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patients: an MRI radiomics and
machine learning approach
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Xuelian Wang1, Cancan Zhao1 and Longshan Shen2*

1Department of Radiology, The First Affiliated Hospital, Bengbu Medical University, Bengbu,
Anhui, China, 2Department of Radiology, The Second Affiliated Hospital, Bengbu Medical University,
Bengbu, Anhui, China
Background: Machine learning methods play an important role in predicting the

efficacy of chemoradiotherapy in patients with nasopharyngeal carcinoma

(NPC). This study explored the predictive value of machine learning models

based on multimodal magnetic resonance imaging (MRI) radiomic features for

the efficacy in patients with advanced NPC after clinical chemoradiotherapy.

Methods: A retrospective analysis was conducted on data from 160 diagnosed

patients with NPC confirmed by pathology at the First Affiliated Hospital of

Bengbu Medical College. Patients were divided into effective group (n=116) and

noneffective group (n=44) according to the Response Evaluation Criteria in Solid

Tumors 1.1 (RECIST 1.1). After the overall Synthetic Minority Over-sampling

Technique (SMOTE) sample balance, the proportion of effective group and

invalid group is 1:1, both 116 cases, the total sample number is 232 cases. The

region of interest (ROI) depicting themaximum solid component of the tumor on

T2-weighted imaging short time inversion recovery (T2WI-STIR), contrast-

enhanced T1-weighted imaging (CE-T1WI), and diffusion-weighted imaging

(DWI) images was delineated, and radiomic features were extracted. Feature

selection was performed through least absolute shrinkage and selection operator

(LASSO) ridge regression, and based on the selected features, six machine

learning models including random forest (RF), Extreme Gradient Boosting

(XGBoost), support vector machine (SVM), logistic regression (LR), Light

Gradient Boosting Machine (LGB) and K-nearest neighbor (KNN) were

constructed. The model performance of the training set was verified by using

the 5-fold cross-validation method, and the effect evaluation and performance

visualization were performed on the test set. After that, the SHAP plot was

established based on the feature weights, and finally the benefit degree of

patients was analyzed using the DCA curve.

Results: A total of 3375 radiomic features were extracted, and 25 important

features were selected after feature extraction to establish six machine learning

models. The RF model exhibited the highest performance, achieving an AUC of
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0.801, accuracy of 0.800, precision of 0.844, recall of 0.750, and F1 score of

0.794 within the test set. DCA results showed that patients could get

good benefits.

Conclusions: The machine learning model based on multimodal MRI radiomic

features may serve as a promising tool for predicting the efficacy of

chemoradiotherapy in patients with advanced NPC.
KEYWORDS

nasopharyngeal carcinoma, radiomics, machine learning, efficacy prediction, magnetic
resonance imaging
Introduction

Nasopharyngeal carcinoma (NPC) arises from the nasopharyngeal

epithelium and ranks as one of the most prevalent malignant tumors

affecting the head and neck in clinical settings (1). In comparison to

other head and neck tumors, NPC has unique epidemiological, clinical

and therapeutic characteristics. According to the relevant data of the

International Agency for Research on Cancer, approximately 70% of

the new cases of nasopharyngeal cancer worldwide in 2020 occurred in

southern China and Southeast Asia (2), with obvious regional

clustering. Patients with NPC have complicated symptoms and

hidden tumor locations anatomically, and surgery is not commonly

the first treatment option for NPC. Currently, the standard treatment

approach involves concurrent chemoradiotherapy (CCRT) with or

without additional adjuvant chemotherapy (AC) and induction

chemotherapy (IC) (3, 4). In particular, with the widespread

application of Intensity-modulated radiation therapy (IMRT) in

NPC, patients with NPC have entered an era of long-term survival

(5). The choice of treatment plan and the prognosis of NPC patients at

different stages and among different individuals are also very different.

Therefore, evaluating the efficacy of NPC patients after

chemoradiotherapy during the treatment course is very important to

formulate appropriate treatment plans in real time and thus improve

the prognosis of these patients.

