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Qingdao, Shandong, China, 2School of Basic Medicine, Qingdao University, Qingdao,
Shandong, China, 3Institute for Translational Medicine, The Affiliated Hospital of Qingdao University,
Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
Circular RNAs (circRNAs) are a class of non-coding RNAs (ncRNAs) generated

through the reverse splicing of mRNA precursors (pre-mRNAs). They possess a

unique loop structure and exhibit remarkable stability. CircRNAs have emerged

as promising biomarkers for cancer, with specific circRNAs playing crucial roles in

cancer drug discovery, treatment, and resistance mechanisms. N6 methyl

adenosine (m6A) represents the most prevalent RNA modification in

eukaryotes. In 2017, researchers identified that m6A modifications also occur

in circRNAs, displaying unique characteristics. m6A-modified circRNAs undergo

reversible regulation mediated by enzymes involved in m6A modification

pathways. These modified circRNAs interact with m6A-binding proteins,

thereby influencing processes such as alternative splicing, translation and

degradation. Some circRNAs enhance their metabolism or facilitate nuclear

export to the cytoplasm by interacting with enzymes involved in m6A

regulation. The study of m6A-modified circRNAs has gained great attention in

circRNA research due to their association with various diseases. This review

summarizes the functional mechanisms of circRNAs regulated by m6A

modifications and their implications in cancer occurrence and therapy, with a

primary focus on the genesis, regulatory mechanisms, and functional roles of

m6A-modified circRNAs in the biology of diverse types of cancers. Additionally,

we explore the potential application of m6A-modified circRNAs in clinical

cancer treatment.
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GRAPHICAL ABSTRACT
1 Introduction

Cancer remains a leading cause of mortality worldwide (1–3).

Its development is characterized by intricate alterations in multiple

processes and the dysregulation of numerous factors (4). A key

contributor to this complexity is the disruption of cellular

metabolism and signaling pathways that govern cell growth,

leading to uncontrolled alterations in energy production and

metabolic requirements that promote cell proliferation (5).

Despite significant progress in therapeutic approaches such as

chemotherapy, radiotherapy, surgery, endocrine therapy, and

other approaches (6, 7), the efficacy of cancer treatment remains

unsatisfactory, particularly for patients with advanced stages of the

disease. This limitation can be attributed to tumor cells’ ability to

evade death when exposed to therapeutic stress, thereby developing

resistance against treatments. Additionally, the effectiveness of

different anti-cancer medications may also be compromised due

to changes in the transportation, metabolism, and interactions with

drug targets. Another important factor is that tumor cells

themselves can gain survival advantages through mechanisms that
Frontiers in Oncology 02
prevent cell death, repair DNA damage, activate autophagy, modify

the tumor microenvironment (TME), induce epithelial-

mesenchymal transition (EMT), and other processes. Although

substantial advancements have been made, further elucidation of

the pathogenesis of cancer is essential to identify more precise

treatment strategies. Circular RNAs (circRNAs) exhibit strong

associations with the growth, programmed cell death, and

invasion of various cancer cells highlighting their potential as

novel therapeutic targets or biomarkers (4).

CircRNA, a unique type of non-coding RNA (ncRNA)

generated through specialized splicing processes, exhibits distinct

characteristics such as its stable circular structure. It plays a vital

role in the biological processes underlying various diseases,

particularly cancer. Recently, there has been growing interest in

elucidating the involvement of circRNA in the treatment of cancer

drug resistance. Multiple studies have identified circRNAs as

potential targets for therapy and biomarkers for cancer. In diverse

disease contexts, circRNA has been shown to regulate key cellular

processes, including autophagy (8), apoptosis (9), cell cycle (10),

and proliferation (11). Consequently, it holds promising prospects
frontiersin.org
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for therapeutic applications. Research on the relationship between

circRNA and cancer can be broadly categorized into two aspects:

one aims to utilize differential expression levels of circRNA in

cancer tissues as potential diagnostic markers for cancer (12), while

the other investigates the regulatory roles of circRNA in cancer

development and progression (13).

With the increasing depth of circRNA research, it has been

demonstrated that N6-methyladenosine (m6A) modification can

occur in circRNAs, which is one of the most prevalent RNA

modifications in eukaryotic cells. This reversible modification

plays a critical regulatory role in various aspects of RNA

metabolism, including transcription, processing, splicing, and

translation (14–17). The regulatory function of m6A is primarily

controlled by three similar factors referred to as ‘writers,’ ‘erasers,’

and ‘readers’. These factors are responsible for the reversible

methylation of m6A-modified RNA and identification of the

modified sites (18–21). In 2017, Cell Research published the first

evidence demonstrating m6A modification in circRNA and its

potential to enhance circRNA translation. Subsequently, Cell

Reports confirmed that m6A modification is widely present in

circRNAs (22). Further analysis conducted on human embryonic

stem cells (hESCs) validated the presence of m6A modification in

both circRNAs and their corresponding linear RNAs (23).
Frontiers in Oncology 03
CircRNAs with m6A modifications have been implicated in

various diseases including cancer (24), immune system disorders,

neurodegenerative diseases (25), and cardiovascular diseases (26).

This comprehensive review systematically summarizes recent

advancements in elucidating the mechanisms by which m6A

modifications contribute to cancer pathogenesis, circRNA-related

therapies, and their clinical applications.
2 m6A modification of circRNA

2.1 Overview of circRNA

As a distinct class of endogenous ncRNAs, circRNAs form a

covalently closed loop structure via a reverse splicing mechanism

(27). In contrast to other RNA species such as mRNAs, microRNAs

(miRNAs), and long noncoding RNAs (lncRNAs), circRNAs lack a

5′-terminal cap structure and a 3′-terminal poly(A) tail, enabling

them to form a specialized loop structure. This unique structural

feature renders circRNA is less susceptible to degradation by

ribonuclease R (RNase R), thereby enhancing their stability (28).

