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Circular RNAs (circRNAs) are a new category of non-coding RNAs implicated in

the molecular pathology of cancer, such as oral squamous cell carcinoma

(OSCC). Circular intronic RNAs (ciRNAs), exonic circRNAs (ecircRNAs), and

exon-intron circRNAs (EIciRNAs) are three primary types of circRNAs resulted

from the circularization of extron and intron which give rise to the distinct

biology of circRNAs. Due to their unique structure and biogenesis, circRNAs

exhibit tissue- and cell-specific expression profiles. Recent studies have

highlighted that in OSCC, some circRNAs are differentially expressed

compared with adjacent normal tissues, with these variables potentially

influencing OSCC initiation and progression through diverse mechanisms.

Furthermore, earlier clinical trials have indicated that circRNAs could be

considered as potential therapeutic targets and biomarkers for OSCC. It should

be noted that many circRNAs modulate tumor cells proliferation/apoptosis and

metastasis via regulating gene transcription and post transcriptional expressions.

Furthermore, certain circRNAs function as effective microRNA sponges, thereby

inhibiting oncogenic pathways in OSCC. In summary, the discovery of circRNAs

has unveiled new avenues for cancer research, particularly in OSCC. This review

provides an overview of circRNA biogenesis, their biological functions, and their

roles as differentially expressed molecules in OSCC, emphasizing their potential

for clinical application and warranting further investigation into their functional

and therapeutic relevance.
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1 Introduction

Oral squamous cell carcinoma (OSCC) is a malignant tumor

that is prevalent in the head and neck region, ranking eleventh

among the most common cancers worldwide (1). OSCC arises from

various risk factors, including smoking, chronic betel nut chewing,

human papillomavirus (HPV) infection, and poor oral hygiene,

typically affecting areas such as the tongue, gums, oropharynx, and

buccal mucosa (2, 3). Due to its asymptomatic and non-specific

early-stage presentation, OSCC is often diagnosed at advanced

stages, frequently with lymph node metastasis (LNM) or distant

metastasis (DM) (4). Conventional surgical approaches often fail to

achieve complete remission, necessitating adjunctive therapies like

radiotherapy or chemotherapy to improve survival and prognosis

(5). However, the inherent tumor heterogeneity allows cancer cells

to frequently develop resistance to these treatments, with

approximately 60% of patients with OSCC showing resistance to

radiation or chemotherapy in clinical settings (6). Given these

complexities, the current clinical strategies for OSCC remain

suboptimal, with a five-year survival rate below 60% (7). This

underscores the urgent need to elucidate the molecular

mechanisms driving OSCC in order to identify effective

biomarkers and novel therapeutic targets for clinical application.

The discovery of new disease targets and diagnostic

technologies has brought the prospect of tumor eradication closer

to reality due to recent advances in biology (8). For instance,

identify the non-coding RNAs (ncRNAs), verify their specific

biological functions has challenged the previous notion of these

RNAs as mere ‘genetic byproducts’ (9). Circular RNAs (circRNAs)

are endogenous non-coding RNAs that are covalently closed loop

structures and are expressed everywhere and specifically in

eukaryotic cells. Initially considered byproducts of aberrant

splicing (10), circRNAs are now recognized for their stability, as

their unique closed-loop structure protects them from degradation

by nucleases (11). Furthermore, the circRNAs that are expressed

differently in different diseases and tumor tissues indicate their

tissue- and time-specific functions (10, 12). In addition, exosomes

secreted by oral cancer stem cells also contain circRNAs, which may

similarly influence OSCC progression through intercellular

communication (13). Although many aspects of circRNA biology

remain unclear, accumulating evidence suggests that certain

circRNAs may serve as promising therapeutic targets and

diagnostic/prognostic biomarkers in cancers. This review provides

an overview of the biological activities and mechanisms of

circRNAs, highlighting their vital roles in the tumorigenesis of

OSCC, examining their regulatory mechanisms, and exploring their

potential clinical applications.
2 CircRNAs synthesis (biogenesis)

In eukaryotes, newly synthesized precursor mRNAs consist of

introns and exons that undergo splicing to produce various RNA

forms (14). In classical RNA splicing, the upstream 5’-donor site is

linked to the downstream 3’-acceptor site, where introns are
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removed and exons are ligated to form mature linear mRNAs

(15). In contrast, circRNA formation involves reverse splicing,

where the 3’ end of an exon joins the 5’ end of an intron, creating

a covalently closed circular structure composed of one or more

exons, devoid of a 5’-cap or 3’-poly(A) tail (16, 17). After splicing,

circRNAs can be formed three main types based on their sequence

features: exon-derived circRNAs (ecRNAs), intronic circRNAs

(ciRNAs), and exon-intron complex circRNAs (EIciRNAs). Most

circRNAs originate from exons and are principally distributed in

the cytoplasm, while circRNAs containing intronic sequences are

more abundant in the nucleus (18, 19). Their formation

mechanisms can be categorized as follows (Figure 1).
2.1 Circularization driven by exon skipping

Exon skipping leads to the generation of both linear mRNA and

a lasso-like structure comprising skipped exons and introns (17).

Reverse splicing of this lasso can produce three types of circRNAs:

EIciRNA, ecRNA, and ciRNA (20).
2.2 Intron base pairing

Some circRNAs arise from matching complementary sequences

by base-pairing in the flanking intronic regions of exons, followed

by alternative splicing to form EIciRNAs or ecRNAs (21).
2.3 RBP-mediated circularization

RNA-binding proteins (RBPs) binding to sites within the flanking

intronic regions of exons can bring the splice donor and acceptor sites

into proximity, facilitating circRNA circularization (22).
3 Functions of circRNAs

The subcellular localization of circRNAs determines their

functional diversity (23). Most circRNAs reside in the cytoplasm,

where they function as miRNA sponges, regulating target mRNA

expression through competitive binding to miRNAs at specific

3’UTR regions (24). Some cytoplasmic circRNAs also recruit

ribosomes for translation into proteins or peptides (16). In

contrast, nuclear circRNAs are involved in regulating gene

transcription (18).
3.1 miRNA sponges

Cytoplasmic circRNAs, which contain multiple miRNA

response elements (MREs), competitively sequester miRNAs,

preventing them from binding to mRNA 3’UTRs and thus

modulating mRNA stability (25). For instance, CircHIPK3, widely

expressed in human cells, sponges multiple miRNAs (e.g., miR-30a-
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3p, miR-7, and miR-124-3p), influencing processes such as tumor

growth, metastasis, and angiogenesis (26–28).
3.2 Interaction with RBPs

RBPs are integral to the regulation of gene expression. Certain

circRNAs, characterized by RBP-binding motifs, can form stable

loops through complementary sequences, interacting with proteins

to exert their functions (29, 30). For example, the RBP human

antigen R (HuR), a key player in colorectal cancer, associates with

circRHOBTB3, promoting its ubiquitination and degradation,

which in turn reduces PTBP1 mRNA levels and suppresses tumor

metastasis (31). In LCC and LLN cells, circMTCL1 interacts with

the RBP protein C1Q binding protein (C1QBP), inhibiting its

ubiquitination and degradation, therefore regulating the tumor

progression through Wnt/b-catenin signaling pathway (32).
3.3 Translation (coding)