Magnetic resonance imaging (MRI), with its high soft tissue

resolution, sensitivity and specificity, has been integrated into the

entire workflow of nasopharyngeal cancer management, including

lesion detection and diagnosis, clinical staging, radiotherapy

guidance, and treatment response evaluation (6–8). However,

traditional MRI techniques have limited predictive value for the

efficacy of chemoradiotherapy in NPC, and the advancement of

radiomics, capable of extracting high-dimensional quantitative

features from images beyond human visual recognition, presents a

novel opportunity for this research area. Radiomics refers to the

realization of tumor segmentation, feature extraction and model

building by obtaining a large amount of impact information from

images; mining, predicting and analyzing image data; and assisting

physicians in making the most accurate judgments (9). Therefore, MRI
02
radiomics may provide new insight into the prediction of disease stage,

development, curative effect and prognosis. Machine learning, a subset

of artificial intelligence, allows computers to process vast datasets using

intricate algorithms, recognize data patterns, and continuously enhance

models based on training data to produce their predictions (10, 11).

Recently, numerous studies have explored the use of machine

learning in clinical practice, making it a standard tool for enhancing

the precision of cancer diagnosis and treatment outcomes (12, 13).

A series of studies have shown promising outcomes in using

machine learning to forecast the survival rate and prognosis of

NPC patients (14, 15). However, no relevant studies combining

machine learning with MRI radiomics have been found to predict

the efficacy of chemoradiotherapy in advanced NPC patients.

Therefore, this study aimed to construct a machine learning

model based on multimodal MRI radiomics features to predict

the efficacy of chemoradiotherapy in advanced NPC patients and

detect possible risk factors for local recurrence in a timely manner,

which will help clinicians further improve diagnostic and treatment

measures and follow-up plans, reduce the recurrence rate of NPC,

and improve the prognosis of NPC patients.
Materials and methods

Subjects

The clinical and imaging data of 160 patients who were newly

diagnosed with advanced NPC via pathology between August 2018

and November 2022, including age, sex, tumor size, bloody nasal

discharge, and the presence of lymph node metastasis at initial

diagnosis, were retrospectively analyzed.

The inclusion criteria for patients were as follows (1): confirmed

pathological diagnosis of nasopharyngeal carcinoma (2); clinical

stage II~IV disease (American Joint Committee on Cancer [AJCC]

8th edition) (3); IMRT combined with these chemotherapy

methods: CCRT, IC+CCRT, AC+CCRT; and (4) 3.0T magnetic

resonance examination 2 weeks before treatment and 2–3 months

after treatment.
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The exclusion criteria were (1): prior receipt of other antitumor

therapies before treatment (2); presence of other primary tumors or

severe dysfunction in the heart, liver, kidneys, or other organs; and

(3) lack of complete follow-up data.
Treatment

Every patient received treatment following the nasopharyngeal

cancer diagnosis and treatment guidelines of the Chinese Clinical

Oncology Association. According to the 2020 Chinese Guidelines

for Radiotherapy for Nasopharyngeal Carcinoma, each patient was

administered the Intensity-modulated radiation therapy (IMRT)

plan. IMRT was performed by 6MV linear accelerator, 2–2.33 Gy

each time, 5 times a week, a total of 30–33 times, and the total dose

of radiotherapy was 68–76 Gy. Concurrent chemotherapy regimens

used a single-drug cisplatin regimen, 100 mg/m²/time cisplatin,

intravenous drip, repeated every 21 days and continued from Day 1

to the end of radiotherapy. For patients with advanced NPCa (stage

III~IV), simultaneous chemoradiotherapy is combined with

induction chemotherapy (IC) or adjuvant chemotherapy (AC).