CircRNAs play crucial roles in transcriptional regulation,

splicing regulation, and translational regulation (Figure 1).
FIGURE 1

Functional mechanisms of circRNAs. Biological functions of circRNAs include transcriptional regulation, splicing regulation, binding to RBP to exist as
a protein scaffold, miRNA sponging, and protein translational regulation.
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As transcriptional regulators, circRNAs regulate the transcription

process of genes by interacting with RNA polymerase II (Pol II)

or other transcription factors (29). Additionally, circRNAs

can hybridize with DNA to form R-loop structures, thereby

influencing gene transcription. For instance, circSEP3 in

Arabidopsis thaliana induces transcription pauses and generates

alternatively spliced mRNAs by forming R-loops with parental

DNA sites (29). CircRNAs also participate in splicing regulation

by affecting splice site selection, facilitating exon skipping, and

acting as sponges for splicing factors (29). Furthermore, circRNAs

act as miRNA sponges by binding to miRNAs, preventing their

interaction with target mRNAs and indirectly regulating the

expression of downstream target genes (30–32). For example, in

Parkinson’s disease, the upregulated expression of circSNCA and

circPANK1 promotes dopaminergic neurons degeneration by

inhibiting miR-7, which increases the expression of a-synuclein
(33). Moreover, some circRNAs contain internal ribosome entry

sites (IRES), which can directly recruit ribosomes and initiate

translation to produce biologically functional proteins. circFGFR1

drives translation through its IRES to produce proteins with

dominant negative regulatory functions (33). Additionally,

circRNAs can influence the translation efficiency of mRNAs by

interacting with translation-associated factors (29).

In summary, circRNAs exhibit multifaceted functions in the

regulation of gene expression, and their mechanisms of action are

complex, diverse, and dependent on their interactions with other

molecules. As research progresses, the significance of circRNAs in

biology and medicine is expected to become increasingly prominent.
2.2 m6A modification

The m6A modification represents one of the most prevalent and

abundant types of RNA modification in eukaryotes (34). It plays a

crucial role in the entire RNA life cycle, encompassing transcriptional

regulation, maturation, translational regulation, degradation, and

stability maintenance of mRNAs (34). m6A methylation is a

dynamic and reversible process mediated by three key regulators

involved in m6A modification: the enzyme responsible for adding

methyl groups to mRNAs (referred to as the “m6A writer”), the

enzyme responsible for removing methyl from mRNA (referred to as

the “m6A remover”), and the protein responsible for recognizing m6A-

modified sites (referred to as the “m6A reader”) (35). The regulatory

enzymes and recognition proteins are summarized in Table 1.

m6A modification plays a regulatory role in biological processes

through the dynamic interplay of “writers", “erasers” and “readers".

m6A methyltransferases, known as “m6A writers", promote mRNA

modification through the addition of m6A. The m6A

methyltransferases, known as “m6A writers", promote mRNA

modification by adding m6A. METTL3, the core catalytic enzyme

for m6A modification, is responsible for methylating the N6

position of adenosine in RNA. It forms a heterodimer with

METTL14 to enhance its catalytic activity (53). Additionally,

WTAP, a key auxiliary protein for m6A modification, facilitates

the localization of the METTL3/METTL14 complex to nuclear
Frontiers in Oncology 04
TABLE 1 M6A regulatory protein details.

Type Factor Mode
of action

Reference

Writers METTL3 The
main
methyltransferase.

(36)

METTL14 Form
heterodimer
with METTL3.

(37)

WTAP Stable METTL3-
METTL14
complex

(38)

RBM15/15B Directs METTL3-
METTL14
heterodimer to
specific sites.

(39)

VIRMA Auxiliary
METTL3-
METTL14
complex
positioning.

(40)

ZC3H13 Combine
with WTAP.

(41)

METTL16 Catalyzes
m6A
modification.

(42)

Erasers FTO Removes
m6A
modification.

(43)

ALKBH5 Removes
m6A
modification.

(44)

ALKBH3 Removes
m6A
modification.

(45)

Readers YTHDF1 Promotes
mRNA
translation.

(46)

YTHDF2 Promotes
mRNA
degradation.

(47)

YTHDF3 Cooperate with
YTHDF1
or YTHDF2.

(48)

YTHDC1 Promotes mRNA
splicing
and export.

(49)

YTHDC2 Improve the
translation
efficiency of
target mRNA.

(50)

IGF2BP1 Promotes the
stability and
translation
of mRNA.

(49)

HNRNPC/G Regulate the
abundance and
splicing of Mrna.

(51, 52)
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speckles and enhances its catalytic activity (54). The assistance of

the auxiliary ligand protein RBM15/15B is also required to help the

METTL3-METTL14 heterodimer to be spliced correctly, to ensure

that the methyltransferase complex is correctly localized in the

nucleus while maintaining its stability, and to recruit specific RNA

substrates (39). In addition to the canonical m6A modifications, an

independent RNA methyltransferase called METTL16 has been

identified, which catalyzes m6A modifications on the 3’UTR and

U6 mininucleotide RNAs of mRNAs (42). m6A modifications are

introduced by the methyltransferase, which can be subsequently

removed by the m6A demethylase (34). m6A demethylases include

mainly Fat mass and obesity-associated protein (FTO) and ALKB

homolog 5 (ALKBH5). FTO was first identified in 2011 as the first

demethylating enzyme capable of reversing m6A modifications in

vivo, significantly stimulating interest in the study of m6A

modifications (43). Subsequently, ALKBH5 was also identified as

another key enzyme involved in m6A removal. ALKBH5 plays an

important role in a variety of cancer-related biological processes

and represents one of the hotspots of research in this field (44). In

addition to m6A writers and erasers, m6A modification involves a

key class of enzymes, the m6A methyl-recognizing enzymes, often

referred to as “m6A readers”. These readers primarily consist of the

YTH N6-methyladenosine RNA-binding protein (YTHDF) family.

In the cytoplasm, the YTHDF family consists of YTHDF1,

YTHDF2, and YTHDF3, each of which plays a different role.

Specifically, YTHDF1 promotes the translation of mRNAs,
Frontiers in Oncology 05
whereas YTHDF2 mainly contributes to the degradation of

mRNAs; comparatively, YTHDF3 is also involved in promoting

mRNA translation (44, 46, 48). Additionally, the insulin-like growth

factor-2 mRNA-binding protein (IGF2BP) family also plays a key

role as another important m6A readers. In contrast to the YTH

structural domain family proteins, which promote mRNA

degradation upon binding to m6A-modified RNA molecules, the

IGF2BP family proteins can stabilize mRNAs (49).