The cap-dependent ribosome scanning mechanism is the

primary mode of translation in eukaryotes (33). While circRNAs
Frontiers in Oncology 03
were once thought to be non-translatable but recent findings imply

that some circRNAs possess internal ribosome entry sites (IRES) or

m6A modifications in the 5’-UTR, enabling translation (34). In

breast cancer, circSEMA4B both encodes the protein SEMA4B-

211aa and sponge miR-330-3p, inhibiting the phosphorylation of

the PI3K/AKT pathway in tumors (35). In stomach cancer,

circMAPK1 encodes a peptide of 109 amino acids, which binds to

and inhibits MEK1 function (36).
3.4 Regulation of parental gene
expressions

Nuclear-localized EIciRNAs and ciRNAs interact with Pol II

(RNA polymerase II) or U1 snRNP (small nuclear proteins) and

regulating parental gene expression (22). For instance, circSMARCA5

is downregulated in breast cancer while its parental gene SMARCA

is upregulated. circSMARCA5 binds to its parental gene to form

an R-loop, inhibiting transcription and regulating DNA damage

repair and cisplatin resistance (37). Similarly, CircME1 binds to

U1 snRNP at the promoter of its parental gene ME1, positively

regulating its expression and promoting renal cell carcinoma

progression (38).
FIGURE 1

Depiction of the biogenesis and functions of circRNAs. Circular RNAs (circRNA) are synthesized via back-splicing, culminating in a covalently
bonded, closed cyclic nucleotide structure. These circRNAs play a pivotal role in interplaying with RNA Binding Proteins (RBP), acting as sponges for
miRNAs, and vying with mRNAs in the modulation of gene expression and protein translation.
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4 CircRNAs in OSCC

Commonly used methods for detecting circRNAs in

tissues include microarray analysis and RNA sequencing. In

addition, single-cell sequencing technology enables the detection

of circRNAs at the single-cell level, making it particularly suitable

for uncovering cellular heterogeneity. Studies on OSCC have

identified 43 differentially expressed circRNAs (30 upregulated and

13 downregulated), elucidating their roles in the tumorigenesis and

progression of OSCC (Table 1). Mechanistically, many circRNAs act

as miRNA sponges, modulating gene expression across various

stages of OSCC development, including cell proliferation,

apoptosis, cycle arrest, invasion, metastasis, angiogenesis, immune

response, and drug resistance (Figure 2).
5 CircRNAs promote the proliferation,
invasion, and migration in OSCC

Metastasis represents the final stage of cancer progression, including

in OSCC (5). Factors such as the tumor microenvironment, genetic

predispositions, and mutations contribute to the transformation of

normal epithelial cells into tumor cells with excessive proliferative

capacities. These transformed cells form clonal subtypes and acquire

the ability to invade, spread, and colonize distant organs (83). Excessive

proliferation thus serves as a critical driver of tumor development.

Lymphatic and distal metastases resulting from unchecked proliferation

are major contributors to the high recurrence and mortality rates

associated with OSCC (84). Previous studies have pointed out the

anti-tumorigenesis effects of circRNA-miRNA axis in OSCC through

regulating the downstream target gene expressions (85). Key signaling

pathways influenced by this axis are as follows.
5.1 Transforming growth factor beta-
SMADs signal pathway

The TGFb signaling pathway, which includes extracellular

cytokines, cytomembrane receptors, and intracellular signal

messengers, is essential for regulating cell behavior. TGFb receptors

(TGFb R) recruit and activate downstream transcription factors,

SMAD family member 2/3 (SMAD2/3), which, in conjunction

with SMAD4, translocate to the nucleus. There, they regulate

gene transcription, influencing the cell cycle distributions,

cell proliferation/apoptosis, adhesion, and metastasis. In

OSCC, overexpressed circRNAs, such as circEPSTI1 (50) and

circCYPANSK1B (67), promote LTBP2 (Latent Transforming

Growth Factor Beta Binding Protein 2) and TGFb1 expressions by

sponging miR-942-5p and miR-515-5p, respectively. This activation

of the TGFb pathway facilitates OSCC cell proliferation, metastasis,

and invasion. Conversely, circKIAA0907 (74) and circLDLRAD3 (77)

act as potential suppressors of OSCC. Their low expression in OSCC

tissues leads to a failure to sponge miR-31 and miR-558, resulting in
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the indirect inhibition of LATS2 (Large Tumor Suppressor Kinase 2)

and SMAD4. TAK1 (TGF-b activated kinase 1), a pivotal regulatory

factor in cell death by activating downstream effectors, including NF-

kB (Nuclear Factor Kappa B) andMAPKs (mitogen-activated protein

kinases). Over-expressed circSPATA6/miR-182 axis has been shown

to activate TAK1/NF-kB pathway by upregulating TRAF6 (TNF

Receptor Associated Factor 6) expression, thereby promoting the

tumorigenesis in OSCC cells (71). As a key transcription factor,

NF-kB expression and/or activity is also indirectly regulated by

circRNAs in OSCC, including through the circDOCK1/miR-196a-

5p/BIRC3 (51), circZDBF2/miR-362-5p/RNF145 (61), and circITCH/

miR-421/PDCD4 (72) axes, all of which contribute to OSCC

tumorigenesis (Figure 3).
5.2 Phosphatidylinositol-3-kinase-AKT
signal pathway

The PI3K/Akt signaling pathway, activated by RTKs (receptor

tyrosine kinases), is essential in controlling the onset and progression

of numerous cancers, including OSCC, by altering metabolism, cell

proliferation, survival, and angiogenesis (Figure 4). Studies have

demonstrated that the circPDIA4/miR-877-3p axis, which is

overexpressed in OSCC, promotes VEGFA (vascular endothelial

growth factor A) expression. This, in turn, activates PI3K through

its receptor, driving the proliferation of OSCC cell lines SCC9 and

SCC25 (54). Similarly, circHIPK3, which is highly expressed in

OSCC, sponges miR-637 to induce the expression of NUPR1

(nuclear protein 1), thereby activating PI3K and promoting OSCC

cell proliferation, metastasis, and invasion (55). PTEN (phosphatase

and tensin homolog) is a PI3K pathway negative regulatory factor by

inhibiting PI3K activity. In OSCC tissues, the expression of

circATRNL1 is significantly lower compared to adjacent tissues,

which impairs its ability to sponge miR-23a-3p. This results in

reduced PTEN expression, leading to increased PI3K activation and

enhanced tumor progression (80). In OSCC, PI3K activation leads to

phosphorylation of AKT (protein kinase B, PKB), facilitating

downstream signaling. CircRPPH1 (46) and circZNF720 (73)