The chemotherapy regimen is based on platinum (cisplatin/

nedaplatin). The IC consisted of 2 cycles and was repeated every

21 days. The ACs were repeated every 21 days for a total of

1~3 cycles.
Evaluation of chemoradiotherapy

MRI of the nasopharynx and neck was performed 2 to 3 months

after treatment. The tumor response rate (TRR) was used to

evaluate the clinical therapeutic effect of the included NPC

patients, and the evaluation criteria were based on the Response

Evaluation Criteria in Solid Tumors 1.1 (RECIST 1.1). The tumor

regression rate (TRR) = (maximum tumor diameter before

treatment - maximum tumor diameter during or after treatment)/

maximum tumor diameter before treatment *100%. A TRR=100%

corresponded to a complete response (CR), a TRR≥30% indicated a

partial response (PR); progressive disease (PD) was documented if

the lesion was ≥20% larger than its size before treatment, or if new

lesion had emerged, and stable disease (SD) falls fell between partial

remission and progression.
MRI image acquisition

A Philips Achieva 3.0T superconducting magnetic resonance

device with dual gradients was employed for serial and functional

imaging sequence scans, and image acquisition was carried out with

a combined head and neck coil. Position: The supine position was

assumed during the scan, with the head first. The patient was asked

to breathe naturally during the scan, which extended from the

nasopharyngeal skull base to the neck. Parameters: Axis T1WI: TR,

400 ms, TE, 3 ms; axial T2WI: TR, 3500 ms, TE, 83 ms, layer

thickness, 2 mm, layer spacing, 0.5 mm, number of excitations
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(NEX), 1. Axis DWI: SE-EPI sequence, TR, 5100 ms, TE, 70 ms,

field of view (FOV), 20 mm×20 mm, layer thickness, 2 mm, layer

spacing, 0.5 mm, NEX1, b values, 0 s/mm²and 1000 s/mm². Then, the

contrast agent gopenate meglumine at a dose of 0.1 mmol/kg was

injected into the cubital vein at a rate of 2 ml/s, and enhanced T2WI-

STIR was performed at the axial, coronal and sagittal positions.
Radiomic features extraction

Axial T2WI-STIR, CE-T1WI and DWI images of patients 2

weeks before treatment were imported into the medical-Darwin

platform in DICOM format. To avoid differences in the sketched

target areas, which would result in large differences in radiotherapy

effects, all the target areas were read and sketched jointly by two

experienced radiology attending physicians and approved by the

same chief physician. The method of manual segmentation was

selected, and according to the principle of target delineation, the

ROI was delineated in the software on the most extensive lesions at

the identical level, which exhibited solid tumor components on

T2WI-STIR, CE-T1WI, and DWI images (Figure 1).

A variety of radiomics features, including shape, first-order,

second-order texture, and higher-order based on transformations,

were derived from the original multimodal MRI data to generate

modified images utilizing the open-source Python library

PyRadiomics. A total of 3375 radiomics features were extracted

from T2WI-STIR images (n = 1125), CE-T1WI images (n = 1125)

and DWI images (n = 1125) for each patient. Second-order texture

features encompass the Gray-Level Co-occurrence Matrix (GLCM),

Gray-Level Size Zone Matrix (GLSZM), Gray-Level Run Length

Matrix (GLRLM), Neighborhood Gray Tone Difference Matrix

(NGTDM), and Gray-Level Dependency Matrix (GLDM).
Radiomics feature selection

The LASSO ridge regression was used for feature selection.

Through 5-fold cross-validation, the alpha value with the smallest

error is selected as the optimal value of the model, and the feature

with non-zero screening coefficient is selected (Figure 2). Finally,

the 25 most significant features, which hold the greatest predictive

value for the effectiveness of chemoradiotherapy in NPC, were

selected as the input variables, including 8 T2WI-STIR features, 12

CE-T1WI features and 5 DWI features.
Machine learning modeling

A total of 160 patients in the dataset were divided into an effective

group (n=116) and an ineffective group (n=44). After applying

SMOTE for sample balancing, the effective and non-effective

groups were adjusted to a 1:1 ratio (116 cases each), resulting in a

total sample size of 232 cases. The dataset is divided into a training set

(n=162) and a test set (n=70) in a 7:3 ratio. Based on the features

selected, six machine learning models, including Random Forest
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(RF), Extreme Gradient Boosting (XGBoost), Support Vector

Machines (SVM), Logistic Regression (LR), Light Gradient

Boosting Machine (LGB), and K-Nearest Neighbor (KNN), are

built. The performance of the models is verified using a 5-fold

cross-validation method, and the effectiveness and performance of

the models on the test set are evaluated and visualized. The model’s

clinical net benefit was assessed using decision curve analysis (DCA).
Statistical analysis

The data were statistically analyzed using SPSS Statistics version

26.0. The Kolmogorov-Smirnov test was applied to determine the

data’s distribution normality. Measurement data that follow a normal

distribution are expressed as the mean ± standard deviation, with

independent samples t-tests used for comparisons between groups.