In summary, m6A modification, as a pivotal epigenetic

modification, plays a crucial role in the regulation of gene

expression and various biological processes through its dynamic

and reversible regulatory mechanism. Future studies are expected to

further elucidate its specific functions under diverse physiological

and pathological conditions and investigate its potential as a

therapeutic target for diseases.
2.3 Regulation of circRNA by m6A
modifications

A recent study demonstrated that circRNAs are direct targets of

m6A modification (55). In recent years, the understanding of the

functional mechanisms of m6A-modified circRNAs in diseases has

been gradually deepening. Here, we summarized that m6A-

modified circRNAs play crucial roles in transcriptional regulation,

splicing regulation, and translational regulation (Figure 2).
FIGURE 2

Regulatory mechanisms of m6A-modified circRNAs. These mechanisms include transcriptional regulation, splicing regulation, and
translational regulation.
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The m6A modification represents one of the most abundant

RNA modifications in eukaryotes and can significantly influence

circRNA stability and metabolic processes. Studies have

demonstrated that m6A modifications regulate the intracellular

localization and stability of circRNAs by interacting with “reader”

proteins such as YTH family proteins (56). For instance, m6A

modifications can facilitate the nuclear-to-cytoplasmic transport of

circRNAs, thereby enhancing their potential to act as miRNA

sponges or translational templates (57). Moreover, m6A

modifications play a critical role in circRNA biosynthesis. By

interacting with splicing factors, m6A modifications can modulate

exon selection and splicing efficiency, thereby influencing circRNA

formation (58). In some cases, m6A modifications can promote the

jumping of specific exons, thereby affecting circRNA production

(57). m6A-modified circRNAs can regulate the translation process

through multiple mechanisms. On the one hand, m6A modification

can enhance the stability of circRNAs so that they stay in the

cytoplasm for a longer period of time, thereby increasing their

chances of serving as miRNA sponges or translation templates. On

the other hand, m6A modification can promote circRNA

translation. For example, has been shown that m6A modification

enhances the activity of the internal ribosome entry site (IRES) on

circRNAs, thereby initiating the translation process. Furthermore,

m6A modifications can also regulate circRNA function during

translation by modulating their interactions with RNA-binding

proteins (57).

In summary, m6A-modified circRNAs play pivotal roles in

transcriptional regulation, splicing regulation, and translational

regulation. The realization of their functions depends on the

precise modulation of circRNA metabolic processes mediated by

m6A modifications. These findings provide valuable insights into the

role of circRNAs in gene expression regulation and identify potential

targets for the diagnosis and treatment of associated diseases.
3 The role of circRNA in
tumorigenesis and therapy

3.1 circRNAs as promising biomarkers for
cancer diagnosis and prognosis

In recent years, substantial advancements have been achieved in

the investigation of circRNAs as potential biomarkers for cancer.

CircRNAs possess unique structural features, such as a covalently

closed loop structure, a long half-life, and cell-type specificity,

which allow them to show great potential in cancer diagnosis and

therapeutic monitoring (59).

CircRNAs are highly expressed in the plasma and blood of

patients with various cancers and can serve as potential biomarkers

for early disease detection, particularly for cancers that are typically

diagnosed at late stages, such as pancreatic ductal adenocarcinoma

and glioblastoma (59). Additionally, alpha-fetoprotein (AFP) and

alpha-fetoprotein agglutination reaction have been utilized for
Frontiers in Oncology 06
diagnosing and predicting the prognosis of hepatocellular

carcinoma (HCC) (60). By analyzing and normalizing

microarrays data from HCC tissues and adjacent non-tumor

tissues, differential expression patterns of multiple circRNAs were

identified in HCC tissues (61). Notably, elevated ciRS-7 levels were

found to correlate with microvascular invasion and AFP levels in

HCC patients (62). These findings suggest that circRNAs hold

promise as diagnostic and prognostic markers for HCC. Despite

their cell-type specificity, ideal tumor biomarkers should exhibit

exclusive expression in tumors. Moreover, smaller and more

heterogeneous tumors may not produce sufficient circRNAs to be

detected by conventional assays (e.g., PCR), necessitating the

development of more sensitive but potentially costly assays, which

remains a technological challenge for researchers to address.
3.2 circRNAs and cancer chemotherapy
resistance

The role of circRNAs in cancer chemoresistance is gradually

gaining attention. Studies have shown that circRNAs are involved in

the process of chemoresistance in cancer through multiple

mechanisms and are expected to be a new target for drug

resistance research and treatment (63–65).

There is a wide variety of chemotherapy drugs, and doctors can

choose the most effective drug based on the type of cancer and the

specific needs of the patient. However, cancer cells may gradually

develop resistance to chemotherapeutic drugs, leading to a decrease

in treatment efficacy. However, circRNAs play a key role in resistance

to cancer chemotherapy and targeted therapy drugs. Studies have

shown that circ0004674 develops resistance to chemotherapy in

osteosarcoma cells and tissues, thereby affecting their prognosis.

This resistance may be achieved through modulation of apoptosis-

related pathways (66). Further studies on drug resistance showed that

circPAN3 acts as a mediator of drug resistance in acute myeloid

leukemia through the miR-153-5p/miR-183-5p-XIAP axis (67). This

mechanism provides important new insights into the role of

circRNAs in mediating drug resistance in AML. In addition,

circAKT3 showed high level expression in cisplatin (DDP)-resistant

cancer cells and tissues. Similarly, circ0081143 promotes DDP

resistance by regulating the miR-646/CDK6 pathway. Knockdown

experiments targeting these molecules were able to inhibit tumor

formation while significantly increasing the sensitivity of cancer cells

to DDP (63). These findings provide new insights into addressing

drug resistance during cancer treatment.

The existence of drug resistance poses a major challenge to

cancer treatment. CircRNA’s mechanism of action in cancer

chemotherapy resistance is becoming clearer, and its research as a

marker of drug resistance and a therapeutic target is being

deepened, providing new ideas and directions for cancer

treatment. Future studies will further reveal the specific

mechanism of circRNA in drug resistance and explore its clinical

application value.
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3.3 The potential of circRNA in tumor
immunotherapy

In recent years, the prospect of circRNA application in tumor

immunotherapy has gradually attracted attention. circRNAs have

the advantages of high stability, low immunogenicity and tissue-

specific expression, which make them show great potential in tumor

immunotherapy (68).

circRNAs can regulate the tumor immune microenvironment

and affect the expression of immune checkpoints through multiple

mechanisms. In non-small cell lung cancer (NSCLC), circFGFR1

acts as a competitive endogenous RNA for miR-381-3p and

regulates the expression of CXCR4. Inhibition of CXCR4

enhances the sensitivity of NSCLC cells to PD-1 immunotherapy,

suggesting that circFGFR1 may promote resistance to anti-PD-1

therapy (69). CircRNAs can serve as vaccine vectors that encode

tumor antigens to elicit immune responses. Small circRNA vaccines

delivered via lipid nanoparticles are able to express antigens

consistently for more than a week in vivo, triggering robust T cell

responses. In a mouse model, the small circRNA vaccine

significantly suppressed a variety of poorly immunogenic tumors,

including melanoma resistant to immune checkpoint blockade (70),

when combined with immune checkpoint inhibitors. Thus, further

exploration of the involvement of circRNAs in cancer immune

responses and tumor immunotherapy will greatly contribute to the

discovery of more convenient ways to treat cancer. In addition, it

was found that lysogenic poxvirus-mediated antitumor effects could

be regulated through the circRNA-103598/miR-23a-3p/interleukin-

6 axis. In addition, many tumor-expressed circRNAs can be

secreted into the bloodstream via exosomes with high stability

and enrichment (69). Thus, circRNAs can be used as tumor

markers in liquid biopsies for tumor detection and prediction of

immunotherapy efficacy.