directly upregulate AKT expression, promoting cell proliferation

and metastasis in OSCC tissues and cell lines. LASP1 (LIM and

SH3 protein 1), a gene associated with lymph node metastasis and

poor clinical prognosis, is upregulated in several malignant tumors,

underscoring its oncological significance. In OSCC, circBCL11B/miR-

579 regulates LASP1 expression, which activates AKT, thereby

influencing OSCC tumorigenesis and progression (65). c-MYC, a

PI3K/AKT pathway downstream transcription factor, is indirectly

upregulated by the circUHRF1/miR-526b-5p axis, contributing to cell

cycle distribution, proliferation, apoptosis, and cell differentiation

(41). In addition to c-MYC, mTOR (mammalian target of

rapamycin) is another critical kinase, is activated by the PI3K-AKT

pathway. mTOR regulates metabolism, immune response, autophagy,

and cell survival. In OSCC, circRPPH1 and circCDR1as, both highly

expressed in tumor tissues, modulate mTOR activity by activating
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TABLE 1 The expression and characteristic features of circRNAs in OSCC.

circBase_ID
(name, expression*)

Spliced source
(length)

Targets
Anti-tumor effects

Cell lines Ref.
A I M P

hsa_circ_0007874
(circMTO1, ↑)

Exons 5-6
(304)

miR-320a/ATRX ✓ ✓ ✓ ✓
CAL-27
HSC-3

(39)

hsa_circ_0006404
(circFOXO1, ↑)

Exons 5
(1,435)

miR-214/KDM2A ✓ ✓
SCC-4
SCC-9

(40)

hsa_circ_0002185
(circUHRF1, ↑)

Exons 12-13
(301)

miR-526b-5p/c-Myc ✓ ✓ ✓ ✓
SCC-25
CAL-27

(41)

hsa_circ_0027451
(circMDM2, ↑)

Exons 4-7
(669)

miR-532-3p/HK2
✓ SCC-25

CAL-27
(42)

Glycolysis (+)

hsa_circ_0001971
(circFAM126A, ↑)

Exons 7-12
(575)

miR-186-5p/FNDC3B
miR-186/SHP2

✓ ✓ ✓
SCC-4
HSC-3
SCC-9

(43)
(44)

hsa_circ_0001682
(circFAM126A, ↑)

Exons 12-13
(181)

miR-186-5/RAB41 ✓ ✓ ✓
CAL-27
UM1

(45)

hsa_circ_0000519
(circRPPH1, ↑)

Exons 1
(98)

Akt/mTOR ✓ ✓ ✓
SCC-25
CAL-27

(46)

hsa_circ_0001361
(circFNDC3B, ↑)

Exons 2–3
(215)

miR-520d-5p/SLC7A11
MDM2/FUS/HIF1A
miR-181c-5p/PROX1

✓ ✓ ✓
CAL-27
SCC-15
HSC-3

(47)
(48)

Ferroptosis (-)

Angiopoiesis (+)

hsa_circ_0001470
(circGOLPH3, ↑)

Exons 2–3
(247)

miR-1299/LIF ✓ ✓ ✓
UM1
HN4

(49)

hsa_circ_0000479
(circEPSTI1, ↑)

Exons 9-13
(375)

miR-942-5p/LTBP2 ✓ ✓
CAL-27
SCC-9

(50)

hsa_circ_0020396
(circDOCK1, ↑)

Exons 3-27
(2,514)

miR-196a-5p/BIRC3 ✓
CAL-27
SCC-9

(51)

hsa_circ_0000579
(circIGHG, ↑)

Exons 2-9
(27,944)

miR-142-5p/IGF2BP3 ✓ ✓ ✓ CAL-27 (52)

hsa_circ_0577725
(circCLK1, ↑)

Exons 7-11
(509)

miR-18b-5p/YBX2 ✓
UM1
HSC-2

(53)

hsa_circ_0001766
(circPDIA4, ↑)

Exons 8-9
(387)

miR-877-3p/VEGFA ✓
SCC-9
SCC-25

(54)

hsa_circ_0000284
(circHIPK3, ↑)

Exons 4
(1,099)

miR-637/NUPR1/PI3K ✓ ✓ ✓
Tca-8113
SCC-9

(55)

hsa_circ_0001821
(circPVT1, ↑)

Exons 3
(410)

miR-125b/STAT3 ✓
CAL-27
SCC-9

(56)

hsa_circ_0011946
(circSCMH1, ↑)

Exons 11-16
(782)

miR-216a-5p/BCL2L2
✓ ✓ ✓ CAL-27

SCC-25
(57)

Cisplatin sensitivity (+)

hsa_circ_0005320
(circSEPT9, ↑)

Exons 10-11
(645)

miR-486-3p/JAK2
miR-1225/PKN2

✓ ✓ ✓

CAL-27
SCC-25
UM1

SCC-15

(58)
(59)

hsa_circ_0001946
(circCDR1as, ↑)

Exons 1
(1,485)

miR-671-5p/mTOR
✓ Tca-8113

SCC-15
(60)

Autophagy (+)

hsa_circ_0002141
(circZDBF2 ↑)

Exons 2-5
(290)

miR-362-5p/RNF145 ✓ ✓ ✓
SCC-9
SCC-15

(61)

hsa_circ_0007813
(circDHTKD1, ↑)

Exons 2-10
(2,504)

miR-326/GAB1 ✓ ✓ ✓
SCC-9
Cal-27

(62)

(Continued)
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TABLE 1 Continued

circBase_ID
(name, expression*)

Spliced source
(length)

Targets
Anti-tumor effects

Cell lines Ref.
A I M P

hsa_circ_0004390
(circLPAR3, ↑)

Exons 3-4
(754)

miR-144-3p/LPCAT1

✓ ✓ ✓

SCC-25
HSC-3

(63)Angiogenesis (+)

Glycolysis (+)

hsa_circ_0005615
(circNFATC3, ↑)

Exons 2
(1,135)

miR-520h/LDHA
✓ ✓ ✓ SCC-25

HSC-3
(64)

Glycolysis (+)

hsa_circ_0033144
(circBCL11B, ↑)

Exons 4
(369)

miR-579/LASP1 ✓ ✓ ✓
CAL-27
SCC-9

(65)

hsa_circ_0001874
(circBICD2, ↑)

