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Methodological and reporting
quality of machine learning
studies on cancer diagnosis,
treatment, and prognosis
Aref Smiley1, David Villarreal-Zegarra1,
C. Mahony Reategui-Rivera1, Stefan Escobar-Agreda2

and Joseph Finkelstein1*

1Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, United States,
2Telehealth Unit, Universidad Nacional Mayor de San Marcos, Lima, Peru
This study aimed to evaluate the quality and transparency of reporting in studies

using machine learning (ML) in oncology, focusing on adherence to the

Consolidated Reporting Guidelines for Prognostic and Diagnostic Machine

Learning Models (CREMLS), TRIPOD-AI (Transparent Reporting of a

Multivariable Prediction Model for Individual Prognosis or Diagnosis), and

PROBAST (Prediction Model Risk of Bias Assessment Tool). The literature

search included primary studies published between February 1, 2024, and

January 31, 2025, that developed or tested ML models for cancer diagnosis,

treatment, or prognosis. To reflect the current state of the rapidly evolving

landscape of ML applications in oncology, fifteen most recent articles in each

category were selected for evaluation. Two independent reviewers screened

studies and extracted data on study characteristics, reporting quality (CREMLS

and TRIPOD+AI), risk of bias (PROBAST), and ML performance metrics. The most

frequently studied cancer types were breast cancer (n=7/45; 15.6%), lung cancer

(n=7/45; 15.6%), and liver cancer (n=5/45; 11.1%). The findings indicate several

deficiencies in reporting quality, as assessed by CREMLS and TRIPOD+AI. These

deficiencies primarily relate to sample size calculation, reporting on data quality,

strategies for handling outliers, documentation of ML model predictors, access

to training or validation data, and reporting on model performance

heterogeneity. The methodological quality assessment using PROBAST

revealed that 89% of the included studies exhibited a low overall risk of bias,

and all studies have shown a low risk of bias in terms of applicability. Regarding

the specific AI models identified as the best-performing, Random Forest (RF) and

XGBoost were the most frequently reported, each used in 17.8% of the studies

(n = 8). Additionally, our study outlines the specific areas where reporting is

deficient, providing researchers with guidance to improve reporting quality in

these sections and, consequently, reduce the risk of bias in their studies.
KEYWORDS

cancer, artificial intelligence, diagnosis, prognosis, therapy
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2025.1555247/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1555247/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1555247/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1555247/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2025.1555247&domain=pdf&date_stamp=2025-04-14
mailto:joseph.finkelstin@utah.edu
https://doi.org/10.3389/fonc.2025.1555247
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2025.1555247
https://www.frontiersin.org/journals/oncology


Smiley et al. 10.3389/fonc.2025.1555247
1 Introduction

Cancer is one of the leading causes of disease burden and

mortality worldwide. Early detection is crucial for improving

clinical outcomes, yet approximately 50% of cancers are

diagnosed at an advanced stage (1). Artificial Intelligence (AI),

particularly machine learning (ML) models, has shown great

potential in cancer diagnosis, prognostic, and treatment, standing

out for its high accuracy, sensitivity, and ability to integrate into

clinical workflows (2). This progress has led to a significant increase

in studies and publications dedicated to the development and

evaluation of these models in recent years (3).

The quality of reporting in these studies is critical, as clear and

comprehensive documentation allows for the validation of results

and their replication in different contexts (2). However, growing

concerns have emerged regarding the completeness and accuracy of

reports in ML-based research. Indeed, a meta-review of fifty

systematic reviews, revealed that most reports of primary

diagnostic accuracy studies were incomplete, limiting their utility

and reproducibility (4). Furthermore, systematic reviews on

treatment response in cancer patients have identified high

heterogeneity and reporting issues (5, 6).