CircRNAs show potential for multiple applications in tumor

immunotherapy, including modulation of immune checkpoints, as

vaccine carriers, and as liquid biopsy markers. With deeper research

and technological advances, circRNAs are expected to provide new

strategies and methods for tumor immunotherapy, bringing more

therapeutic options to patients.
4 m6A modifications mediate circRNA
metabolism in cancer

4.1 Metabolism-related gene expression

m6A modification indirectly affects the expression of

metabolism-related genes by regulating circRNA stability. It has

been shown that m6A modification can regulate the adsorption

ability of circRNAs to miRNAs, thereby deregulating the

inhibitory effect of miRNAs on metabolism-related genes.

tIGAR (TP53-induced regulator of glycolysis and apoptosis)

plays a key role in regulating metabolic reprogramming in

cancer cells, and changes in its expression level directly affect

the proliferative capacity of cells (34). This mechanism provides
Frontiers in Oncology 07
new perspectives for understanding the molecular basis of cancer

and offers potential targets for developing new cancer

therapeutic strategies.
4.2 Metabolic enzyme activity

The m6A modification is one of the most abundant RNA

modifications in eukaryotes, which is widely involved in gene

expression regulation and plays an important role in metabolic

reprogramming in cancer. Recent studies have shown that m6A

modification promotes cancer development by regulating circRNA

stability, subcellular localization and function, which in turn affects

metabolic enzyme activities.

m6A modification indirectly affects metabolic enzyme

expression by regulating circRNA stability. It has been shown

that m6A modification can regulate the adsorption ability of

circRNAs to miRNAs, thereby deregulating the inhibitory effect

of miRNAs on metabolic enzyme genes (e.g., TIGAR) (71). m6A

plays a key role in regulating metabolic reprogramming in cancer

cells, and changes in its expression level directly affect the

proliferative capacity of cells (71). m6A modifications not only

affect the expression of metabolic enzymes, but may also directly

or indirectly affect the activity of metabolic enzymes. For example,

it was found that m6A modification affects the balance of

glycolysis and the pentose phosphate pathway (PPP) by

regulating the expression of TIGAR (71). In addition, m6A

modifications may also promote metabolic reprogramming in

cancer cells by regulating the expression of other metabolism-

related genes and affecting metabolic enzyme activities. m6A

modifications are aberrantly expressed in cancer and are closely

associated with the activities of a variety of metabolic enzymes.

For example, in hepatocellular carcinoma, high expression of

METTL3 was positively correlated with G6PD expression, and

patients with low expression of METTL3 and high expression of

G6PD had a relatively better prognosis (71). This suggests that

m6A modification may be a potential target for cancer therapy by

regulating the activity of metabolic enzymes.

The m6A modification indirectly affects the expression and

activity of metabolic enzymes by regulating circRNA stability,

which in turn regulates metabolic reprogramming and

proliferation of cancer cells. This mechanism provides a new

perspective for understanding the metabolic regulation of cancer

and offers potential targets for the development of new cancer

therapeutic strategies.
4.3 Metabolic signaling pathway

In pancreatic cancer, m6A-modified circRNAs play an

important role by regulating metabolism-related signaling

pathways. A study found that METTL3-mediated m6A

modification can significantly affect circCEACAM5 expression,

which in turn promotes pancreatic cancer progression through

activation of the DKC1 signaling pathway (72). Although this study
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did not directly explore how DKC1 affects metabolic signaling

pathways, considering the critical role of DKC1 in cell

proliferation and metabolism, it is hypothesized that it may

promote metabolic reprogramming of pancreatic cancer cells by

regulating intracellular metabolic enzyme activities or metabolic

signaling pathways (e.g., PI3K/AKT, mTOR, etc.). This finding

provides a new perspective for understanding the role of m6A

modifications in the regulation of cancer metabolism and offers

potential targets for the development of new cancer

therapeutic strategies.
5 Interaction of m6A modifications
with circRNAs in cancer development
and therapy

With the deepening understanding of circRNA and m6A

modifications, it has become increasingly evident that both

circRNAs and m6A modifications play pivotal roles in cancer

detection and treatment. Moreover, m6A modifications may

influence the biological functions of circRNAs and contribute to

their resistance to cancer therapies. This article offers a concise

summary of recent studies on the regulatory mechanisms and

functional roles of m6A-modified circRNAs in malignant tumor

treatment (Figure 3, Table 2).
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In colorectal cancer (CRC), m6A-modified circNSUN2 has

been shown to promote tumor liver metastasis. Research indicates

that circNSUN2 expression is upregulated in the tissues and sera of

patients with CRC liver metastases and correlates with poor

prognosis. m6A-modified circNSUN2 facilitates nuclear-to-

cytoplasmic transport by binding to the m6A recognition protein

YTHDC1. In the cytoplasm, circNSUN2 interacts with the

IGF2BP2 protein to form the circNSUN2/HMGA2 mRNA/

IGF2BP2 complex, which enhances HMGA2 mRNA stability and

facilitates CRC metastasis (73). Additionally, circRNAs can

modulate the activity of m6A-modified enzyme through various

mechanisms. For example, circYAP encodes a truncated YAP

protein isoform (YAP-220aa) via m6A modification in CRC. This

truncated isoform competitively binds to LATS1, blocking YAP

phosphorylation and activating the YAP signaling pathway, thereby

promoting tumor invasion and liver metastasis. Moreover, circ-

YAP expression is transcriptionally regulated by YAP, forming a

positive feedback loop that further drives CRC progression (74).