Introns 1
(304)

miR-296-5/PLK1 ✓ SCC-9 (44)

hsa_circ_0001162
(circMMP9, ↑)

Exons 12-13
Introns 12 (328)

miR-149/AUF1 ✓ ✓ ✓
UM1
HSC-3

(66)

hsa_circ_0007294
(circANKS1B, ↑)

Exons 5-8
(459)

miR-515-5p/TGF-b1
✓ ✓ ✓ CAL27

SCC9
SCC090

(67)
Cisplatin sensitivity (+)

hsa_circ_0060927
(circCYP24A1, ↑)

Exons 4-13
(1,106)

miR-195-5p/TRIM14 ✓ ✓ ✓
SCC-9
SCC-25

(68)

hsa_circ_0000199
(circAKT3, ↑)

Exons 8-11
(555)

miR-145-5p
miR-29b-3p

✓
SCC-9
HN12

(69)

hsa_circ_0069313
(circPACRGL, ↑)

Exons 1-8
Introns 1-7
(2,073)

miR-325-3p/PDL1
–

CAL-
27SCC-9

(70)
Immune escape (+)

hsa_circ_0008202
(circSPATA6, ↓)

Exons 5-7
(285)

miR-182/TRAF6 ✓ ✓ ✓
CAL-27
HSC-6

(71)

hsa_circ_0001141
(circITCH, ↓)

Exons 7-14
(873)

miR-421/PDCD4 ✓
SCC-6
HN4

(72)

hsa_circ_0007059
(circZNF720, ↓)

Exons 5-6
(223)

AKT/mTOR ✓ ✓ ✓ ✓
SCC-15
CAL-27

(73)

hsa_circ_0000140
(circKIAA0907, ↓)

Exons 7-10
(585)

miR-31/LATS2
✓ ✓ ✓ Cal-27

HSC-3
(74)

Radiosensitivity (+)

hsa_circ_0005379
(circGDI2, ↓)

Exons 2-5
(674)

miR-454-3p/FOXF2
miR-424-5p/SCAI

✓ ✓ ✓ ✓
SCC-15
HSC-3
CAL-27

(75)
(76)

Glycolysis (-)

Cetuximab sensitivity (+)

hsa_circ_0006988
(circLDLRAD3, ↓)

Exons 5
(346)

miR-558/SMAD4 ✓ ✓ ✓
SCC-9
SCC-15

(77)

hsa_circ_0025765
(circTMTC1, ↓)

Exons 17-18
(1,006)

ER ✓ ✓ ✓
OECM-1
HSC-3

(78)

hsa_circ_0070401
(circPKD2, ↓)

Exons 4-7
Introns 3-7
(1,189)

miR-646/ATG13

✓

SCC-15
CAL-27

(79)Autophagy (-)

Cisplatin sensitivity (+)

hsa_circ_0020093
(circATRNL1, ↓)

Exons 4-7
(1,137)

miR-23a-3p/PTEN
✓ ✓ HSC3

HSC6
CAL27

(80)
Radiosensitivity (+)

hsa_circ_0006877
(circLDLR, ↓)

Exons 13-14
(295)

miR-1178 ✓ ✓ ✓
HSC3
SA3

(4)

(Continued)
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AKT and sponging miR-671-5p, respectively, thereby promoting

OSCC cell proliferation, metastasis, and invasion (46, 60).
5.3 Janus kinase-signal transducer and
activator of transcription signal pathway

The JAK/STAT signaling pathway plays an important role in

hematopoiesis, immunity, tissue repair, inflammation, apoptosis,

and adipogenesis. This signaling pathway encompasses over 50

members, including IFNs (Interferons), ILs (Interleukins), CSFs

(Colony stimulating factors), and hormones. Dysregulation or

mutations in JAK/STAT components are implicated in numerous

human diseases, including OSCC. Studies have shown that

circSEPT9 (56) and circPVT1 (58) are highly expressed in OSCC

tissues and regulate the expression of JAK2 and STAT3 through

miR-486-3p and miR-125b, respectively, promoting cell

proliferation and metastasis. Additionally, the circGOLPH3/miR-

1299 axis induces the expression of Leukemia inhibitory factor

(LIF), which activates JAK signaling and contributes to OSCC

progression (49) (Figure 5).
5.4 Mitogen-activated protein kinase-ERK
signal pathway

The MAPK cascade is critical for regulating normal cell

proliferation, survival, and differentiation, with dysregulation

often leading to cancer and other diseases. Specifically, as a

crucial member of MAPK pathway, ERK (extracellular signal-

regulated kinase) is activated by Raf serine/threonine kinases,

which serve as downstream effectors of the commonly mutated

oncogene Ras small GTPase. This forms the Ras/Raf/ERK signaling

network, which is further modulated by the tyrosine phosphatase

SHP2 to regulate cell proliferation, survival, and differentiation. In

OSCC, overexpressed circFAM126A promotes SHP2 expression by

sponging miR-186 [54]. Similarly, circDHTKD1 and circSEPT9,

which are also highly expressed in OSCC, upregulate GAB1 (GRB2-
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associated binding protein 1) and PKN2 (protein kinase N2)

through miR-326 and miR-1225, respectively. GAB1 directly

activates SHP2, while PKN2 activates ERK, thus driving OSCC

cell proliferation, metastasis, and invasion (59, 62) (Figure 5).
5.5 Glycolysis

Cancer cells reprogram their metabolism to support cell growth,

metastasis, and survival. Increased glucose uptake and reliance on

glycolysis are essential for meeting the synthetic metabolic demands

of these cells (86). This tumor cell specific metabolic characteristics

is defined as ‘Warburg effect,’ persists even in the presence of fully

functional mitochondria (87). Hexokinase 2 (HK2), a rate-limiting

enzyme in glycolysis, plays a key role in tumorigenesis. HK2 is high

expressed in OSCC compared with adjacent normal tissues, and

has been shown to promote OSCC cell growth both in vitro and

in vivo (88). Previous investigation suggested that circMDM2 is

significantly upregulated in OSCC, promote OSCC proliferation

and glycolysis through regulating the miR-532-3p/HK2 axis (42). In

addition, knockout of LDHA (lactate dehydrogenase A) inhibits cell

proliferation and EMT process in OSCC cells (89). Similarly,

circNFATC3 is over-expressed in OSCC which acts as a miR-

520h sponge. This interaction induces LDHA expression and

promotes glycolysis, proliferation, and invasion in OSCC cells

(64). Conversely, circGDI2 is low expressed in OSCC. When

overexpressed, circGDI2 targets miR-424-5p/SCAI axis, regulates

glycolytic proteins like GLUT1 and LDHA, and therefore inhibiting

OSCC cell reproduction and metastasis (76).

