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Background: Glioma-associated macrophages (GAMs) originate from intracranially

resident microglia and myeloid-derived macrophages. In the glioma

microenvironment, these two types of macrophages tend to adopt a specialized

activation state known as type 2 or M2 macrophages and play crucial roles in the

progression of glioma.

Methods: To identify genes associated with GAMs, we intersected genes identified

from single-cell RNA sequencing (scRNA-seq) data (specific to GAMs) with M2

macrophage module genes derived from weighted gene coexpression network

analysis (WGCNA). Prognostic genes were screened using univariate Cox regression,

multivariate Cox regression, and least absolute shrinkage and selection operator

(LASSO) regression analysis. These genes were used to construct and validate

prognostic signatures and to delineate the immune landscape. During drug

screening, Vorinostat exhibited the highest risk score and the lowest half-maximal

inhibitory concentration (IC50). The expression of the 14 prognostic genes was

further investigated using a glioma cell-macrophage co-culture model.

Results: Fourteen prognostic genes (TREM2, GAL3ST4, AP1B1, SLA, CYBB, CD53,

SLC37A2, ABI3, RIN3, SCIN, SIGLEC10, C3, PLEKHO2, and PLXDC2) were

identified. The prognostic model constructed from these genes demonstrated

robust predictive efficacy. Based on this model, Vorinostat was prioritized as a

candidate therapeutic agent, and subsequent validation confirmed its significant

inhibitory effects on the glioma microenvironment.

Conclusion: These findings elucidate the molecular mechanisms of GAMs in

glioma, uncover the immunological landscape of the tumor microenvironment,

and identify potential therapeutic targets and drug action mechanisms.
KEYWORDS

glioma, glioma-associated macrophages, prognostic signature, immune
microenvironment, histone deacetylase inhibitors, vorinostat
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1 Introduction

Gliomas are the most common tumors of the central nervous

system, among which glioblastoma (GBM) is the most malignant,

accounting for 49.1% of all primary malignant tumors found in the

central nervous system (1). The recent classification of central

nervous system tumor by WHO in 2021 identified the integrated

diagnosis of GBM as “Glioblastoma, IDH wild type, WHO grade 4”

(2). Patients diagnosed with GBM currently have a median survival

time of less than two years, and their five-year overall survival rate is

5.4% (3). Temozolomide and postoperative radiation are commonly

used for the treatment of GBM (4). However, due to its typical late

detection, extensive infiltration, and high inter-tumoral as well as

intra-tumoral heterogeneity, GBM has limited treatment

possibilities (5).

The tumor microenvironment (TME) of GBM is characterized by

macrophage infiltration, with GAMs accounting for a significant

proportion (30%-50%) of the TME cell, which are mainly replenished

by bone marrow derived monocytes (BMDMs) (6, 7). GAMs, which

comprise of both microglia present within the brain and BMDMs,

display a propensity towards M2 activation in the TME, and exhibit

tumor-promoting properties such as stimulating cancer angiogenesis,

epithelial-mesenchymal transition, and suppressing immune responses

(8). Soon after the tumor cell initiation, both growth and invasion can be

promoted and maintained by “educating” GAMs through the release of

various tumor-influencing factors, metabolites, extracellular vesicles, as

well as direct cell-cell interaction with the malignant cells. At the same

time, glioma cells can also produce chemokines and recruit BMDMs to

effectively facilitate glioma growth, invasion and migration (9).

Therefore, it is essential to thoroughly examine the role of GAMs in

GBM progression and identify prognostic markers associated with

GAMs, thus opening new avenues for individualized patient treatment.

Recent studies have indicated that scRNA-seq can be used to

study intra-tumoral heterogeneity at the cellular level (10). For

instance, Darmanis et al. performed scRNA-seq on GBM samples

(3589 cells from 4 patients), and results provided valuable insight

into the mechanism by which GBM cells infiltrate the surrounding

tissues (11). We combined scRNA-seq data with The Cancer

Genome Atlas (TCGA) GBM and low-grade glioma (LGG)

datasets. After the identification of 14 GAMs-associated

prognostic genes, novel prognostic signatures were created. This

GAMs-associated characteristic was found to accurately predict the

prognosis of GBM patients after validation in the test set.

Histone acetylation plays a crucial role in releasing compacted

chromatin to trigger transcription, and any disruption of acetylation

homeostasis can affect gene expression (12). Histone deacetylase

(HDAC) inhibitors such as Panobinostat, Vorinostat, and

Romidepsin have been approved for the treatment of cutaneous T-

cell lymphoma and multiple myeloma (12), and several clinical trials

are currently underway in GBM (12–14). These drugs can act on the

metabolic enhancers at the epigenetic level (15) and can be used in

conjunction with DNA-targeting drugs and enzymes due to their

ability to regulate chromatin accessibility. We have investigated the

impact of Vorinostat on the glioma microenvironment using a

prognostic gene risk model. Our findings demonstrate that
Frontiers in Oncology 02
Vorinostat can display an inhibitory effect on the glioma

microenvironment and thus attempted to explain the potential

mechanism of action of Vorinostat (Figure 1).
2 Materials and methods

2.1 Sample gathering and processing of
genomic data

The TCGA-GBM, TCGA-LGG, GSE84465, and CGGA RNA-

seq datasets were acquired from online sources. We utilized the R

package “TCGAbiolinks” (16) to retrieve and analyze the TCGA

datasets. Information was collected about patient results, primary

treatment outcomes, age, sex, and WHO grade.