The interplay between m6A modification and circRNA offers novel

therapeutic targets for CRC treatment. In summary, the interaction

between m6A modifications and circRNAs in CRC development

and therapy holds significant biological implications and clinical

application value. Future studies will further reveal its complex
FIGURE 3

Regulatory mechanisms of m6A-modified circRNAs in the treatment of malignant tumors. These malignancies include colorectal cancer (CRC),
bladder cancer (BCa), hypopharyngeal squamous cell carcinoma (HPSCC), breast cancer (BC), non-small cell lung cancer (NSCLC), prostate cancer
(PCa), osteosarcoma (OS), ovarian cancer (OC), renal cell carcinoma (RCC), hepatocellular carcinoma (HCC), esophageal squamous cell carcinoma
(ESCC), gastric cancer (GC), laryngeal squamous cell carcinoma (LSCC) and cervical cancer (CC).
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TABLE 2 m6A modified circRNA in various cancers.

Cancer
type

circRNA m6A modified enzyme Mechanism Reference

CRC

circNSUN2 YTHDC1
Facilitates its transport from the nucleus to
the cytoplasm.

(73)

circYAP YTHDF3
Activates the YAP signaling pathway by
blocking YAP phosphorylation through
competitive binding to LATS1.

(74)

BCa circ0008399 WTAP, METTL3, METTL14
Interaction with WTAP promotes the assembly
of the WTAP/METTL3/METTL14 m6A
methyltransferase complex.

(75)

HPSCC circCUX1 METTL3
METTL3 promoted m6A methylation of
circCUX1, thereby stabilizing its expression.

(76)

BC circMETTL3 METTL3
Its expression was upregulated through the
circMETTL3/miR-31-5p/CDK1 pathway.

(77)

NSCLC

circIGF2BP3 METTL3, YTHDC1
YTHDC1-dependent mechanism promotes
its cyclization.

(78)

circKRT17 METTL3
Nuclear localization of YAP1 was facilitated by
recruitment of EIF4A3.

(79)

PCa

circRBM33 METTL3, METTL14
Regulation of PDHA1 mRNA stability by
interaction with FMR1 protein.

(80)

circRPS6KC1 METTL3, YTHDF1
Regulation of prostate cancer cell senescence
through the FOXM1/PCNA axis.

(81)

OS

circKEAP1 METTL3, METTL14, YTHDF2
Regulates its stability by interacting with the
m6A modifiers METTL3, FTO and YTHDF1/2.

(82)

circRNF220 METTL3
Upregulates survivin expression by acting as a
sponge for miR-330-5p.

(83)

circCTNNB1 RBM15
Promotes m6A modification through RBM15
interaction to drive the glycolytic process.

(84)

OC circPLPP4 METTL3, IGF2BP1
Mediation of cisplatin (CDDP) resistance in OC
through the circPLPP4/miR-136/PIK3R1 axis.

(85)

RCC

circMET YTHDC1, YTHDF2
Dependent m6A modification promotes its
cytoplasmic translocation, thereby enhancing the
decay of CDKN2A mRNA.

(86)

circPPAP2B HNRNPC
By interacting with HNRNPC to promote
HNRNPC nuclear translocation.

(87)

circPOLR2A YTHDF2

By regulating UBE3C-mediated ubiquitination
and degradation of PEBP1 protein and further
activating the ERK pathway during cRCC
progression and metastasis.

(88)

HCC circMDK IGF2BP2
Stimulation of the PI3K/AKT/mTOR signaling
pathway through the miR-346/874-3p-
ATG16L1 axis.

(89)

ESCC

circCREBBP METTL3, IGF2BP3
Enhancement of ESCC radiosensitivity by
reducing MYC mRNA stability through
interaction with IGF2BP3.

(90)

circ0006168 METTL3, IGF2BP2
The expression of circ0006168 in cells was
increased in an IGF2BP2-dependent manner.

(91)

GC

circORC5 METTL14
Inhibition of GC progression by regulating the
miR-30c-2-3p/AKT1S1 axis.

(92)

circPAK2 YTHDC1
Interacts with IGF2BPs to form the circPAK2/
IGF2BPs/VEGFA complex to stabilize
VEGFA mRNA.

(93)

(Continued)
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regulatory mechanism and explore its potential applications in

CRC therapy.

Although some progress has been made in understanding the

mechanisms of m6A modification and circRNA function in CRC,

many questions remain to be further investigated. For instance, the

regulatory mechanism of m6A modification on circRNAs may vary

across different cancer types, necessitating additional experimental

validation. Moreover, the roles of circRNAs and m6A modification

in tumor immunotherapy warrant deeper exploration.
5.2 Bladder cancer

In bladder cancer (BCa) tissues and cell lines, eukaryotic

translation initiation factor 4A3 (EIF4A3) promotes the

upregulation of circ0008399 expression and inhibits apoptosis in

BCa cells. Mechanistically, Wei et al. demonstrated that

circ0008399 interacted with WTAP and facilitates the assembly of

the WTAP/METTL3/METTL14 m6A methyltransferase complex, a

finding that suggests targeting this axis may hold potential

therapeutic value (75). Collectively, these findings provide

potential therapeutic targets for circRNA-mediated m6A

modification in BCa.
5.3 Hypopharyngeal squamous cell
carcinoma

Hypopharyngeal squamous cell carcinoma (HPSCC) is a

common malignancy in otorhinolaryngology head and neck

surgery, with squamous cell carcinoma comprising over 90% of

head and neck tumors (99). In radiotherapy-resistant HPSCC

patients, circCUX1 exhibits upregulation, and a subsequent study

demonstrated that METTL3 promotes m6A methylation of

circCUX1, thereby stabilizing its expression (76). This finding

underscores the potential of targeting circCUX1 modification by
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m6A as a therapeutic strategy to overcome radiotherapy resistance

in HPSCC patients.

Currently, only limited progress has been made in elucidating

the mechanisms of action of m6A modification and circRNAs in

HPSCC, and further research is needed to explore the potential of

m6A modification and circRNAs in the early diagnosis and

personalized treatment of HPSCC.
5.4 Breast cancer

Breast cancer (BC) is the most commonly diagnosed

malignancy in women and the leading cause of cancer-related

deaths worldwide (100). CircMETTL3, a METTL3-derived cyclic

RNA, has garnered significant attention in BC research due to its

biological functions and potential mechanisms. In BC, circMETTL3

expression is markedly upregulated, promoting cell proliferation,

migration, and invasion. m6A modification of circMETTL3

regulates its expression via the circMETTL3/miR-31-5p/CDK1

pathway, thereby driving BC progression (77). Additionally,

METTL3, the host gene of circMETTL3, may regulate

circMETTL3 expression in an m6A-dependent manner but does

not affect METTL3 expression itself (77). This finding establishes a

novel connection between circRNAs and their corresponding host

genes, highlighting the potential therapeutic strategy of targeting

circMETTlL3 for BC treatment.
5.5 Non-small cell lung cancer

Lung cancer is the leading cause of cancer deaths globally. Non-

small cell lung cancer (NSCLC), which includes lung

adenocarcinoma (LUAD) and lung squamous carcinoma (LUSC),

represents the most prevalent form of lung malignancy (101). In

NSCLC, overexpression of circIGF2BP3 suppresses T-cell activity,

thereby impairing the immune response against tumor cells.
TABLE 2 Continued

Cancer
type

circRNA m6A modified enzyme Mechanism Reference

LSCC

circMMP9 IGF2BP2
Recruitment of ETS1 stimulates TRIM59
transcription, which in turn activates the PI3K/
AKT signaling pathway.