For data that do not conform to a normal distribution, they are

depicted as [M50(P25, P75)]. The count data are expressed as [n (%)].

P<0.05 was considered statistically significant.
Results

Clinical characteristics of the patients

After statistical analysis (Table 1), statistically significant

differences were found between the effective group and the

noneffective group in terms of the presence or absence of bloody

nasal discharge, T stage and clinical stage (P < 0.05), while no

statistically significant differences in age, sex, tumor size, or lymph

node metastasis at initial diagnosis were identified (P > 0.05).
Feature selection

A cumulative total of 3375 radiomics features were derived from

the multimodal MRI scans for each patient, with 1125 features

obtained from T2WI-STIR, 1125 from CE-T1WI, and 1125 from
Frontiers in Oncology 04
DWI sequences. We used LASSO Ridge regression for feature

selection, and extracted 25 important features from 3375 radiomic

features as input features, including 2 shape features, 8 first-order

features, 3 GLDM features, 5 GLCM features and 7 GLSZM features.
Prediction performance of models

In this research, we employed six distinct machine learning

algorithms to construct a radiomic predictive model within the

training set and subsequently validated its reliability. ROC curves of

various radiomic models predicting the efficacy of chemoradiotherapy

for NPC in the validation set and the test set are shown in Figure 3.

The Random Forest (RF) model had the best performance, with AUC

of 0.801, accuracy of 0.800, precision of 0.844, recall rate of 0.750 and

F1 score of 0.794 in the test set (Table 2). The model performance was

verified by using the 5-fold cross-validation method (Figure 4). Then,

we used the Delong test to compare the differences in AUC between

each model and the RF model (Table 3).
Establishment of DCA curve

DCA analysis was performed to evaluate prognostic decision,

and the application of RF classifier model had good clinical

applicability (Figure 5). It can be known from the DCA curve

that when the threshold probability is within the range of 0.17 to

0.77, the model decision curve is above the extreme curve, and the

corresponding value of the net benefit on the vertical coordinate is 0

to 0.44. That is, when the model predicts a disease probability of

17% to 88%, among 100 patients, 0% to 44% of them can benefit

after the intervention of doctors.
Establishment of SHAP plot

In order to reveal the internal decision mechanism of the model,

SHAP method is used for interpretability analysis. By comparing
FIGURE 1

Manual outline of the ROI schematic based on the maximum tumor level. (A–C) Results of manual lesion segmentation on T2WI-STIR, CE-T1WI and
DWI images, respectively.
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the SHAP values of various features, the contribution of different

features to the RF model impact can be intuitively seen. Each data

point is colored from low (blue) to high (red) according to the value

of the feature. The further to the right the point is, the greater the

positive impact of the feature on the model output. The further to

the left the dot is, the greater the negative impact will be. Through

the Shapley graph in this study, it is found that the wavelet

transform features extracted based on DWI sequence have the

highest Shap distribution interval. As illustrated in Figure 6,

wavelet-HL_glszm_ZoneEntropy_DWI_paramsName1 was the

top feature that contributed the most to the model.
Frontiers in Oncology 05
Discussion

At present, the treatment plan for NPC is moving toward

individualized and precise treatment (16); that is, according to the

varying sensitivity of different patients to treatment, individualized

treatment plans are formulated to accurately evaluate the efficacy of

chemoradiotherapy, which plays a crucial role in guiding the

comprehensive treatment and prognosis of NPC. Given the need

for individualized precision treatment for NPC, we developed a

machine learning model based on MRI radiomics to predict the

efficacy of chemoradiotherapy for NPC. The results of this study
FIGURE 2

Identification of radiomics features using LASSO screening. (A) Curve of regression coefficient with coefficient a. (B) LASSO regression mean square
change curve for each fold.
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demonstrate the potential of the RF model, which achieved good

recognition performance with an AUC of 0.801, accuracy of 0.800,

precision of 0.844, recall rate of 0.750 and F1 score of 0.794 on the

test set. Guiding the comprehensive treatment of advanced NPC

patients is important to avoid inadequate treatment or

overtreatment. The highlights of this study are as follows (1): only

MRI radiomics features were used for modeling (2); feature

extraction was performed using T2WI-STIR, CE-T1WI and DWI
Frontiers in Oncology 06
images; and (3) the machine learning model was used to conduct

5-fold cross-validation, and the results were more reliable.