The GSE84465 single-cell transcriptome profile of GBM,

including 3589 cells from 4 GBM patients, was obtained from the

GEO database (17). The scRNA-seq data was processed using the

“Seurat” package (18), and quality control was performed using the

annotation reference uploader. The cell samples were filtered for the

mitochondrial gene expression. Cells with >200 genes detected, and

genes detected in >3 cells were retained. To identify highly variable

genes for downstream analysis, scRNA-seq data was subjected to

normalization (LogNormalize) after cell filtering. Subsequently,

obvious principal components (PCs) were discovered using

principal component analysis (PCA) on genes displaying

considerable variability. The uniform manifold approximation

and projection for dimension reduction (UMAP) algorithm was

applied to the PCs to accomplish cell clustering; the number of PCs

choosed 15. The marker genes were found for each cluster of cells

using the “FindAllMarkers” function. Finally, the “SingleR” package

(19) and the “scCATCH” package (20) were used to annotate the

different cell types found in the cell clusters.
2.2 Statistical analysis and graph
generation

The R language (4.2.1 version) for Windows was employed for

statistical analysis and graph generation. The references in other

sections of Materials and Methods contain a list of R packages

utilized for statistical analysis. Survival was assessed using the

Kaplan-Meier method. Unpaired t-test was used to analyze

differences in normally distributed data, while the Wilcoxon test

was employed for determining the differences in non-normally

distributed data. A p-value of 0.05 was used to indicate a

significant difference. Multiple survival analysis comparisons use

False Discovery Rate (FDR) correction.
2.3 Infiltration abundance of M2
macrophages and related survival analyses

We employed four distinct immune infiltration algorithms

CIBERSORT, CIBERSORT abs (21), quanTIseq (22), and xCell
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(23) to calculate the abundance of M2 macrophage infiltration in

each TCGA-GBMLGG. A threshold of 50% was utilized in TCGA-

GBMLGG to differentiate samples with high and low M2

macrophage content. Survival analysis was performed using the

“survival” package (24, pp. 7–37). The Kaplan-Meier survival

analysis was used to determine the correlation between glioma

survival and the presence of M2 macrophages.
2.4 Screening of GAMs related prognostic
genes

We analyzed the TCGA-GBMLGG expression data using the

“WGCNA” package (25) to identify the genes that were strongly

associated to M2 macrophages. This analysis involved grouping

glioma patients based on their M2 macrophage content. First, we

clustered the samples in the TCGA-GBMLGG dataset. Thereafter a

soft-threshold power b was selected based on the lowest power to form
a weighted adjacency matrix that conforms to the scale-free topology fit

index, which was transformed into a topological overlap matrix.
Frontiers in Oncology 03
Finally, 18 gene modules were identified by clustering of the average

linkage hierarchy with a parameter height of 0.5. To determine the

modules that are most relevant to the content of M2 macrophages, a

correlation analysis between modules and features was conducted. To

obtain genes links to GAMs, the modular genes obtained from the

WGCNA package were then intersected with the GAMs markers

identified through the scRNA-seq data analysis.
2.5 Construction and verification of GAMs-
related prognostic characteristics

The genes associated with GAMs that be used to create

prognostic features were obtained by univariate Cox regression,

multivariate Cox regression and LASSO regression analysis. Based

on lambda.min, LASSO regression analysis was performed using

the R package “glmnet” (26). Initially, our aim was to demonstrate

the connection between the signature genes and prognosis. Based

on the following risk scoring model, we conducted a multivariate

regression analysis on the training set:
FIGURE 1

Flowchart.
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riskscore = o
n

n=1
½coefficient(genei)*expression(genei)�

By employing the formula, patients with glioma were classified

into high-risk and low-risk groups based on the median score.

Subsequently, a survival analysis was conducted to assess the

potential correlation between multivariate cox regression analysis

and prognosis. After the glioma samples have been consensus

clustered based on the expression levels of characteristic genes, we

proceeded to compare the prognoses of these clusters. We utilized

the Gene Ontology (GO) database to perform an enrichment

analysis of the functions and signaling pathways of the signature

genes using the R package “clusterprofiler” (27). According to the

results of LASSO regression analysis, the score of each glioma

patient in the TCGA-GBMLGG data set was obtained through

the following model, and the glioma patients were classified:

riskscore = o
n

n=1
½coefficient(genei)*expression(genei)�

Patients were then divided into low-risk and high-risk categories

based on the suitable risk score cut off. The survival rates between the

high-risk and low-risk groups were analyzed and compared using

Kaplan-Meier survival curves and log-rank testing. We plotted receiver

operator characteristic (ROC) curves using the “survivalROC” package

(28) to evaluate prognostic model quality. The GSEA software (29) was

utilized to analyze significantly enriched pathways, with the KEGG and

Reactome databases. The number of permutations was set to 1000. The

pathways with a false discovery rate lower than 0.25 and a p-value equal

to 0.05 demonstrated significant enrichment. The five most frequent

pathways were collected independently in the high-risk group. In

addition, the test set was employed to confirm the prognostic

characteristics. The “rms” package was used to create a nomogram

according to the prognostic and clinical characteristics of the samples.