(94)

circCDK1 IGF2BP2
Activation of the PI3K-AKT signaling pathway
via EIF4A3-circCDK1-IGF2BP2-CPPED1.

(95)

CC

circCCDC134 ALKBH5, YTHDF2
Fine-tuning by ALKBH5-mediated m6A
modification enhances its stability in a
YTHDF2-dependent manner.

(96)

circ0000069 METTL3
Specific binding to sponge miR-4426 promotes
CC cell proliferation and migration.

(97)

circ0081723 ZC3H13
Promotes CC progression by regulating the
AMPK/p53 pathway.

(98)
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However, METTL3 promotes m6A modification of circIGF2BP3,

facilitating its cyclization via a YTHDC1-dependent mechanism

(78). CircRNA microarray analysis revealed upregulation of

circKRT17 and METTL3 in ositinib-resistant LUAD cells, and

knockdown of circKRT17 and METTL3 enhanced the sensitivity

of LUAD cells to ositinib. Mechanistically, METTL3 stabilizes

circKRT17 by enhancing m6A modification, which promotes

nuclear localization of YAP1 through recruitment of EIF4A3 (79).

These findings offer novel insights into potential therapeutic

strategies for ositinib-resistant LUAD patients.
5.6 Prostate cancer

Prostate cancer (PCa) is the most common non-skin

malignancy among men globally. It is estimated that

approximately 1.6 million men are diagnosed with PCa annually

worldwide, and about 366,000 (102) die from the disease each year.

In PCa, m6A-modified circRNAs may play an important role in

tumor progression. Studies have demonstrated that circRBM33

expression is significantly higher in PCa cells compared to normal

cells and tissues. CircRBM33 interacts with FMR1 protein via m6A

modification to form a binary complex, which regulates PDHA1

mRNA stability and provides energetic support for the proliferation

and metastasis of PCa cells (80). Additionally, m6A-modified

circRPS6KC1 regulates PCa cell senescence through the FOXM1/

PCNA axis, highlighting the importance of m6A modification in

tumor cell senescence (81). The interaction between m6A

modification and circRNAs in PCa development and therapy

represents a complex yet promising research area. Future studies

will further elucidate the specific mechanisms underlying this

interaction and provide novel strategies for PCa diagnosis

and treatment.
5.7 Osteosarcoma

Osteosarcoma (OS) is a malignant tumor originating from

bone marrow plasma cells and predominantly occurs in the

middle-aged and elderly population. In recent years, m6A

modification-mediated circRNAs in OS have been extensively

studied. In OS, the expression of circKEAP1 is regulated by

m6A modification. It has been demonstrated that circKEAP1

interacts with the m6A modifiers METTL3, FTO, and YTHDF2,

and the methylation status of its m6A modification site (A565G)

regulates circKEAP1 stability (82). Additionally, METTL3-

mediated upregulation of circRNF220 enhances survivin

expression by acting as a sponge for miR-330-5p, thereby

promoting OS progression (83). yang et al. revealed that

circCTNNB1 promotes m6A modification through interactions

with RBM15, driving glycolytic processes and activating OS

progression (84). Collectively, m6A modifications and circRNAs

exhibit complex interactions in OS development and treatment,
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influencing the biological behavior of OS by regulating each

other’s expression and function. These findings provide novel

insights into precision diagnosis and drug development for OS.
5.8 Ovarian cancer

Ovarian cancer (OC) is a highly aggressive malignancy that is

often diagnosed at an advanced stage. Although this cancer initially

responds well to platinum-based chemotherapy, the majority of

patients experience recurrence following initial surgery and

chemotherapy (103), highlighting the urgent need for new

therapeutic strategies. The m6A-induced circPLPP4/miR-136/

PIK3R1 axis mediates cisplatin (CDDP) resistance in OC,

suggesting that circPLPP4 may serve as a promising therapeutic

target for CDDP-resistant OC (85). Further investigation into the

interactions between m6A modifications and circRNAs, as well as

their regulatory mechanisms in OC, is expected to identify novel

biomarkers and therapeutic targets, thereby providing innovative

strategies for the diagnosis and treatment of OC.
5.9 Renal cell carcinoma

Renal cell carcinoma (RCC) is a malignant tumor originating

from the epithelium of renal tubules and accounts for 80% to 90% of

renal malignancies. In recent years, an increasing number of studies

have focused on the interaction between m6A modifications and

circRNAs in RCC, which jointly regulate tumor progression and

drug resistance. Researchers investigated circMET, derived from the

MET gene in Xp11.2 translocation/NONO-TFE3 fusion renal cell

carcinoma (NONO-TFE3 tRCC) (86). YTHDC1 promoted the

cytoplasmic translocation of circMET through an N6-

methyladenosine (m6A)-dependent mechanism, thereby

enhancing CDKN2A mRNA decay and promoting the

proliferation of NONO-TFE3 tRCC (86). In addition, the

regulatory role of m6A modification of circPPAP2B in the

proliferative and metastatic capacity of ccRCC cells. CircPPAP2B

interacts with HNRNPC in an m6A-dependent manner, promoting

HNRNPC nuclear translocation and facilitating ccRCC

proliferation and metastasis (87). CircPOLR2A plays an

important role in the proliferation and metastasis of clear-cell

renal cell carcinoma (cRCC), with strong expression observed in

metastatic cRCC tissues. In cRCC tissues, circPOLR2A regulates

UBE3C-mediated ubiquitination and degradation of PEBP1

protein, further activating the ERK pathway during cRCC

progression and metastasis. The m6A reader YTHDF2 regulates

circPOLR2A expression in cRCC (88). Thus, circPOLR2A may

serve as a potential target for the diagnosis and treatment of cRCC.