LPCAT1 (Lysophosphatidylcholine acyltransferase 1) is an

enzyme involved in phospholipid biosynthesis and remodeling,

playing a pivotal role in the lipid remodeling and various cancers,

including OSCC (90, 91). In OSCC, LPCAT1 promotes

tumorigenesis via regulating PAF (platelet-activating factor) and

its receptor, PAFR (92). Furthermore, LPCAT1 has been shown to

activate the NF-kB/STAT3 signal pathway and then increased

GLUT3 expression, enhanced glycolysis, and increased

proliferation in keratinocytes (93). In OSCC tissues and cell lines,
TABLE 1 Continued

circBase_ID
(name, expression*)

Spliced source
(length)

Targets
Anti-tumor effects

Cell lines Ref.
A I M P

hsa_circ_009755
(circVWA8, ↓)

Exons 13-16
(–)

– – – (81)

hsa_circ_0093229
(circTRDMT1, ↓)

Exons 3-8
(713)

– – – (79)

hsa_circ_0086414
(circBNC2, ↓)

Exons 6
(1,970)

– – – (82)
frontier
*Tumor vs. Normal; A, Apoptosis; I, Invasion; M, Migration; P, Proliferation; ↑ means: Compared with normal tissues, circRNA was upregulated in OSCC; ↓ means: Compared with normal
tissues, circRNA was downregulated in OSCC.
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overexpressed circLPAR3 via miR-144-3p promotes LPCAT1

which enhances OSCC cell proliferation, migration, invasion,

angiogenesis, and glycolysis (63) (Figure 6).
5.6 Autophagy and Ferroptosis

Autophagy is a highly conserved cellular process essential for

maintaining homeostasis through self-digestion and catabolism (94).

In tumor cells, autophagy involved in regulating both cell survival and

apoptosis signaling (95). ATG13 (autophagy-related protein 13) is a

key component of the ULK1 complex, whom could activate ULK1

kinase activity (96). In tumor cells, ATG13 knockout impedes cell cycle

progression and inhibits proliferation in both in vitro and in vivo

models (97). Furthermore, downregulation of circPKD2 fails to sponge

miR-646, leading to suppressed ATG13 expression and reduced

tumorigenesis in OSCC tissues and cell lines (79). In addition to

ATG13, TRIM14 (tripartite motif 14) has been implicated in

mediating HCC cells proliferation, autophagy, and metastasis, with

TRIM14 knockdown resulting in the opposite effects (98). In OSCC,

the circCYP24A1/miR-195-5p axis upregulates TRIM14 expression,

driving carcinogenesis (68) (Figure 7).

Ferroptosis, a regulated cell death (RCD) process, is triggered by

the toxic lipid peroxidation products (99). The evasion of

ferroptosis through oncogenes and oncogenic signals promotes

tumor initiation, progression, metastasis, and drug resistance

(100). In cancer cells, dysregulated expression of the cysteine

transporter SLC7A11 (Solute Carrier Family 7 Member 11)

imports cystine, biosynthesis GSH, thereby inhibiting ferroptosis
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(101). In OSCC tissues, high expression of circFNDC3B modulates

the miR-520d-5p/SLC7A11 axis to prevent ferroptosis and promote

tumor survival (48) (Figure 7).
5.7 mRNA stability

Genetic variations are widely recognized as drivers of cancer;

however, post-transcriptional events also significantly influence

cancer development by regulating mRNA cycling and translation,

including mRNA stability, which is controlled by RBPs (102).

Notable RBPs such as FUS (Fused in Sarcoma), YBX2 (Y-box

Binding Protein 2), and AUF1 (AU-rich Element RNA-binding

Protein 1) could regulate proliferation, migration, and invasion

across various tumor cell types (102–104). Previous studies have

demonstrated that overexpression of circCLK1 (53), circMMP9

(66), and circFAM126A (45), through sponging specific miRNAs

(miR-18b-5p, miR-149, and miR-186-5p, respectively), enhances

the expression of YBX2, AUF1, and FUS, thereby promoting OSCC

tumorigenesis (Figure 7).
5.8 Other factors

In addition to regulating the tumorigenesis related signal

pathways, dysregulated circRNAs in OSCC tissues and/or cell

lines have also been implicated could modulate transcription

factor expressions. For example, circIGHG is overexpressed in

OSCC tissues and is associated with poor prognosis in OSCC
FIGURE 2

Representation of the contribution of circRNAs in the mediation of various stages of Oral Squamous Cell Carcinoma (OSCC) tumorigenesis. This is
achieved primarily through the mechanism of acting as sponges for miRNAs and in turn regulating the expression of pertinent genes involved in cell
proliferation, apoptosis, cycle arrest, invasion, and metastasis.
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patients. In terms of mechanism, circIGHG induces IGF2BP3

expression via binding to miR-142-5p, thereby promoting OSCC

cell invasiveness (52). Furthermore, the oncogenic circFNDC3B

serves multiple roles in OSCC. In the nucleus, circFNDC3B co-

localizes with FUS, facilitating FUS ubiquitination and degradation.

Through regulation of MDM2 and HIF1A expression, it positively

influences VEGF expression and angiogenesis. In the cytoplasm,

circFNDC3B regulates the miR-181c-5p/PROX1 axis to promote

lymphangiogenesis and tumor metastasis (47).
6 CircRNAs and radiotherapy/
chemotherapy resistance in OSCC
cells

Radiation therapy and chemotherapy are key treatment strategies

for OSCC; however, the development of drug resistance significantly

worsens patient prognosis. Notably, compared to normal tissues,

dysregulated circRNAs in OSCC tissues may contribute to

the regulation of tumor sensitivity to chemoradiotherapy

(Table 2, Figure 8).
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Cisplatin (CDDP), a first-generation platinum-based anticancer

drug approved by the US FDA in 1978, remains a cornerstone of

clinical treatment (108). Despite its broad anticancer efficacy, drug

resistance driven by tumor heterogeneity significantly limits its

clinical effectiveness (67). Recent studies have highlighted the role

of circRNAs, acting as sponges for microRNAs, in mediating CDDP

sensitivity in OSCC by regulating various target genes or biological

processes. For instance, the oncogenic circANKS1B promotes

OSCC metastasis and CDDP resistance by upregulating TGFb1
via sponging miR-515-5p. Knockdown of circANKS1B using

siRNA increases OSCC cell sensitivity to CDDP (67).