In response to these deficiencies, specific guidelines, such as the

Consolidated Reporting Guidelines for Prognostic and Diagnostic

Machine Learning Models (CREMLS) and the Transparent

Reporting of a Multivariable Prediction Model for Individual

Prognosis or Diagnosis (TRIPOD+AI), have been developed to

standardize the key aspects that should be included in ML study

reports (7, 8). Nevertheless, the widespread adoption of these tools

depends on their dissemination and proper training, which may

delay their integration into recent scientific publications (9). In

addition to ensuring the quality of reporting, assessing the risk of

bias in studies using AI models for cancer patients is essential. The

Prediction Model Risk of Bias Assessment Tool (PROBAST) is a

tool designed to evaluate the risk of bias across four domains:

participants, predictors, outcomes, and analysis (10).

Our study evaluated PubMed publications that applied ML for

the diagnosis, treatment, and prognosis of cancer patients. We

assessed reporting quality (CREMLS and TRIPOD+AI), risk of bias

(PROBAST), and ML performance metrics.
2 Materials and methods

2.1 Eligibility criteria

We included primary studies that applied AI techniques to

predict cancer diagnosis, treatment, and prognosis in patients.

Studies were eligible regardless of participants’ age, sex, race,
Abbreviations: AI, Artificial Intelligence; ML, Machine Learning; TRIPOD+AI,

Transparent Reporting of a Multivariable Prediction Model for Individual

Prognosis or Diagnosis – Artificial Intelligence extension; CREMLS, Checklist

for REporting Machine Learning Studies; PROBAST, Prediction Model Risk of

Bias Assessment Tool.
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ethnicity, or other sociodemographic or clinical characteristics.

Articles written in any language and employing observational or

experimental study designs were considered. Reviews, viewpoints,

and conference papers were excluded. Our study included research

that evaluates the first case of a specific cancer, specific recurrent

cancers, groups of cancers, or metastases.
2.2 Search strategy and sources

Our search strategy included terms related to oncology, AI,

prognosis, diagnosis, and treatment. A search was conducted in

PubMed, restricted to studies published between February 1, 2024,

and January 31, 2025. The results were sorted by “most recent,” and

the 15 most recent studies on prognosis, diagnosis, and treatment

were selected, yielding a total of 45 articles. The most recent articles

were chosen in order to reflect the current state of the rapidly

evolving landscape of AI applications in oncology. Details of the

search strategy are provided in Supplementary Material 1.
2.3 Selection process

The selection process was conducted using Rayyan (11). Two

reviewers independently screened the title and abstract of each

record identified to determine if the inclusion criteria were met.

Subsequently, both reviewers independently evaluated the full text

of records that passed the title and abstract screening. In cases of

disagreement, a third reviewer made the final decision

regarding inclusion.
2.4 Data collection process and data items

Data extraction was performed using a standardized Excel form.

Two independent reviewers conducted the data collection process,

and a third reviewer made the final decision in cases of

disagreement. Each reviewer independently collected information

using this form, which captured details such as the name of the first

author, year of publication, article title, patient characteristics, type

of AI tested or developed, clinical contexts, reported outcomes (AI

performance metrics), reporting quality (CREMLS and TRIPOD

+AI) (7, 8), and risk of bias (PROBAST) (10).

The extraction process was conducted in duplicate, and the level

of agreement between independent evaluators was assessed in the

first five included studies. The extracted information was highly

consistent, achieving an agreement level above 80%.
2.5 Synthesis methods

2.5.1 Report quality
The TRIPOD+AI checklist consists of 27 key items designed to

ensure the quality and transparency of reporting in prediction

model studies (8). This updated version of TRIPOD extends the

recommendations to include models developed using ML methods.
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The primary objective of TRIPOD+AI is to promote clear,

comprehensive, and reproducible reporting in studies that

develop or validate prediction models in healthcare. TRIPOD+AI

results were categorized using the following response options: Yes,

No/Not reported, or Not applicable.

The CREMLS guideline was developed to enhance the

transparency and quality of reporting in ML studies for

diagnostic and prognostic applications in healthcare (7). It

comprises 37 items organized into five categories: study details,

data, methodology, model evaluation, and model explainability.

CREMLS results were assessed using the following response

options: Yes, No/Not reported, or Not applicable.

Since our objective was to assess the reporting quality of studies

using ML for diagnostic, prognostic, and treatment outcomes in

cancer patients, no studies were excluded based on a negative

evaluation of reporting quality.

