sizes of all the CT

images were reconstructed to 1×1×1 mm3, and 25 grey levels were

used to discretize their intensities. A total of 1130 RFs were

extracted from each region via the PyRadiomics platform (version

3.0.1) in Python software (Python Software Foundation, version

3.7.6) (17). The extracted RFs were resampled and normalized

linearly in the range of 0 to 1. The RFs used in this study are

described in Supplementary Material S2.
Feature selection

To reduce multicollinearity among features, we conducted a

Spearman correlation analysis, retaining only one of the two

features when r > 0.9. Then, LASSO regression analysis with 5-

fold cross-validation was performed to select the candidate RFs for

each region. Afterwards, the radiomics scores (radscores) were

calculated through a linear combination of the selected features

weighted by their respective coefficients. The Youden index was

used to select the best cut-off value where the sum of sensitivity and

specificity was maximized. Patients were stratified into high-risk

and low-risk groups on the basis of the optimal cut-off value.

Model construction and evaluation

Candidate RFs selected from each region were used to construct

four ML models, including random forest (RF), logistic regression

(LR), decision tree (DT), and support vector machine (SVM). These

models were trained to predict the histological grade of ccRCC. The

predictive performance of the models was evaluated by plotting the

receiver operating characteristic (ROC) curve and calculating

the corresponding area under the curve (AUC) for the internal
Frontiers in Oncology 04
test set and the external validation set. The accuracy, precision,

recall and F1 score of the models were also calculated.
Gene coexpression module construction

We utilized WGCNA (13) to explore the gene expression

patterns associated with RFs. Initially, we calculated the Pearson

correlation coefficients between genes and determined appropriate

weights via the soft-thresholding method to construct a scale-free

network. We then applied the topological overlap measure (TOM)

to refine the network and eliminate spurious correlations. The

highly coexpressed genes were subsequently clustered into

modules through hierarchical clustering analysis. We assessed the

correlation between these modules and the RFs, identifying the

most significantly related gene module. To ensure biological

relevance, we set a minimum threshold of 100 genes per module.
Functional enrichment analysis

To investigate the biological significance of the gene module

most related to RFs, the GO database was used to evaluate biological

processes (BP), cellular components (CC) and molecular functions

(MF). The KEGG database was used to identify key signaling

pathways. The top five results in ascending order of P value (p <

0.05) are displayed in this study. The PPI network within the gene

module was constructed with Cytoscape software (version 3.10.0)

via the online STRING database. The two most connected genes in

the PPI network were identified as hub genes.
Statistical analysis

Statistical analysis was performed with R software (version 3.6.0)

and Python (version 3.6.8). Continuous variables are expressed as the

means ± standard deviations (SDs) (for normally distributed features)

or the medians and interquartile ranges (for nonnormally distributed

features). Categorical variables are expressed as counts with

percentages. Categorical variables were compared via chi-square

tests or Fisher’s exact tests, whereas independent samples t tests or

Mann–Whitney U tests were used to compare continuous variables.

Correlation analysis was performed via Pearson or Spearman

correlation analysis. The association of the radscore with overall

survival (OS) was evaluated via Kaplan–Meier (KM) analysis and

compared via the log rank test. P values less than 0.05 were

considered statistically significant.
Results

Clinical characteristics

The clinical characteristics of the patients in the training set,

internal test set and external validation set are shown in Table 1.
FIGURE 2

Flowchart of patient selection.
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There were no statistically significant differences in age, sex or

laterality between the low- and high-grade groups (p > 0.05). The

TNM stage significantly differed in the training set, with the low-

grade group demonstrating a lower TNM stage than the high-grade

group did (p < 0.05). However, these differences were not

statistically significant in the internal test set.
Subregion clustering and feature selection

The optimal number of clusters was determined to be 2 via the

GMM (Supplementary Figure S1); thus, the entire region

(designated VOIe) was clustered into 2 subregions (designated

VOI1 and VOI2). A total of 1130 RFs were extracted from VOIe,

VOI1 and VOI2, among which 903 reproducible RFs were retained

in the downstream analysis (ICCs > 0.75). Following feature

selection via Spearman correlation and LASSO regression analysis

(Figure 3), 5, 3, and 4 candidate RFs were selected for model

development from VOIe, VOI1, and VOI2, respectively.
Model performance and radscore
construction

Compared with those based on VOI2, the models constructed

on VOI1 demonstrated superior predictive performance (Figure 4;