Additionally, circSCMH1 is high expressed in CDDP-resistant

OSCC tissues and cell lines. CircSCMH1 can be transferred to

surrounding tumor cells via exosomes, where it regulates the miR-

338-3p/LIN28B axis, driving malignant progression and CDDP

resistance in OSCC (105). Another study found that CDDP

treatment significantly increases circ-PKD2 expression in OSCC

cells. Mechanistically, after overexpression, circPKD2 sponge miR-

646 and thus promoting ATG13 expression, triggering autophagy,

inducing tumor cell apoptosis, and enhancing chemotherapy

sensitivity (79).
FIGURE 3

Diagrammatic illustration of how circRNAs regulate the TGFb-SMADs signaling pathway in the mediation of OSCC.
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Cetuximab is an effective therapy for advanced OSCC. Su et al.

demonstrated that circGD12 is involved in Cetuximab resistance,

and overexpression of circGD12 enhances cell sensitivity to

Cetuximab and induces tumor cell apoptosis through regulation

of the EGFR pathway (106).
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Furthermore, circRNAs have emerged as potential biological

targets to enhance the clinical efficacy of radiation therapy. High-

throughput sequencing identified circATRNL1, derived from

ATRNL1, as downregulated in OSCC cells after 4Gy ionizing

radiation treatment. Upregulation of circATRNL1 induces PTEN
FIGURE 4

Graphical representation of circRNA-mediated OSCC through the regulation of the PI3K/Akt signaling pathway.
FIGURE 5

Schematic elucidation of circRNAs’ regulation of the JAK-STAT and MAPK-ERK signaling pathway and their consequential mediation of OSCC.
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expression viamiR-23a-2p, promoting cell apoptosis, cell cycle arrest,

and enhancing OSCC cell sensitivity to radiotherapy (80).

Additionally, Dong et al. found that circKIAA0907 may serve as a

potential target to improve OSCC radiation resistance. By targeting

the circKIAA0907/miR-96-5p/GLUT1 axis, circKIAA0907 enhances

OSCC radiation resistance and promotes tumor cell apoptosis (107).
7 CircRNAs can be used as a
diagnostic marker for OSCC

The highly stable, covalently closed structure, along with the

tissue-specific and disease-specific expression patterns of circRNAs,

positions them as promising diagnostic biomarkers (15, 109).

Several studies have confirmed that aberrantly expressed

circRNAs in OSCC may serve as biomarkers for both diagnosis

and prognosis (Table 3, Figure 8).
7.1 Screening and diagnosis

Screening and early diagnosis are essential for improving the

survival rates and reducing the mortality of patients with OSCC. Oral
Frontiers in Oncology 11
leukoplakia (OLK) and submucosal fibrosis (OSF) are common

precancerous lesions in the oral cavity. Table 3 summarizes

circRNAs that may serve as potential markers for OSCC (Figure 8).

In general, 18 circRNAs were considered as OSCC candidate

biomarkers for clinical screening and diagnosis, including 12

overexpressed and 6 downregulated circRNAs in OSCC tissues

compared to adjacent normal or healthy control samples. For

instance, high expression of circUHRF1 [40] and circFAM126A

(45) in OSCC tissues correlates with the TNM stage (Tumor-

Node-Metastasis) (p = 0.008) and LNM (lymph node metastasis,

p < 0.01), respectively. The dysregulated expression of these circRNAs

in OSCC tissues is associated with TNM stage [circUHRF1 (41)],

LNM [circFAM126A (45)], or both [circCLK1 (53), circHIPK3 (55),

circCDR1as (60), circNFAT3 (64), circITCH (72), circKIAA0907

(74), and circLDLRAD3 (77)]. In addition to their correlation with

tumor stage and metastasis, the tumor expression levels of circPVT1

(56) and circTRDMT1 (80) are associated with tumor size. A study

examining the correlation between circRNA expression and early

OSCC lesions (including normal buccal mucosa, OSF, and OSCC

tissues) found that high expression of circEPSTI1 significantly

correlates with T stage (p = 0.001) and advanced TNM stage (p =

0.002). ROC curve analysis (AUC) demonstrated that circEPSTI1

could sensitively differentiate OSCC from OSF (AUC = 0.869) (39).
FIGURE 6

Diagram indicating how circRNAs govern the glycolysis process in the mediation of OSCC.
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Moreover, circCYP24A1 expression is increased in OSCC, with ROC

analysis showing an AUC of 0.799 (95% CI = 0.633-0.916) for OSCC

versus OLK, and an AUC of 0.925 (95% CI = 0.846-1.0) for OSCC

versus normal tissue, suggesting its potential as an early diagnostic

biomarker for OSCC (78). Additionally, circBNC2 expression is

negatively associated with TNM stage, LNM, and tumor size (all of

the p-values were below 0.05), with a potential diagnostic value

shown by an ROC AUC of 0.749 (p < 0.0001) (83).
7.2 Liquid biopsy

Compared to surgical biopsy, liquid biopsy has gained

significant attention in cancer diagnosis and prognosis research

due to its real-time, rapid, and minimally invasive nature. Recent

studies have explored the correlation between clinical

characteristics of OSCC and circRNA expression in body fluids,
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including saliva, plasma, and serum. CircRNAs in these fluids

demonstrate higher sensitivity and specificity compared to tissue

samples (110). A circRNA microarray combined with droplet

digital PCR (RT ddPCR) identified that circLDLR was a tumor

suppressor whom simultaneously related to TNM stage (p = 0.044)

and LNM (p = 0.022) in OSCC (4). Similarly, circMMP9 levels were

significantly elevated in OSCC plasma samples (the AUC value was

0.91, 95% CI: 0.8216–0.9984) and its expression was associated with

TNM stage (p = 0.005) and LNM (p = 0.002) (66). Additionally,

circFNDC3B expression was markedly higher in OSCC patients’

serum, with an AUC of 0.7437. High circFNDC3B expression

correlated with LNM in 104 patients with OSCC (p = 0.0046)

(48). After analyzed the circRNA expressions in serum exosomes

from 108 OSCC patients, circAKT3 was screened out due to high

expressed circAKT3 in serum was associated with tumor size, TNM

stage, and LNM (all of the p-values were below 0.05) (69).