The efficiency of the nomogram was evaluated by employing

calibration and ROC curves for the durations of 1, 3, and 5 years.
2.6 Analyses of immunity landscape

The “GSVA” package (30) was used to compare immune cell

and immune function scores between high-risk and low-risk

groups. TIDE (31) predicted immunotherapy response status in

high-risk and low-risk categories.
2.7 Cell source and handling

Human glioma cell lines A172 and U87MG, human monocytic

leukemia cell line THP1, mouse macrophages cell line RAW264.7 were

obtained from American Type Culture Collection (ATCC) (Manassas,

VA, USA). Mouse glioma cell line GL261 was generously provided by

Prof. Tong in Zhejiang University. Human glioma cell line TJ905 was

derived from GBM that was resected during surgery and kindly

provided by the Laboratory of Neuro-Oncology, Tianjin Neurological
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Institute. Glioma cell lines A172, U87MG, GL261 and RAW264.7 were

cultured in Dulbecco’s Modified Eagle Medium (DMEM) (Gibco,

USA) supplemented with 10% Fetal Bovine Serum (FBS) (Procell,

China), glioma cell line TJ905 was cultured in DMEM/F-12 (Gibco,

USA) supplemented with 10% FBS, and THP1 was cultured in Roswell

Park Memorial Institute 1640 Medium (RPMI-1640) (Gibco, USA)

supplemented with 10% FBS and incubated in 5% CO2 at 37°C.
2.8 Coculture

To initiate conditional co-culture, on the first day, 100 ng/ml

phorbol 12-myristate 13-acetate (PMA, Solarbio, China) purchased

from MedChemExpress was added to a 24-well culture dish

containing THP1 (1×105/well), and at the same time, the culture

medium (CM) of U87MG, A172, TJ905 cells was changed to RPMI-

1640 until they reached a confluence range of 70%~80%. After 24

hours, RPMI-1640 in glioma cell culture dishes were collected and

filtered to process THP1 for 48 hours. RNA was extracted after 48

hours of co-culture for the purpose of performing real-time

polymerase chain reaction (RT-PCR). For the Western Blot

experiment, similarly, we extracted RNA from RAW264.7 cells

treated with GL261 medium for 48 hours, and we extracted

protein from RAW264.7 cells after treating them under various

conditions for 72 hours. To visualize U87MG and THP1 cell lines,

we purchased lentiviruses with fluorescent genes from GeneChem,

China. U87MG cells were then transformed into red fluorescent

gene (RF), and THP1 was transformed into green fluorescent gene

(GF). THP1(GF) (5×105) was then treated with PMA as described

above, followed by the addition of U87MG (RF) (5×105) for co-

culturing. The fluorescence microscope was utilized to examine the

morphology and growth of both cell lines. Vorinostat was used to

treat both direct and indirect co-culture models at concentrations of

1.25×10-3mM and 2.5×10-3mM respectively in fluorescence

experiment, and Vorinostat was used at a concentration of

2.5×10-3mM in PCR and Western Blot (WB) experiments.
2.9 RT-PCR and western blot

Following a previously described method (32), we extracted RNA

and performed RT-qPCR. The GoTaq qPCR Master Mix was used to

determine the various genes that were expressed (A6001, Promega,

USA). The sequences of primers (from Genewiz, China) used for RT-

qPCR have been shown in Supplementary Table S14. Similarly, we

extracted protein and performed WB experiment, the primary

antibodies for WB: CD163 (Abcam, ab87099), b-Tubulin (ZSGB-

BIO, TA-10).
2.10 Drug screening and validation

To identify additional novel potential therapeutic targets and

more effective glioma drugs, The Cancer Therapeutics Response
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Portal (CTRP) and the Genomics of Drug Sensitivity in Cancer

(GDSC) database (33) were used to identify the various anticancer

drugs whose sensitivity was significantly correlated with the

different prognostic genes. Vorinostat was purchased from

Beyotime, China.
3 Results

3.1 Identification of M2 macrophage-
associated genes in glioma by WGCNA

Glioma tumor grade was significantly correlated with the

abundance of M2-like GAMs (34). To further support the

potential association between M2 macrophages and glioma

prognosis, the TCGA-GBMLGG data was categorized into high

and low M2 macrophage content groups using four different

algorithms (CIBERSORT, CIBERSORT abs, quanTIseq, and

xCell). This was carried out to further support the association

between M2 macrophages and the prognosis of glioma. The

results of the Kaplan-Meier analysis demonstrated that the M2

macrophage content was greater in glioma patients with shorter

survival time (Figure 2A). Therefore, M2 macrophage-associated

genes in glioma patients were identified by WGCNA. The first step

involved removing specific outlier data from the TCGA-GBMLGG

analysis (Supplementary Figure 1A), selecting 12 as the optimal soft

threshold power (Figures 2B, C), and identifying 18 modules using

WGCNA (Figure 2D). The two modules of MEsalmon (88 genes,

Supplementary Table S1) and MEgreen (665 genes, Supplementary

Table S2) exhibited the most significant associations with the high

M2 macrophage content (Figure 2E). Hence, genes from these two

modules were therefore selected for the downstream analysis.
3.2 Application of scRNA-seq data to
obtain GAMs marker genes of GBM
patients