Taken together, the complex interactions between m6A

modifications and circRNAs in RCC onset, progression and drug

resistance provide potential targets for developing new

therapeutic strategies.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1554888
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2025.1554888
5.10 Hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is the most common primary

malignant liver tumor and is associated with high lethality. Genetic

and epigenetic aberrations are frequently observed in HCC (104).

m6A modifications and circRNAs act synergistically to promote cell

proliferation in HCC cells. Specifically, m6A-modified circMDK

activates the PI3K/AKT/mTOR signaling pathway via the miR-346/

874-3p-ATG16L1 axis, thereby promoting cell proliferation (89).

The complex interplay between m6A modification and circRNAs

plays a critical role in HCC development treatment, and further

investigation of their relationship may facilitate the identification of

novel therapeutic strategies and biomarkers.
5.11 Esophageal squamous carcinoma

Esophageal squamous cell carcinoma (ESCC) is a malignant

tumor originating from the epithelial squamous cells and is

associated with high morbidity and mortality. It has been

demonstrated that circCREBBP is closely linked to m6A

modification and radiosensitivity in ESCC. CircCREBBP,

modified by m6A, interacts with IGF2BP3 to reduce MYC mRNA

stability, thereby enhancing ESCC radiosensitivity (90).

Additionally, METTL3-mediated m6A modification upregulates

the expression of circ0006168 in an IGF2BP2-dependent manner,

promoting ESCC cell proliferation, migration, invasion, cell cycle

progression, and inhibiting apoptosis (91). In conclusion, circRNAs

modified by m6A may serve as potential therapeutic targets

for ESCC.
5.12 Gastric cancer

Gastric cancer (GC) is the fifth most common cancer and the

third leading cause of cancer-related deaths globally (105).

mETTL14-mediated m6A modification of circORC5 inhibits GC

progression by regulating the miR-30c-2-3p/AKT1S1 axis (92).

circPAK2, through YTHDC1-dependent m6A methylation, is

exported from the nucleus to the cytoplasm and interacts with

IGF2BPs to form a circPAK2/IGF2BPs/VEGFA complex,

stabilizing VEGFA mRNA and thereby promoting GC

angiogenesis and invasiveness (93). This process highlights the

critical role of m6A modification and circRNAs in tumor

development and provides potential therapeutic targets for

GC treatment.
5.13 Laryngeal squamous cell carcinoma

Laryngeal squamous cell carcinoma (LSCC) is a common

malignancy affecting the head and neck region, causing severe

impairment of voice, breathing, and swallowing functions. The

presence of circMMP9 plays a critical role in determining the

poor prognosis of LSCC, and its knockdown effectively attenuates
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the proliferation and metastasis of LSCC cells. Additionally,

IGF2BP2 functions as an m6A reader to regulate the stability of

circMMP9 (94). Li et al. demonstrated that EIF4A3-induced

upregulation of circCDK1 inhibits the m6A modification of

CPPED1 in an IGF2BP2-dependent manner, thereby promoting

the progression of LSCC (95). These findings suggest that m6A

modification-mediated circRNAs may serve as novel diagnostic and

prognostic markers or potential therapeutic targets for LSCC.
5.14 Cervical cancer

Cervical cancer (CC) is the most prevalent gynecologic

malignancy. However, the prognosis of recurrent and metastatic

CC remains unsatisfactory, highlighting the need to identify new

therapeutic targets to enhance the anti-tumor efficacy in advanced

CC. Researchers identified a circRNA, circCCDC134, which was

upregulated in CC tissues through circRNA-Seq analysis. This

circRNA was primarily stabilized by ALKBH5-mediated m6A

modification in a YTHDF2-dependent manner, thereby

enhancing tumor proliferation and metastasis (96). Additionally,

circ0000069 maintained its stability via m6A modification and

specifically acted as a sponge for miR-4426, promoting CC cell

proliferation and migration (97). Conversely, ZC3H13-mediated

m6A modification of circ0081723 promotes CC progression by

regulating the AMPK/p53 signaling pathway (98). These findings

suggest that targeting circRNA demethylation may represent a

promising therapeutic strategy and provide a novel regulatory

model for investigating the oncogenic mechanisms of m6A-

modified circRNAs in CC.
6 Clinical prospects of m6A
modification-mediated circRNAs in
cancer

6.1 As a cancer diagnostic and prognostic
marker

Manym6A-modified circRNAs exhibit expression levels in cancer

tissues or body fluids that are distinct from normal tissues and can

serve as potential diagnostic markers. circNSUN2 expression is up-

regulated in tissues and sera of patients with CRC liver metastases and

correlates with poor prognosis (73). In addition, m6A-modified

circSTX6 was highly expressed in HCC and CC and could serve as

a potential marker for the diagnosis of these cancers (56). As circRNA

has a covalent closed-loop structure, it is more stable than linear RNA,

less susceptible to degradation, and able to persist in body fluids such

as blood, facilitating its use as a marker for cancer diagnosis (106). In

the serum of patients with CRC liver metastases, the expression level

of circNSUN2 can be used as a diagnostic indicator (73). The

expression levels of some m6A-modified circRNAs are closely

related to the clinicopathological features of cancer, such as tumor

size, stage, grading, and lymph node metastasis, and can be used as

indicators for prognostic assessment. For example, high expression of
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circSTX6 in hepatocellular carcinoma was correlated with the

aggressive phenotype of the tumor and predicted a poorer

prognosis (107).
6.2 Providing new targets for cancer
therapy

m6A-modified circRNAs and the pathways they regulate

provide new targets for cancer drug development. For example,

the METTL3/circSTX6/SPI1 feedback loop plays an important role

in cervical cancer (56), and drug development targeting this loop is

expected to be a new direction for cervical cancer treatment. In

addition, FTO, as the first m6A demethylase identified, has become

a hotspot for the development of targeted anticancer drugs. A

variety of FTO-targeted inhibitors have been developed, including

MO-I-500, meclofenamic acid (MA), FB23, R-2HG, and rhodopsin,

which significantly inhibit the proliferation of cancer cells by

inhibiting the enzymatic activity of FTO (108).

In summary, the use of m6A-modified circRNAs as biomarkers

allows for early screening and evaluation of drug efficacy. By

detecting the changes in circRNA expression before and after

treatment, the inhibitory effect of drugs on tumors can be

assessed, providing a basis for drug development and

clinical application.
6.3 Combination applications for cancer
therapy

Removal of m6A modifications on certain circRNAs or

disruption of their interactions with associated proteins results in

enhanced sensitivity of tumor cells to chemotherapeutic drugs. For

example, disruption of CENPA-m6A-cenRNA interactions results

in abnormal chromosome segregation and genomic instability in

cancer cells, inhibits cancer cell growth, and enhances their

sensitivity to mitogen-associated drugs (109). m6A-modified

circRNAs may be involved in regulat ing the tumor

microenvironment, attenuating chemotherapy-induced side effects

such as immunosuppression by modulating immune cell function

or cytokine expression. side effects such as immunosuppression.