Moreover, in clinical salivary samples from 93 patients with
FIGURE 7

Diagram depicting the regulation of autophagy, ferroptosis, and mRNA stability by circRNAs in the mediation of OSCC.
TABLE 2 The characteristic of circRNAs in radiotherapy/chemotherapy resistance of OSCC patients.

circBase_ID Expression (T vs N) Host gene Targets Anti-tumor effects Cell lines Ref.

hsa_circ_0007294 Up ANKS1B miR-515-5p/TGF-b1 Cisplatin sensitivity(+) CAL-27 SCC-9 (67)

hsa_circ_0011946 Up SCMH1 miR-338-3p/LIN28B Cisplatin sensitivity(+) SCC-15 CAL-27 (105)

hsa_circ_0070401 Down PKD2 miR-646/ATG13 Cisplatin sensitivity(+) SCC-15 CAL-27 (79)

hsa_circ_0005379 Down GD12 EGFR Cetuximab sensitivity(+) SCC-25 CAL-27 (106)

hsa_circ_0020093 Down ATRNL1 miR-23a-3p/PTEN Radiosensitivity(+) HSC-3 SCC-25 (80)

hsa_circ_0000140 Down KIAA0907 miR-96-5p/GLUT1 Radiosensitivity(+) HSC-6 OECM-1 (107)

hsa_circ_0069313 Up PACRGL miR-325-3p/Foxp3/PDL1 Immune escape(+) CAL-27 SCC-9 (70)
fron
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OSCC, the levels of circFAM126A were closely related to TNM

stage (p = 0.019), and the AUC value was 0.845 (95% CI: 0.784–

0.905, p < 0.001) (11).
8 CircRNA can be used to analyze the
prognosis of OSCC patients

In addition to their diagnostic potential, aberrant circRNA

expression in OSCC also serves as a prognostic marker (Table 3,

Figure 8). Previous studies have identified 11 overexpressed and 2

underexpressed circRNAs in OSCC, which correlate with poor

overall survival (OS). These include overexpressed circUHRF1

(33), circMDM2 (34), circRPPH1 (36), circFNDC3B (37),

circHIPK3 (44), circCDR1as (49), circLPAR3 (52), circBCL11B

(54), circMMP9 (56), circFAM126A (57), and circPACRGL (77);

and downregulated circITCH (60) and circKIAA0907 (62). In

addition to OS, Kaplan-Meier analysis revealed that high

expression of circIGHG and circFNDC3B was associated with

higher recurrence frequency (RF, p = 0.0012) (41) and poor

recurrence-free survival (RFS, p = 0.0279) (58), respectively.

Furthermore, compared to low-circAKT3-expressed OSCC

patients, high circAKT3 expression in serum exosomes was linked

to lower OS and DFS (p-values were below 0.0001) (82).
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9 Conclusion

The difficulty in early diagnosis, coupled with a high incidence

of metastasis and recurrence, results in poor clinical outcomes for

patients with OSCC. CircRNAs were initially considered as mere

“by-products” of gene transcription. However, accumulating

evidence implies that circRNAs act as a crucial factor in

regulating the pathological and physiological processes of various

diseases, prompting a re-evaluation of these previously overlooked

“wastes” (50, 52, 111).

As research on circRNAs in OSCC deepens, multiple studies

have highlighted that differentially expressed circRNAs function as

either inhibitors or promoters involved in various stages of OSCC

tumorigenesis. These processes include sustained cell proliferation,

apoptosis resistance, angiogenesis, invasion, metastasis, metabolic

reprogramming, immune escape, and acquisition of drug resistance.

These findings suggest that circRNAs hold potential as therapeutic

targets. Indeed, previous studies have demonstrated that

overexpression or knockdown of oncogenic circRNAs has

significant anti-tumorigenic effects in OSCC by modulating the

expression of target genes (53, 57, 61). Moreover, the stable

expression and potential to encode proteins or peptides make

circRNAs promising for therapeutic applications. According to

recent research, RNA-targeting type VI CRISPR systems (Cas13a,
FIGURE 8

An overview of the clinical functions of circRNAs in the context of OSCC treatment. The expression levels of circRNAs are associated with resistance
to radiotherapy/chemotherapy in OSCC patients. Additionally, certain circRNAs may constitute effective diagnostic and prognostic markers for
the disease.
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TABLE 3 The characteristic of CircRNAs in diagnosis prognosis of OSCC patients.

circBase_ID
(Name, Expression)

Diagnosis Prognosis
Ref.

Clinical outcomes Clinical subjects Clinical outcomes Clinical subjects

hsa_circ_0006877
(circLDLR, ↓)

RLNM (P=0.022)
TNM stage (P=0.044)

AUC=0.835

Plasma samples from 16 high
and 14 low expressed

OSCC patients
Not Applicable (4)

hsa_circ_0001971
(circFAM126A, ↓)

TNM stage (P=0.019)
AUC=0.845

Salivary samples from 93
OSCC patients

Not Applicable (11)

hsa_circ_0002185
(circUHRF1, ↑)

TNM stage (P=0.008)
Tissue samples from 10 high

and 10 low expressed
OSCC patients

High circUHRF1 expression
is correlated with poor

OS (P<0.05)

10 high expressed and 10 low
expressed OSCC patients

(40)

hsa_circ_0027451
(circMDM2, ↑)

Not Applicable
High circMDM2 expression

is correlated with poor
OS (P<0.05)

20 OSCC patients (41)

hsa_circ_0000519
(circRPPH1, ↑)

DM (P=0.010)
T stage (P= 0.045)

AUC=0.873

Tissue samples from 25 high
and 25 low expressed

OSCC patients

High circRPPH1 expression
is correlated with poor

OS (P<0.05)

25 high expressed and 25 low
expressed OSCC patients

(45)

hsa_circ_0001361
(circFNDC3B, ↑)

Not Applicable
High circFNDC3B expression

is correlated with poor
OS (P<0.05)

11 high expressed and 11 low
expressed OSCC patients

(46)

LNM (P=0.0046),
AUC=0.7437

40 N0 and 64 N1–3 OSCC
patient;

Plasma samples from 35
OSCC patients and 35

healthy controls

High circFNDC3B expression
is correlated with poor

RFS (P=0.0279)
104 OSCC patients (47)

hsa_circ_0000479
(circEPSTI1, ↑)

T stage (P=0.001)
TNM stage (P=0.002)

AUC=0.869

Tissue samples from 1) 72
high and 82 low expressed; 2)

162 paired of OSCC and
OSF tissues

High circEPSTI1 expression
are correlated with poor OS

and PFS
OS (p<0.0001, HR=0.34)
PFS (p<0.001, HR=0.35)

72 high and 82 low expressed (49)

hsa_circ_0000579
(circIGHG, ↑)

Not Applicable

High circIGHG expression
are correlated with poor OS

(p<0.001) and higher
RF (p=0.0012)

64 high and 105
low expressed

(51)

hsa_circ_0577725
(circCLK1, ↑)

LN metastasis (P=0.0343)
TNM stage (P=0.0305)

Tissue samples from 30 high
and 18 low expressed

OSCC patients
Not Applicable (52)

hsa_circ_0000284
(circHIPK3, ↑)

LN metastasis (P=0.007)
TNM stage (P<0.001)

Tissue samples from 40 high
and 40 low expressed

High circHIPK3 expression is
correlated with poor OS
(p=0.015, HR=9.77)