Table 2). Among these models, the LR and SVM models performed

better, with AUCs of 0.78 and 0.77 for the internal test set and 0.74
Frontiers in Oncology 05
and 0.77 for the external validation set, respectively. The radscore

was subsequently calculated by summing the 3 candidate RFs from

VOI1 and multiplying them by their corresponding coefficients in

the LASSO model. The formula used to calculate the radscore is

shown in Supplementary Material S3.
Differences in the radscore among
different clinical groups

The relationships between the radscore and clinical

characteristics are shown in the heatmaps (Figures 5A, B;

Supplementary Figure S2A). Patients with varying radscores

presented distinct patterns of clinical characteristics. Increases in

radscore, TNM stage and histological grade led to asymmetric

distributions. In the training set, the radscore was significantly

greater in the higher-grade and higher-stage groups. These findings

were validated in both the internal test set and external validation

set (Figures 5E–N; Supplementary Figure S2B–E). There was no

significant difference in the radscore among the age, sex, and

laterality subgroups.

The optimal radscore cut-off value was 0.576, and patients were

categorized into a high-risk group (radscore ≥ 0.576) and a low-risk

group (radscore < 0.576) (Supplementary Figure S3). KM curves

demonstrated that OS was significantly lower in the high-risk group

than in the low-risk group in the internal test set (p = 0.006),

whereas no significant difference in OS was observed between the

two groups in the training set (p = 0.058) (Figures 5C, D).
TABLE 1 Clinical information of this study.

Feature

Training set (n=130)

p

Internal test set (n=56)

p

External validation
set(n=65)

pHigh-grade
group
(n=76)

Low-grade
group
(n=54)

High-grade
group
(n=36)

Low-grade
group
(n=20)

High-grade
group
(n=12)

Low-grade
group
(n=53)

Age, (years) 58.70 ± 12.68 58.24 ± 11.22 0.83 61.03 ± 10.72 63.65 ± 12.97 0.42 62.67 ± 10.52 59.89 ± 11.73 0.45

Sex, n (%) 0.13 0.20 0.54

Male 57 (75.00%) 33 (61.11%) 24 (66.67%) 9 (45.00%) 9 (75.00%) 32 (60.38%)

Female 19 (25.00%) 11 (38.89%) 12 (33.33%) 11 (55.00%) 3 (25.00%) 21 (39.62%)

Laterality, n (%) 0.99 0.32 1

Right 41 (53.95%) 30 (55.56%) 19 (52.78%) 7 (35.00%) 6 (50.00%) 25 (47.17%)

Left 35 (46.05%) 24 (44.44%) 17 (47.22%) 13 (65.00%) 6 (50.00%) 28 (52.83%)

TNM stage,
n (%)

<0.001* 0.06 /

High stage(3/4) 41 (53.95%) 9 (16.67%) 18 (50.00%) 4 (20.00%) / /

Low stage(1/2) 35 (46.05%) 45 (83.33%) 18 (50.00%) 16 (80.00%) / /
front
*Statistically significant difference.
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FIGURE 4

Performance of the four models for predicting the histological grade of ccRCC. (A–C) ROC curve for the internal test set. (D–F) ROC curve for the
external validation set. VOIe, entire region, VOI1, subregion 1, VOI2, subregion 2.
FIGURE 3

Feature selection using the LASSO model. (A–C) Selection of the tuning parameter lambda using 5-fold cross-validation and minimum criterion. The
optimal lambda was determined as the value that minimizes the mean-squared error. Vertical dotted lines were drawn at the optimal lambda.
(D–F) The trajectory of coefficients for each RF in the LASSO model across varying lambda. The vertical dotted line showed the optimal lambda.
VOIe, entire region, VOI1, subregion 1, VOI2, subregion 2.
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Identification of the RFs-related gene
module

The results of WGCNA are summarized in Figures 6A, B. We

selected b = 5 as a suitable soft threshold for constructing the scale-

free network. Eleven coexpressed gene modules were derived via

hierarchical clustering analysis, among which the MEbrownmodule

displayed the most significant correlation with radiomics (Pearson

correlation r = -0.31, p < 0.001). Consequently, we selected 454

genes in the MEbrown module for further study.
Functional annotation of RFs-related genes

To explore the molecular biological mechanisms of the RFs,

GO and KEGG analyses of the RFs-related genes were performed.