Predictive models based on radiomic features have been widely

used to evaluate therapeutic effects on various diseases, providing a

noninvasive method for evaluating patient prognosis (17–19). In

previous studies, pretreatment MRI features were used to construct

a model to predict the efficacy of chemoradiotherapy for NPC to

enable treatment plan modification at an early stage (20–22).
TABLE 1 Demographic characteristics of the study population.

Characteristics Total (n=160) Effective group (n=116) Noneffective group (n=44) P

Age (year) 52.0 ± 12.8 51.6 ± 12.8 52.9 ± 12.6 0.581

Sex, n (%) 0.769

Female 41 (25.6) 29 (25.0) 12 (27.3)

Male 119 (74.4) 87 (75.0) 32 (72.7)

Tumor size (cm) 3.2 [2.7, 3.6] 3.2 [2.7, 3.6] 3.1 [2.6, 3.6] 0.439

Bloody nasal discharge, n (%) 0.043

No 96 (60.0) 64 (55.2) 32 (72.7)

Yes 64 (40.0) 52 (44.8) 12 (27.3)

Lymph node metastasis, n (%) 0.594

No 14 (8.8) 11 (9.5) 3 (6.8)

Yes 146 (91.2) 105 (90.5) 41 (93.2)

T stage, n (%) 0.016

T1-T2 83 (51.9) 67 (57.8) 16 (36.4)

T3-T4 77 (48.1) 49 (42.2) 28 (63.6)

Clinical stage, n (%) 0.010

II~III 121 (75.6) 94(81.0) 27 (61.4)

IV 39 (24.4) 22(19.0) 17 (38.6)
The data are presented as the mean ± S.D. or number (%).
FIGURE 3

ROC curves of six machine learning models on the validation set (A), and test set (B).
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Zhao et al. (22) combined clinical data with radiomic features

generated by support vector machines to build a radiomic

nomogram. The results showed that radiomic nomogram based

on MRI-based multi-parameter imaging is helpful for

individualized risk stratification and treatment of NPC patients

receiving IC. However, most of these studies used conventional

T1WI and T2WI for radiomics feature analysis and did not include

DWI images for sketching; therefore, the image information was

incomplete. DWI, as a routine part of nasopharyngeal MRI

protocols, could play a crucial role in assessing the treatment

response and prognosticating outcomes for NPC (23). Within this

research, 25 optimal radiomics features were extracted based on

multimodal MR images. Out of the 25 features used for model

construction, 8 were derived from T2WI-STIR, 12 from CE-T1WI,

and 5 from DWI were selected, which preliminarily indicated that

DWI parameters are of comparable importance. In addition,

through the Shapley graph in this study, it is found that the

features extracted based on DWI sequence have the highest Shap

distribution interval. Studies (24) have shown that CE-T1WI can

reflect the tumor microenvironment and tumor aggressiveness by
Frontiers in Oncology 07
displaying microvascular density and perfusion, and T2WI can

provide tumor morphology and interstitial information. DWI offers

enhanced subvoxel-level details on tumor heterogeneity, capturing

the restricted Brownian motion and tumor microstructure (25, 26).

Compared with other radiomics studies, this experiment extracted

more morphological, textural and transformed high-throughput

radiomic features from the included patient multimodal images

and obtained more abundant image features to maximize the

detailed features of the original images.

Previous studies often used multiple data sources (such as

demographic data, hematological tests, and vital signs) to develop

models predicting treatment efficacy and prognosis for NPC (27–29).