41 high and 118
low expressed

(54)

hsa_circ_0001821
(circPVT1, ↑)

Tumor size (p=0.021)
TNM stage (p=0.002)

AUC=0.787

Tissue samples from 50
OSCC and paired
normal subjects

Not Applicable (55)

hsa_circ_0001946
(circCDR1as, ↑)

LNM (P=0.017)
TNM stage (p=0.006)

Tissue samples from 57
OSCC and paired
normal subjects

High circCDR1as expression
is correlated with poor

OS (p=0.0005)
57 OSCC patients (59)

hsa_circ_0004390
(circLPAR3, ↑)

AUC=0.8996
Tissue samples from 41

OSCC and paired
normal subjects

High circLPAR3 expression is
correlated with poor

OS (p<0.05)
21 high and 20 low expressed (62)

hsa_circ_0005615
(circNFAT3, ↑)

LNM (P=0.017)
TNM stage (p=0.036)

Tissue samples from 23 high
and 23 low expressed

OSCC patients
Not Applicable (63)

hsa_circ_0033144
(circBCL11B, ↑)

DM (P=0.041)
Tumor size (P=0.023)
TNM stage (p=0.047)

Tissue samples from 25 high
and 25 low expressed

OSCC patients

High circBCL11B expression
is correlated with poor

OS (p=0.0342)
25 high and 25 low expressed (64)

(Continued)
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Cas13b, and Cas13d) are capable of directly cleaving single-

stranded RNA in mammalian cells. Among them, RfxCas13d

has been identified as the most effective system for circRNA

interference (112). Artificial circRNAs expressing relevant antigens

have shown therapeutic and prophylactic effects in several

malignancies (113).

Screening and early diagnosis are critical for improving the

survival rate of patients with OSCC (4, 106). However, current

diagnostic methods, such as surgical biopsy, are often used to

confirm the presence of pathological changes but are unsuitable

for early screening. Additionally, established tumor markers such as

CEA (carcinoembryonic antigen), ESM-1 (endothelial cell-specific
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molecule-1), and SCC (squamous cell carcinoma antigen) are not

fully applicable for clinical diagnosis of OSCC due to their limited

sensitivity and specificity (114, 115). Several studies have shown

that dysregulated circRNAs in tumors and body fluids exhibit stage-

specific expression in OSCC, closely correlating with clinical

features such as tumor size, distant metastasis, and TNM stage.

Notably, circRNAs in body fluids, due to their ease of collection,

rapid analysis, and minimally invasive nature, are poised to become

a primary focus for clinical translation in the future (116). While

current circRNA validation remains limited to cellular and animal

models due to technological constraints and high costs, continued

advancements in molecular biology technology hold promise for
TABLE 3 Continued

circBase_ID
(Name, Expression)

Diagnosis Prognosis
Ref.

Clinical outcomes Clinical subjects Clinical outcomes Clinical subjects

hsa_circ_0001162
(circMMP9, ↑)

LNM (P=0.002)
TNM stage (P=0.005)

AUC=0.91

Tissue samples from 37 high
and 37 low expressed OSCC

patients;
Plasma samples from 16

healthy and 25
OSCC patients

High circMMP9 expression is
correlated with poor

OS (p=0.0342)
37 high and 37 low expressed (65)

hsa_circ_0001682
(circFAM126A, ↑)

LNMs (P<0.01)
Tissue samples from 21 high

and 9 low expressed
OSCC patients

High circFAM126A
expression is correlated with

poor OS (p=0.0441)

21 high and 9 low expressed
OSCC patients

(44)

hsa_circ_0060927
(circCYP24A1, ↑)

AUC: OSCC vs OLK=0.799
AUC: OSCC vs Nor. = 0.925

Tissue samples from 24
normal, OLK, and
OSCC subjects

Not Applicable (67)

hsa_circ_0001141
(circITCH, ↓)

LNM (P=0.035)
TNM stage (P=0.027)

Tissue samples from 46 high
and 57 low expressed

OSCC patients

Low circITCH expression is
correlated with poor

OS (p=0.01)

46 high and 57 low expressed
OSCC patients

(71)

hsa_circ_0000140
(circKIAA0907, ↓)

LNM (P=0.015)
TNM stage (P=0.031)

Tissue samples from 28 high
and 28 low expressed

OSCC patients

Low circKIAA0907
expression is correlated with

poor OS (p<0.001)

28 high and 28 low expressed
OSCC patients

(73)

hsa_circ_0006988
(circLDLRAD3, ↓)

LNM (P=0.029)
TNM stage (P=0.018)

Tissue samples from 39 high
and 30 low expressed

OSCC patients
Not Applicable (76)

hsa_circ_009755
(circVWA8, ↓)

T stage (P=0.011)
AUC=0.782

Tissue samples from 27
OSCC tissues and adjacent

normal subjects
Not Applicable (80)

hsa_circ_0093229
(circTRDMT1, ↓)

Tumor size (P=0 0125)
T stage (P=0.0317)

AUC=0.784

Tissue samples from 40
OSCC tissues and adjacent

norma subjects
Not Applicable (108)

hsa_circ_0000199
(circAKT3, ↑)

Tumor size (p=0.001)
LNM (p=0.0295)

TNM stage (p=0.0298)

Serum samples from 108
OSCC and 50
healthy subjects

High circAKT3 expression
are correlated with poor OS
(p<0.0001), DFS (p<0.0001),
and higher RF (p=0.0042)

68 high and 40 low expressed
OSCC patients

(68)

hsa_circ_0086414
(circBNC2, ↓)

TNM (P=0.047),
Tumor size (P=0.012),

LNM (P=0.016)
AUC=0.749

Tissues from 55 OSCC and
adjacent normal subjects

Not Applicable (81)

hsa_circ_0069313
(circPACRGL, ↑)

Not Applicable
High circPACRGL expression

is correlated with poor
OS (p<0.0001)

20 high and 30 low expressed
OSCC patients

(69)
frontier
DM, Distant metastasis; LNM, Lymph node metastasis; OLK, oral leukoplakia; RFS, recurrence-free survival; OS, overall survival; OSF, oral submucous fibrosis; RLNM, regional lymph node
metastasis; RF, Recurrence Frequency; DFS, Disease-Free Survival; ↑ means: Compared with normal tissues, circRNA was upregulated in OSCC; ↓ means: Compared with normal tissues,
circRNA was downregulated in OSCC.
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substantial progress in the clinical application of circRNAs.

Although current RNA sequencing technologies still face

challenges in detecting circRNAs in large-scale samples—

particularly those with low abundance—the advancements in

third-generation sequencing technologies hold promise in

overcoming these limitations. These improvements may accelerate

the clinical application of circRNAs as reliable biomarkers.
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