After quality control, we successfully obtained 20722 genes in

3580 cells. The violin plot (Figure 3A) displays the number of genes

(nFeature), the number of sequencing counts per cell (nCount), and

the proportion of mitochondrial genes (percent.mt). An

examination of the correlations revealed a positive correlation

between nCount and nFeature (Supplementary Figure 1B). The

scatter plot of the 2000 variable genes was then generated

(Figure 3B). The identification of 16 PCs demonstrated the

heterogeneity of GBM cells (Supplementary Figures 1C–E).

UMAP analysis was performed on 16 PCs, and the GBM cells

were separated into two distinct groups based on the cell type

annotations and UMAP results (Figures 3B, C): 1845 immune cells

and 1715 non-immune cells (Figure 3E). Monocytes, macrophages,

and microglia constituted the majority of immune cells. Non-

immune cells mainly included glioma stem cells, astrocytes, and

oligodendrocytes (Figure 3F). Three sets of marker genes for
Frontiers in Oncology 05
macrophages (Supplementary Tables S3-S5) and one set specific

for microglia (Supplementary Table S6) were removed for the

downstream analysis.
3.3 Screening of GAMs related prognostic
genes

After analyzing the intersection between the four gene sets

obtained from scRNA-seq and the two gene modules obtained from

WGCNA, it was discovered that only the MEgreen module

contained potential genes related to GAMs. The module yielded a

total of 99 candidate genes (Figure 4A, Supplementary Figure 2A).

Initially, through univariate cox regression analysis, it was identified

that 21 genes associated with GAMs were found to be related with

the prognosis of GBM (Figure 4B, Supplementary Table S7). Next,

by multivariate cox regression analysis, 16 GAMs genes

(Supplementary Table S8) were discovered to be linked to the

prognosis of GBM patients (Figure 4C).

In addition, 14 prognostic signature genes were identified

through the final LASSO regression analysis after eliminating the

two genes with p-values less than 0.05 in the multifactorial cox

regression analysis (Figures 4D, E). These included Triggering

Receptor Expressed On Myeloid Cells 2 (TREM2), Galactose-3-O-

Sulfotransferase 4 (GAL3ST4), Adaptor Related Protein Complex 1

Subunit Beta 1 (AP1B1), Src Like Adaptor (SLA), Cytochrome B-245

Beta Chain (CYBB), CD53, Solute Carrier Family 37 Member 2

(SLC37A2), ABI Family Member 3 (ABI3), Ras And Rab Interactor 3

(RIN3), Scinderin (SCIN), Sialic Acid Binding Ig Like Lectin 10

(SIGLEC10), Complement C3 (C3), Pleckstrin Homology Domain

Containing O2 (PLEKHO2) and Plexin Domain Containing 2

(PLXDC2). The expression of these 14 genes in the GBM

microenvironment is depicted in Supplementary Figure 3. In the

GO database, a total of 822 terms were identified as having a

significant enrichment of prognostic genes; the bubble graph

displays the top 10 of these terms (Figure 4F). In addition, the

expression of prognostic genes was used to cluster the TCGA-

GBMLGG samples into several groups. Consensus clustering

demonstrated improved outcomes when K=4 (Figures 4G, H).

Thus, 4 clusters of glioma patients were generated. Heatmaps

were then employed to show the differences in gene expression

between these 4 groups (Figure 4I, Supplementary Figure 7). In

addition, there was a clear difference observed in survival between

the 4 groups (Figure 4J). The above multivariate cox regression and

consensus clustering indicated that these 14 genes possess

significant prognostic value in glioma patients.
3.4 Construction of GAMs-related
prognostic features and external validation

The estimated risk score for each sample in the TCGA-

GBMLGG dataset was determined using the results from the

LASSO regression analysis (Supplementary Table S9) and the
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expression levels of genes associated with prognosis. Thereafter,

according to the corresponding risk score cut-off point (-0.92), the

training set was divided into two distinct groups (Figure 5A).