However, similar to findings in most other studies that have
FIGURE 4

The ROC curve is validated by the random forest model with a 5-
fold cross.
FIGURE 5

Decision curve of RF model test set.
TABLE 2 Six machine learning models test set performance.

Model Accuracy Recall Precision F1 AUC

RF 0.800 0.750 0.844 0.794 0.801(0.698-0.905)

XGB 0.743 0.722 0.765 0.743 0.743(0.628-0.859)

SVM 0.700 0.583 0.778 0.667 0.703(0.582-0.825)

LR 0.686 0.667 0.706 0.686 0.687(0.562-0.810)

LGB 0.743 0.722 0.765 0.743 0.743(0.628-0.859)

KNN 0.586 0.278 0.769 0.408 0.598(0.462-0.728)
TABLE 3 Delong test between models.

comparison of models Log10 (P value) P value

XGB-RF -0.5657 0.2726

SVM-RF -1.1803 0.0661

LR-RF -1.0891 0.0815

LGB-RF -0.6282 0.2358

KNN-RF -3.697 0.0002
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established predictive models based on clinical data, patients with

NPCmay also be diagnosed with a number of other diseases that may

cause changes in the clinical markers being studied. In this study, we

used only MRI radiomics features for modeling, which simplified the

modeling process and increased the reliability of the data and

research results. In addition, traditional studies predicting adverse

outcomes or treatment responses are mostly based on multivariate

logistic regression models (30–32), which limit the number of features

that can be used due to the linear assumption between predictors and

outcomes. In contrast, machine learning-based models can use more

parameters when addressing complex relationships between

predictors and outcomes (10). In this study, we selected 6 machine

learning models commonly used in medical problems, Among them,

the test set accuracy, precision and AUC values using RF model are

the highest, which is the optimal model in this study. RF model

introduces randomness, increases the diversity of the model, and can

effectively process high-dimensional data without being affected by

collinearity, which lays a foundation for the clinical significance of

this study in data analysis, and makes it have certain clinical

application value. In addition, in traditional research, data sets are

usually fixed, divided into training sets and validation sets, most of

which do not carry out cross-validation (33, 34). In this study, the

total sample of 160 cases after the overall SMOTE sample balance,

positive and negative sample ratio of 1:1, 116 cases, the total sample

number of 232 cases. Then, the data set was divided into training set

and test set according to the ratio of 7:3, and 5-fold cross-validation

was adopted during training to avoid contingencies in model

evaluation. We analyzed and integrated the data through a
Frontiers in Oncology 08
combination of radiomics and machine learning, and the trained

model is more reliable than traditional logistic regression models.

The study also had some limitations. First of all, due to

limitations in case collection, this study did not use an external

test set to evaluate the model. Future research should focus on

multicenter studies to further validate model performance and

increase model generalizability. Second, this study only included

patients with stage II-IV NPC, and patients with early stage NPC

should be included in the future. Third, Only the radiomic features

of a single sequence of MRI before treatment were extracted, and

multi-parameter and multi-time sequence MRI analysis could not

be carried out. In future studies, we can try to leverage the

comprehensive data of multi-parameter and multi-time sequence

MRI. Fourth, This research did not delve into the specific impacts of

various chemotherapy protocols on patient outcomes, and future

studies should conduct more detailed subgroup analyses on distinct

chemotherapy regimens and drugs. Finally, in this research, only

the two-dimensional ROI at the most extensive level was delineated,

which may have led to the loss of some tumor information. Adding

some 3D features may increase the diagnostic efficiency of the

model, which is worthy of further study.
Conclusion

In conclusion, we have established and verified a predictive

model for chemoradiotherapy outcomes in patients with advanced

NPC, utilizing multimodal MRI radiomic features coupled with
FIGURE 6

SHAP summary plot of RF model. The x-axis represents the SHAP values, reflecting the impact of each feature on the model’s predictions.
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machine learning algorithms. Should our findings be substantiated

in future multi-center studies, this approach could emerge as a

non-invasive predictive instrument to assess the response to

chemoradiotherapy in advanced NPC patients. This would

furnish clinicians with crucial data to formulate more effective

treatment strategies, thereby enhancing clinical decision-making

in the realm of personalized precision medicine.
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