The BPs, CCs and MFs most related to RFs were ameboidal-type

cell migration (Figure 6C), focal adhesion (Figure 6D), and growth

factor binding (Figure 6E), respectively. Among signaling

pathways, focal adhesion was identified as the most relevant

(Figure 6F). The PPI network of the MEbrown module is

depicted in Figure 6G, with KDR and CTNNB1 identified as

hub genes. There were significant differences in the expression

levels of KDR and CTNNB1 between the high- and low-grade

groups and between the high- and low-risk groups. There were
Frontiers in Oncology 07
significant differences in the expression levels of KDR and

CTNNB1 between the high- and low-grade and between the

high- and low-risk groups (Figures 6H–K).
Discussion

In this study, we performed subregional clustering within the

tumor region on CECT images and constructed two ML models

based on RFs from the tumor subregions to predict the pathological

grade of ccRCC. These models demonstrated high predictive

performance for the internal test set, with AUCs of 0.78 and 0.77.

The consistency and robustness of this model were validated for an

independent dataset, which showed similar performance, with

AUCs of 0.74 and 0.77. These models can provide clinicians with

a powerful tool for risk stratification before treatment and assist in

customizing personalized treatment plans for patients. To enhance

the interpretability and clinical utility of the models, we also

explored the underlying potential biological significance of the RFs.

In radiomics research, different VOI segmentation strategies

can lead to varying study outcomes. Traditional research methods

often focus on segmenting the entire tumor region (11, 18–20), and

some studies have considered the role of peritumoral components

(21–24), however, none of these approaches can adequately reflect

the internal heterogeneity of tumors. This study focused primarily

on subregional radiomics, which can more precisely reflect the
TABLE 2 Prediction performance of models.

Model
Internal test set External validation set

Accuracy Precision Recall F1-score AUC Accuracy Precision Recall F1-score AUC

VOIe

RF 0.73 0.74 0.73 0.73 0.71 0.74 0.78 0.74 0.75 0.65

LR 0.70 0.70 0.70 0.70 0.68 0.82 0.80 0.82 0.81 0.66

DT 0.68 0.66 0.68 0.65 0.61 0.58 0.75 0.58 0.63 0.58

SVM 0.71 0.74 0.71 0.72 0.72 0.83 0.82 0.83 0.82 0.67

VOI1

RF 0.73 0.74 0.73 0.74 0.72 0.82 0.84 0.82 0.82 0.76

LR 0.80 0.80 0.80 0.80 0.78 0.83 0.84 0.83 0.83 0.74

DT 0.68 0.71 0.68 0.68 0.68 0.68 0.76 0.68 0.71 0.61

SVM 0.80 0.80 0.80 0.80 0.77 0.83 0.85 0.83 0.84 0.77

VOI2

RF 0.70 0.69 0.70 0.69 0.66 0.74 0.78 0.74 0.75 0.65

LR 0.64 0.65 0.64 0.65 0.62 0.78 0.78 0.78 0.78 0.64

DT 0.66 0.68 0.66 0.67 0.66 0.83 0.83 0.83 0.83 0.70

SVM 0.66 0.68 0.66 0.67 0.66 0.80 0.77 0.80 0.78 0.59
fro
AUC, area under the curve; RF, random forest; LR, logistic regression; DT, decision tree; SVM, support vector machine.
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heterogeneity within tumors and offer multidimensional

information. Existing studies have confirmed its value in survival

prediction (25) and treatment response prediction (15). Our study

demonstrated that models based on VOI1 offered superior
Frontiers in Oncology 08
performance in grading prediction. A possible explanation might be

that VOI1, which represents low-density areas on CECT images,

indicates regions of hypoxia, necrosis, or low cellular density within

the tumor. These characteristics are typically closely associated with
FIGURE 5

Association between radscore and clinical characteristics of ccRCC. (A, B) The landscape of radscore-related clinical characteristics of ccRCC in the
training set and the internal test set. (C, D) KM curves of OS for low-risk and high-risk groups in the training set and the internal test set.
(E–N) Differences in radscore between different clinical subgroups in the training set and the internal test set.
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the aggressive behavior of the tumor and patient prognosis.

Therefore, features extracted from VOI1 may provide more

sensitive and specific biomarkers for tumor grading, which can

improve prediction grading accuracy, tumor progression, and

clinical outcomes.
Frontiers in Oncology 09
Different phases of CT imaging offer unique insights into the

diagnosis of ccRCC, but a consensus on the most effective phase has

not yet been established. Luo et al. (21) reported that among four-

phase CT images (unenhanced phase (UP), corticomedullary phase

(CMP), nephrographic phase (NP), and excretory phase (EP)),
FIGURE 6

The molecular biological mechanisms of the RFs. (A) The cluster dendrogram of genes. Each branch represents one gene and each color below
denotes one co-expression gene module. (B) Heatmap of the correlation analysis between co-expression gene module and RFs. The MEbrown
module displayed the most significant correlation. (C–E) GO enrichment analysis of genes in the MEbrown module, including biological processes
(BP), cellular components (CC) and molecular functions (MF) categories. (F) KEGG pathway analysis of genes in the MEbrown module. (G) PPI
network indicating the interactions among the genes in the MEbrown module. (H, J) Differences in the expression of CTNNB1 and KDR between
low-risk and high risk-groups. (I, K) Differences in the expression of CTNNB1 and KDR between high-grade and low-grade groups.
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features extracted from UP and EP images lead to better