Interestingly, patients in the low-risk group had an overall better

prognosis, surpassing those in the high-risk group in terms of overall

survival (OS) (Figure 5B). When evaluating the efficiency of the risk

model, the effectiveness was measured using ROC curves. The areas

under the curves (AUC) at 1, 3, and 5 years were found to be 0.87,

0.91, and 0.88 respectively (Figure 5C). The risk score was found to

be a more reliable prognostic predictor in comparison to other

factors and acted as an independent factor influencing survival,

according to the findings of univariate analysis (Figure 5D) and

concordance index (C index) (Figure 5E). Based on this risk score,

we performed GSEA functional enrichment analysis. The high-risk

category was observed to be enriched in different pathways such as

DNA replication, cell cycle, and especially integrins and interleukins

(Supplementary Figures 2B, C, Supplementary Tables S10, S11). The
Frontiers in Oncology 06
enrichment of integrins and interleukins pathways indicates the

recruitment of macrophages by tumor cells and the M2 polarization

of macrophages in gliomas, which is also a long-term focus of our

team. The enrichment of pathways related to cell cycle, DNA

replication, and other processes is associated with the malignancy

of tumors. These enriched pathways provide part of the mechanism

and basis for the short lifespan of high-risk patients. We then further

verified the prognostic function in the test set to confirm its

reliability. The samples, similar to the training set, the samples

were categorized (Figure 5F). It was noted that the prognosis of

patients in the high-risk group was worse than that of patients in the

low-risk group (Figure 5G), with AUCs at 1, 3, and 5 years in the test

set of 0.69, 0.71, and 0.73, respectively (Figure 5H). These findings

validated the usefulness of prognostic factors linked to GAMs in

predicting prognosis of glioma patient. In order to enhance the

accuracy of patient survival prediction, we produced a nomogram

(Figure 5I) according to our predictive risk model and other
FIGURE 2

Screening for M2-associated genes in glioma using WGCNA. (A) Kaplan-Meier survival curves for the four immune infiltration algorithms, namely,
CIBERSORT, CIBERSORT abs, quanTIseq, and xCell, for groups with high and low M2 macrophage concentration. (B, C) The WGCNA package’s
specifications led to the choice of 12 as the soft threshold power. (D, E) There were 18 non-gray modules observed by correlation analysis of the
defined modules. MEsalmon and MEgreen were the two modules found to be predominantly associated with M2 macrophages.
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clinicopathological patient indications. In addition, calibration curve

and ROC curve resu l t s o f nomogram disp layed i t s

dependability (Figure 5J).
3.5 Clinicopathologic features are analyzed
based on the prognostic signature

The survival rates significantly varied between the high-risk and

low-risk groups, with significant differences in their clinicopathological
Frontiers in Oncology 07
characteristics. A heat map of the clinicopathological signature and the

expression of genes associated with the signature in two different risk

groups has been shown in Figure 6A. The proportion of WHO grade 4

patients in the high-risk group was found to be significantly higher, thus

indicating a statistically significant difference in tumor grade between

the two groups. (Figure 6B). Almost all GBM patients were high-risk,

and in LGG patients, the prognosis of high-risk group was worse

(Figures 6C, D). In addition, when patients were grouped according to

age and gender, the survival rate of the high-risk group was significantly

lower. (Figures 6E-H).
FIGURE 3

GAMs marker genes of GBM patients were derived through analysis of scRNA-seq data. (A) Data quality control of scRNA-seq from GBM cell
samples. (B) The top 2000 differential genes have been shown in a scatter plot. (C, D) The cells were classified using PCA and the top 20 PCs are
shown. (E) Cells were first classified into “non-immune” and “immune” using the UMAP algorithm. (F) Cells were annotated using “singleR” and
“scCATCH” R packages.
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FIGURE 4

Screening for GAMs-associated prognostic genes. (A) The candidate genes associated with GAMs. (B) The results of a univariate cox regression study
identified 21 distinct genes associated with GAMs. (C) Multivariate cox regression analysis was used to construct a survival analysis for the risk
stratification. (D, E) Signature genes were discovered using LASSO regression analysis. (F) GO database functional enrichment analysis. (G, H)
Consensus clustering revealed that K=4 was the best, and TCGA-GBMLGG was divided into 4 clusters. (I) The heatmap depicted the variations in
gene expression between the 4 clusters. (J) The Kaplan-Meier survival curve showed the discrepancies in the survival rates among the four clusters.
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3.6 Immune cells, immune function, and
the landscape of immunotherapy in
relation to risk signatures

We assessed the immune microenvironment of glioma by

utilizing four immune infiltration algorithms to determine the
Frontiers in Oncology 09
abundance of M2 macrophages, based on the risk grouping.

Interestingly, it was found that the high-risk group had a larger

concentration of M2 macrophages and CD4+ effector T cells

compared to the low-risk group as identified by all immune

infiltration algorithms (Supplementary Figure 4). By gene set

variation analysis (GSVA), our results were enriched in “TNFa
FIGURE 5

Construction of GAMs-related prognostic features and external validation. (A) Comparison of the survival status of glioma patients with different risk
scores in the training set. (B) The high-risk group of training set exhibited a much poorer prognosis, according to Kaplan-Meier survival curves. (C)
ROC curves with their AUCs for 1, 3, and 5 years, respectively. (D, E) In contrast to other indicators, the risk score was discovered to serve as an
independent risk factor for the survival status using univariate analysis and the C-index. (F) Patients with gliomas in the high-risk and low-risk
categories of the test set were compared for the survival status and risk score. (G) The high-risk group in the text set had a lower survival time, as
indicated by the Kaplan-Meier survival curve. (H) ROC curves with their AUCs for 1, 3, and 5 years, respectively. (I) Nomogram based on the various
clinical markers and risk scores. The results of a calibration curve (J) demonstrated the consistent reliable performance of the nomogram.
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signaling via NF-kB” and “Interferon gamma response”, which