Resistance of some cancer cells to radiotherapy is one of the

important reasons for treatment failure. Studies have shown that

m6A-modified circRNAs play a key role in the development of

radiotherapy tolerance. circCUX1 mediates radioresistance by

binding to the mRNA 3’-UTR of Caspase-1 (76). circRNF13 is a

novel circRNA modified with N6-methyladenosine (m6A), which is

capable of enhancing the expression of Caspase-1 by enhancing the

expression of Caspase-1 (76). circRNF13 is a novel circRNA

modified by N6-methyladenosine (m6A). RNA, which is able to

enhance the radiation tolerance of CC cells by enhancing the

stability of CXCL1 mRNA, which in turn enhances the radiation

tolerance of cervical cancer (110).

m6A-modified circRNAs regulate the function of immune cells

and enhance the body’s immune response to tumors. By regulating
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ability of dendritic cells can be affected, thereby enhancing T cell-

mediated immune responses (111, 112). m6A-modified circRNAs

can affect immune cell infiltration and cytokine secretion in the

tumor microenvironment, thereby regulating the immune

microenvironment and enhancing the efficacy of immunotherapy

(78, 113).

The mechanism of m6A-modified circRNAs in cancer has not

been fully clarified and further in-depth studies are needed. In

addition, the specificity and safety of m6A-modified circRNAs as

therapeutic targets still need to be verified. In terms of clinical

application, the detection and monitoring techniques of m6A-

modified circRNAs still need to be further optimized. With the

in-depth study of the mechanism of m6A-modified circRNAs in

cancer and the continuous progress of detection and monitoring

technologies, m6A-modified circRNAs are expected to play a

greater role in the diagnosis, prognosis and treatment of cancer.

In the future, m6A-modified circRNAs are expected to be used in

combination with chemotherapy, radiotherapy, immunotherapy

and other therapeutic means to provide more effective treatment

options for cancer patients.
7 Conclusions and perspectives

Although significant progress has been made in cancer

treatment, satisfactory therapeutic outcomes have yet to be

achieved due to issues such as drug resistance. Scientists have

been actively exploring new cancer treatment targets, including

circRNAs. CircRNAs are a class of ncRNAs with a closed loop

structure, and their abnormal expression can regulate various

activities, including apoptosis, proliferation, autophagy, and cell

necrosis. Moreover, some abnormally expressed circRNAs can serve

as biomarkers for diseases, particularly cancer (12). With

advancements in circRNAs and m6A research, it has been

revealed that m6A modification plays an extremely critical role in

circRNA function. However, the investigation of m6Amodification,

circRNAs or m6A-modified circRNAs in cancer remains

insufficiently comprehensive and in-depth. Further exploration of

the relationship between m6A modification, circRNAs, and cancer

may uncover new avenues for research and could become a novel

hotspot in cancer studies.

In this review, by analyzing numerous scholarly articles on

circRNA and cancer, we found that m6A modification is present in

many circRNAs and participates in the regulation of its biogenesis,

subcellular localization, and degradation through m6A-mediated

mechanisms, potentially leading to abnormal expression and

movement of circRNAs. Simultaneously, we also observed that

M6A modification not only occurs in circRNAs but also in RNA-

binding proteins (RBPs) capable of binding to circRNAs, which are

closely associated with key tumor suppressor or anti-cancer factors

in cancer. Research on m6A modification in cancer has progressed

toward drug therapy applications (114). For instance, screening for

ALKBH5 inhibitors revealed that imidazobenzoxazin-5-thione

MV1035, a new sodium channel blocker, can inhibit ALKBH5,
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thereby reducing glioblastoma (GBM) invasion (115). Additionally,

it was found that METTL3 deletion enhances the sensitivity of

pancreatic cancer cells to anticancer drugs, such as gemcitabine, 5-

fluorouracil, and DDP, while having minimal effects on cell

morphology and proliferation (116). The discovery and

application of these m6A targeted modulators may provide new

and effective strategies for cancer treatment and overcoming drug

resistance. Investigating the role m6A modification in circRNA-

mediated cancer regulation represents an interesting topic worthy

of further study, and more precise detection of m6A modification in

circRNAs will depend on advancements in detection technologies.

CircRNAs regulated by m6A modifications have important

research value as a potential therapeutic target, but their reliability

in translational research still faces some challenges, especially in the

presence of high mutation rates. m6A modification sites of circRNAs

that are mutated may affect their binding to m6A recognition

proteins, which in turn may alter their function. For example, a

mutation in the m6A site of circZNF609 results in a reduction of its

translation efficiency by approximately 50% (117). The uncertainty of

such mutations may affect the reliability of circRNAs based on m6A

modifications as therapeutic targets. Therefore, further studies are

needed in the future to determine which m6A-modified circRNAs

have critical roles in specific diseases and have relatively lowmutation

rates to improve target reliability.

In addition to m6A modifications, circRNAs (118), compared

to other modifications that may be relatively limited in distribution

and function. In addition, m6A modifications are highly conserved

across species (118), which allows them to play key roles in a wide

range of biological processes that other modifications may not

possess. m6A modifications are uniquely advantageous and

important in the regulation of circRNAs, and future studies will

further reveal the potential for their application in biology and

medicine. m6A modifications’ The dynamics of m6A modification

is one of its important features, and further studies are needed to

investigate the dynamics of m6A modification and its regulatory

mechanism in different cellular states and environments in the

future. Meanwhile, the m6A modification may be inter-regulated

with other RNA modifications (e.g., m5C, m1A, etc.), and the

interactions between these modifications and their biological

significance need to be further investigated in the future.

The research on the effect of m6A modified circRNAs on cancer

treatment resistance remains in a stage that requires substantial data

support. Current detection methods for m6A modifications in

circRNAs primarily include MeRIP-seq (119), methylation iCLIP

(miCLIP), m6A label seq and DART seq (120–122). However, these

methods have certain limitations and may be prone to false
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positives. Therefore, there is still a need to develop novel and

more accurate detection techniques to identify m6A-modified

circRNAs in cancer, thereby elucidating their roles in anti-cancer

mechanisms and drug resistance.
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