performance than features from other single/combined phase(s)

do. Shu et al. (26) suggested that, compared with the CMP model,

the NP and combined models were better at predicting the

Fuhrman grade of ccRCC. In this study, we adopted parenchymal

phase imaging for analysis. Compared with arterial phase images,

parenchymal phase images display a more uniform distribution of

contrast agent within the tumor, which aids in more clearly

distinguishing between the tumor parenchyma and necrotic areas.

In the in-depth analysis of this study, we observed that the

radscore was significantly greater in the groups with higher tumor

grades and stages, suggesting a close association between the

radscore and tumor aggressiveness and clinical severity. For the

test set, the OS of patients in the high-risk group was significantly

lower than that of patients in the low-risk group (p = 0.006), further

demonstrating the potential of the radscore for predicting patient

prognosis. However, for the training set, there was no significant

difference in OS between the two groups (p = 0.058), which may be

influenced by factors such as sample size and patient selection bias.

In our study, WGCNA was employed, and 454 RF-related genes

were identified. Through GO and KEGG analyses, we found that

these genes play crucial roles in key biological processes, such as cell

migration, cell adhesion, and signal transduction, which are key

contributors to tumor invasiveness and metastatic capacity (27–30).

PPI network analysis further identified KDR and CTNNB1 as hub

genes closely related to RFs. These genes exhibited significant

expression variations across different risk subgroups, indicating

their potential role in tumor development. KDR, a key regulator

of angiogenesis, is highly expressed during tumor angiogenesis and

is associated with poor prognosis. CTNNB1, a core component of

the Wnt signaling pathway, is associated with the initiation and

development of tumors when abnormally activated. The significant

differences in the expression of these two genes suggest that they

may serve as potential biomarkers and therapeutic targets. Our

results indicate that RFs can be employed to predict the pathological

grade of ccRCC, possibly because they are associated with genes and

pathways related to cancer progression.

This study has several limitations. (1) The sample size of the

study may limit the generalizability of the results, especially for the

external validation set. (2) The CT scanners and scanning

parameters used in the study could influence the extraction of

radiomic features (RFs), and variations in equipment and

parameters could potentially lead to feature variability.

Additionally, differences in the timing of kidney contrast-

enhanced scans across different centers may further contribute to

this variability, potentially affecting the generalizability of our

findings. (3) Although we employed subregional analysis to

capture intratumor heterogeneity, it may not fully capture the

complexity of all tumor subregions. (4) While associations

between RFs and biological processes were explored, the direct

biological significance and clinical relevance of these features still

require further investigation. (5) Despite good performance with

the internal test set and external validation set, the generalizability

and long-term predictive accuracy of the models in broader clinical
Frontiers in Oncology 10
practice still need further validation. (6) This study focused on

intratumoral features and did not incorporate peritumoral

information, which could provide additional insights into tumor

biology. Future studies should consider including peritumoral

radiomic features to offer a more comprehensive assessment.
Conclusion

In conclusion, we developed and validated two ML models based

on subregional RFs for predicting the histological grade of ccRCC.

These prediction models have great potential to guide clinical

prognosis prediction and decision-making for therapy in the future.

Furthermore, radiogenomic analysis revealed associations between

RFs and pathways involved in cell migration, cell adhesion, and signal

transduction, which are known to be related to the occurrence and

development of tumors.
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SUPPLEMENTARY FIGURE 1

Gaussianmixturemodel (GMM) clustering of radiomics feature using principal
component analysis (PCA)-reduced data. (A–I) the clustering results for 2 to

10 components, respectively. Points represent samples, colored by cluster.
Red stars indicate cluster centroids.

SUPPLEMENTARY FIGURE 2

Association between radscore and clinical characteristics of ccRCC. (A) The
landscape of radscore-related clinical characteristics of ccRCC in the external
validation set. (B–E) Differences in radscore between different clinical

subgroups in the external validation set.

SUPPLEMENTARY FIGURE 3

Waterfall plot showing the distribution of Radscore between high-grade and
low-grade groups. (A) training set. (B) Internal test set. (C) External

validation set.
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