were confirmed as TME local and global tissue modifiers (35),

indicating the complexity of the immune microenvironment in the

high-risk group. Moreover, we found that pathways such as

“epithelial mesenchymal transition”, “IL6-JAK-STAT3 signaling”,
Frontiers in Oncology 10
and “P53 pathway”, which are highly associated with tumor

malignancy progression, were enriched in the high-risk group,

suggesting a close link between the high abundance of GAMs and

tumor malignancy progression in the high-risk group. Regrading

immunotherapy, the TIDE score was significantly elevated in the
FIGURE 6

Prognostic analysis based on the clinicopathological categorization. (A) A heat map was employed to depict the variations in gene expression and
clinicopathologic characteristics among the two risk groups. (B) The histogram revealed risk scores correlated with the various clinicopathological
characteristics. The results of prognostic analysis stratified by the tumor grade (C, D), sex (E, F), and age (G, H) were presented using Kaplan-Meier
survival analysis.
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high-risk group was higher (Figure 7B), thus suggesting that

patients in the high-risk group had a high possibility of immune

escape and a reduced efficacy of immunotherapy. Numerous

immunological checkpoint-related genes (36) were found to show

differential expression between the two groups (Supplementary

Figure 5). These included BTN3A1, CD276, and CD274, which

exhibited higher expression in the high-risk group.
3.7 Prediction and verification of potential
anticancer drugs

The TCGA database revealed a link between the risk score and the

M2 marker CD163 (Figure 8A). First, we indirectly co-cultured THP1

with the culture media of tumor cells to study the expression of

prognostic genes in glioma-associated macrophages, in order to further

explore the therapeutic applicability of the various prognostic genes.

When the tumor culture media of A172, TJ905 and U87MG cells were

co-cultured with THP1 after PMA treatment, it was observed that the

expression of C3 and SLA genes was considerably elevated, while the

expression ofAP1B1,CD53,GAL3ST4, PLEKHO2, PLXDC2, SLC37A2,

and TREM2 genes showed significant reduction (Figure 8B). The risk

model formula was used to calculate the scores of the four treatment

groups. The results showed a correlation between the risk scores and

the CD163 expression (Figure 8C).
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Based on the expression pattern of the risk model, we investigated

the potential associated between GAMs markers genes and drug

sensitivity. We utilized the CTRP and GDSC datasets to gain

insights into the clinical application of prognostic genes

(Supplementary Table S12). There were four drugs identified with a

correlation greater than 0.5 with the risk score (Figure 8): Linsitinib

(correlation=0.57, P<0.001), Doramapimod (correlation=0.53,

P<0.001), Vorinostat (correlation=0.51, P<0.001), Lapatinib

(correlation=0.51, P<0.001). Among them, Vorinostat exhibited the

lowest IC50. Moreover, in the direct co-culture model, Vorinostat

demonstrated a significant inhibitory effect on the U87-THP1 co-

culture model (Figures 8E, F, Supplementary Figure 6), indicating that

in can affect the reciprocal tumorigenicity between the tumor cells and

macrophages, with therapeutic implications for this prognostic model.

We used a mouse co-culture model to analyze the expression of 14

prognostic genes after co-culture and Vorinostat treatment, and found

that genes such as Abi3, Cd53, Cybb, Rin3, Sla, Sla37a2, and Cd163

showed an upregulation after co-culture and a downregulation after

Vorinostat treatment (Supplementary Figure 8), suggesting that

Vorinostat might affect the expression of Cd163 and the malignancy

of GAMs by modulating these genes. As shown in Figure 8F and

Supplementary Table S13, Vorinostat primarily inhibited glioma cell

growth by affecting macrophages. We further investigated the effect of

Vorinostat on macrophage-related immune checkpoints of GAMs

using an indirect co-culture model. Interestingly, Vorinostat
FIGURE 7

Immune landscape associated with the risk signatures. (A) Analysis of GSVA among the patients of two risk groups. (B) TIDE score for high-risk and
low-risk groups (****p <0.0001).
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FIGURE 8

Prediction and validation of the potential anticancer drugs. (A) Correlation between CD163 expression and risk score in the TCGA database (p <0.0001).
(B) Differences in mRNA expression of various prognostic genes and CD163 in the indirect co-culture model (*p <0.05; * *p <0.01; * * *p <0.001;
* * * *p <0.0001). (C) Expression of CD163 and risk score in the indirect co-culture model. (D) Potential anticancer drugs were predicted using signature
genes and a risk score. (E) The U87MG (RP) was cocultured with the PMA-induced adherent THP1 (GP), and the treatment groups were then treated
with Vorinostat. (F) Analysis of growth of U87MG and U87MG cocultured with PMA-induced adherent THP1 before and after Vorinostat treatment.
(G) Expression of macrophage-related immune checkpoints of THP1 before and after the treatment with Vorinostat in the U87MG-THP1 indirect
co-culture model (*p <0.05; * *p <0.01; * * *p <0.001; * * * *p <0.0001). (H) The expression of Cd163 in RAW264.7 cells at the protein level,
with GL261 conditioned medium and Vorinostat as variables.
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significantly reversed the expression of CD163 and Cd163 in GAMs

(Figures 8G, H), which could be related to the downregulation of IL-6-

related signaling pathways. However, unexpectedly, the levels of PD1,

SIRPa, and certain integrins were increased, implying that the

utilization of Vorinostat along with PD1 or other targeted drugs

may be beneficial in the treatment of glioma.
4 Discussion

Glioma is a complex tumor composed of both tumor and non-

tumor cells. It has been established that most of these non-tumor

cells are GAMs, including intracranial resident microglia and

myeloid-derived macrophages, which play critical role in glioma

development, progression, and response to therapy (8). Microglia

are intracranial resident macrophages that originate from the yolk

sac and persist by replenishing themselves. They play important

roles during each specific developmental stage of the central

nervous system (37). BMDMs are recruited early in glioma

genesis and localize in perivascular niches, thereby potentially

contributing to further glioma progression (6). As GAMs

infiltrate brain tumors, microglia exhibit distinct transcriptional

profiles and activation states in the co-educational environment of

tumors due to their distinct chromatin landscapes derived from

BMDMs (38). Therefore, understanding the spatiotemporal

characteristics of each component of GAMs is crucial for

effectively treating glioma.

Multiple pathways have been demonstrated to contribute to the

promotion of glioma development when glioma cells interact with

GAMs. For example, the increase in microglia is associated with

reduced expression of the chemokine receptor CX3CR1, which is

responsible for guiding macrophage migration (39), while the

activation of microglia is linked with increased c-Jun-NH2-kinase

signaling (40). Microglia secrete various paracrine factors, including

hyaluronidase, to promote proliferation of astrocytes with

Neurofibromatosis type 1 gene (NF1) heterozygosity (41).

Osteopont in (OPN) plays an important ro le in the

immunosuppressive properties of macrophages, acting as a

potential chemokine that facilitates infiltration of macrophages

into GBM by interacting with integrin avb5 (42). Glioma stem

cells (GSCs) secrete periostin (POSTN), a protein primarily found

in the perivascular zone, and recruit GAMs through integrin avb3 to
promote tumor progression (34). GAMs can also induce Matrix

metalloproteinase-9 (MMP-9) expression and increase the

invasiveness of GSCs by releasing Transforming Growth Factor-b
(TGF-b) (43).

The growing interest in GAMs-based therapies stems from the

crucial role GAMs play in the development of glioma. In terms of

immune checkpoints, CD47 is a cell surface molecule which

functions as an immune checkpoint, while signal regulatory

protein a (SIRPa) is a heterogeneous receptor found on

macrophages. CD47 enhances the ability of tumor cells to evade

macrophage phagocytosis by participating in SIRPa (44). In the

GBM TME, the inhibition of CD47 can effectively re-educate GAMs

to unlock the therapeutic potential of tumor cell phagocytosis (45,
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46). In preclinical studies, GSC-specific chimeric antigen receptor

(CAR) macrophage/microglia based on the nanotransporter-

hydrogel superstructure showed demonstrated significant

tumoricidal immunity and the ability to inhibit GBM recurrence

in preclinical studies (47). As a small molecule inhibitor, RRx-001

can polarize the low phagocytic M2 phenotype of tumor-associated

macrophages to a high phagocytic M1 phenotype, and can decrease

the levels of CD47 on cancer cells and SIRPa on macrophages

simultaneously (48). It showed low toxicity and antitumor activity

in the preclinical studies.

We evaluated the M2 macrophage content of TCGA-GBMLGG

patients using four different immune infiltration scores and

observed that glioma patients with a higher M2 macrophage

content had significantly worse prognosis. The correlation

between M2 macrophages and glioma prognosis was confirmed.

We extracted M2 macrophage module genes by WGCNA,

intersected with 3 groups of macrophages and 1 group of

microglia identified by the single-cell database, and ultimately 99

M2-like GAMs-associated genes were obtained. After univariate

regression analysis, multivariate regression analysis and LASSO

regression analysis, 14 different prognosis-related genes (TREM2,

GAL3ST4, AP1B1, SLA, CYBB, CD53, SLC37A2, ABI3, RIN3, SCIN,

SIGLEC10, C3, PLEKHO2 and PLXDC2) were screened to construct

the prognostic features.

According to literature findings, TREM2 has previously been

found to play an important role in the function of microglia in

neurodegenerative diseases. With the development of single-cell

sequencing, it has also been found to be highly expressed in myeloid

subpopulations of GBM patients and is associated with poor

prognosis. Knockdown of TREM2 can reverse the M2-like

polarization of GAMs and may even facilitate the application of

immune checkpoint therapies in GBM (49, 50). SLA is found in the

amplified region in GBM, thereby suggesting that its overexpression

may be important in the development of GBM (51). The role of

CYBB in GBM radioresistance and its potential as a prognostic

marker for radiotherapy in GBM patients have been identified (52).

In a study comparing the effects of GBM regorafenib and lomustine

treatment, it was found that regorafenib group with higher CD53

expression had a longer survival rate than the lomustine group (53).

CD53 is a member of the tetraspanin family, known for its

involvement in various signal transduction processes and

influence on cell development, activation, growth, and mobility.

CD53 has been identified as a tumor initiation marker in cancer

stem cells. ABI3 has also been reported as a key gene of

disulfidptosis in low-grade gliomas, which is associated with

patient prognosis and immune microenvironment (54). SCIN

expression is associated with MMP2/9 activation, immune

infiltration, and a decreased survival rate. It can serve as a

potential target gene for glioma immunotherapy and a biomarker

for predicting the survival (55). SIGLEC10 play a significant role in

the regulation of inflammation in glioma through its close

association with mediators, cells, and pathways involved in this

process. In the TME, SIGLEC10 can act in conjunction with some

immune checkpoints to promote the progression and metastasis of

glioma by affecting the immune response (56). C3 is a critical
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component of the innate immune system and is involved in the

regulation of the epithelial-mesenchymal transition, local immune

response, and the TME, It can be used as a diagnostic biomarker

and a potential target for precision therapy in LGG patients (57).

The current focus of research on C3 in glioma is primarily centered

on the tumor itself, with limited investigation into its presence and

role in the surrounding glioma microenvironment (58, 59). Current

advances in technologies such as single-cell sequencing, are

expected to provide novel insights and methodologies for

studying the genes associated with M2-like GAMs.

After four different groups were formed using unsupervised

consensus clustering of the TCGA-GBMLGG data based on the 14

genes associated with prognosis and revealing a potential

relationship between these 14 genes and prognosis, Kaplan-Meier

survival analysis exhibited significant differences among these four

groups. The patients’ risk score was calculated based on our

prognostic criteria, and the patients were thereafter divided into

high-risk and low-risk groups using the optimal cut-off value. We

found that the prognosis of patients with high-risk patients was

significantly worse than that of low-risk patients. Through GSEA

enrichment analysis, we observed that the high-risk group was

enriched in M2 macrophages and cancer-related pathways, which

implies that investigating the significance of integrins (60, 61) and

interleukins in the context of glioma warrants further exploration.

The above results demonstrate that the prognostic features have

high performance and can effectively predict glioma prognosis

independently of other factors in the training set. Additionally,

we conducted an external validation of the CGGA database and

demonstrated the wide applicability and reliability of its prognostic

features in the test set. We created nomograms according to our

feature-based risk scores and the patients’ clinicopathologic

indicators to generate different metrics that can be used to assess

patients’ prognosis from different perspectives.

Our prognostic signature not only accurately predicted the

prognosis of glioma patients, but it also highlighted the possible

relationship between risk groups, the immune system, and response

to immunotherapy. Regarding immune cells, we used four immune

infiltration scores to evaluate the content of immune cells. The high-

risk group exhibited a significantly greater number of M2macrophages

in comparison to the low-risk group. However, the abundance of other

cells in the glioma microenvironment was not as high and the findings

varied across the algorithms. In terms of immune function, “interferon

a response”, “interferon g response”, and “IL-2 STAT5 signaling

pathway” were enriched in the high-risk group. Based on our risk

grouped model, the heterogeneity of the glioma TME could be the

underlying factor for variations in glioma prognosis. It is imperative to

extensively assess the applicability of each immune infiltration

algorithm within the glioma microenvironment, and to employ both

immune function and single-cell sequencing analysis to gain a more

comprehensive understanding of the glioma immune landscape.

We next studied and evaluated potential cancer drugs together

with signature genes and risk groups. We identified Vorinostat as the

drug most sensitive to the risk score. It has been reported that

Vorinostat can enhance the level of histone acetylation by inhibiting
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the activity of histone deacetylase. It can inhibit the growth of GBM

cells under in vivo and in vitro settings (62), and improve the

prognosis of GBM patients in combination with radiotherapy (63).

However, the relationship between drugs and characteristic genes

needs to be further investigated. The co-culture model demonstrated

that Vorinostat can affect glioma cell growth through its action on

macrophages. Thus, to investigate the mechanism of action of

Vorinostat, we examined various macrophage-related immune

checkpoints. Polarized M2 macrophages can promote tumor

phenotypes, including glycolysis and proliferation, through the

release of IL6 (64). The decrease in CD163 levels in THP1 cells in

the indirect co-culture model following Vorinostat treatment could

potentially be associated with the reduction in IL6 expression.

Interestingly, the treatment of Vorinostat upregulated the expression

of CD40, PD1, SIRPa and some integrins. The epigenetic regulation of

Vorinostat is expected to produce identifiable changes in immunity

and metabolism, as it plays a crucial role in maintaining a balance

between histone acetylation and deacetylation (13–15, 65). Our

research has discovered the ability of Vorinostat to reverse the

tumor immune microenvironment, so the combination of HDAC

inhibitors and targeted drugs could be a promising approach for

targeting the immune microenvironment of glioma. We will continue

to focus on the role of Vorinostat and other histone deacetylase

inhibitors in the glioma-associated immune microenvironment.
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