2.5.2 Risk of bias
The PROBAST tool assessed the risk of bias (RoB) in studies on

predictionmodels for diagnosis, prognosis, and treatment. PROBAST

provides a structured framework for evaluating the internal and

external validity of studies by identifying potential biases in

participant selection, predictor and outcome measurement,

analytical strategies, and data presentation (10).

The response options in PROBAST were: low RoB/low concern

regarding applicability (+), high RoB/high concern regarding

applicability (-), and unclear RoB/unclear concern regarding

applicability (?).

2.5.3 AI performance metrics
The study presented the main metrics used to evaluate the

performance of each AI model included in the analyzed articles

across different phases (i.e., training, testing, validation). These

metrics included sensitivity (also known as recall or true positive

rate), specificity (true negative rate), overall accuracy (probability of

correct classification), positive predictive value (precision), F1 score,

and the area under the ROC curve (AUC).
2.6 Statistical analysis

All statistical analyses were performed using R. Our study

employed a descriptive approach based on percentages and absolute

frequencies of CREMLS, TRIPOD+AI, and PROBAST scores. No

inferential approaches focused on hypothesis testing were used.
3 Results

3.1 Study selection

Our study searched PubMed for ML models related to

diagnosis, treatment, and prognosis that met the inclusion

criteria. To standardize selection, we included only the first 15
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articles for each category: prognosis, diagnosis, and treatment. The

screening process, which involved title and abstract review followed

by full-text assessment, is shown in Figure 1.
3.2 Characteristics of the included studies

The first authors of the included studies were affiliated with

institutions from 16 different countries. China had the highest

number of publications (n=27/45; 60%), followed by Egypt (n=3/

45; 6.7%). The most frequently studied cancer types were breast

cancer (n=7/45; 15.6%), lung cancer (n=7/45; 15.6%), and liver cancer

(n=5/45; 11.1%). More than half of the studies did not specify the

source of funding (n=25/45; 55.6%). The individual characteristics of

each study are summarized in Supplementary Table 1. The list of

included articles is presented in Supplementary Table 2.
3.3 Report quality by CREMLS

Our study found that, in the study design section, all evaluated

studies adequately reported the medical/clinical task of interest,

research question, overall study design, and intended use of the ML

model. However, only 51% of the studies provided information on

whether existing model performance benchmarks for this task

were considered.

In the data section, all studies reported information on methods

of data collection and data characteristics. However, a large

proportion did not report details on sample size calculation

(98%), known quality issues with the data (69%), or bias

introduced due to the data collection method used (62%).

In the methodology section, all studies reported the rationale for

selecting the ML algorithm, and 98% described the method used to

evaluate model performance during training. However, no studies

reported strategies for handling outliers, and the majority did not

provide information on strategies for model pre-training (92%) or

data augmentation (79%).

In the evaluation section, nearly all studies reported some type of

performance metrics used to evaluate the model (98%) and the results

of internal validation (98%). However, no studies provided information

on characteristics relevant for detecting data shift and drift, and 93%

did not report or discuss the cost or consequences of errors.

In the explainability and transparency section, 82% of the

studies reported the most important features and their

relationship to the outcomes. Compliance with different criteria

for each individual study is detailed in Figure 2.
3.4 Report quality by TRIPOD+AI

The included studies demonstrate high compliance with key

reporting standards for predictive modeling. All studies (100%)

clearly identified their nature as predictive modeling investigations,

specified their objectives, and provided detailed descriptions of data

sources and participant eligibility (Figure 3). Also, they precisely
frontiersin.org
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defined predictors and outcomes, justifying their selection and

evaluation methodology. Data preparation and model validation

were also well-documented, with comprehensive descriptions of

analytical methods, including model type, hyperparameter tuning,

and performance metrics. Furthermore, all studies addressed the

interpretation of results and discussed limitations, biases, and

generalizability. Ethical considerations were reported in most

cases, with 96% of studies indicating approval from an ethics

committee or an equivalent review process. The flow of

participants and differences between development and evaluation

datasets were also consistently documented.

Despite strong adherence to several TRIPOD+AI criteria,

significant reporting gaps were identified. 98% of studies did not

report potential health inequalities among sociodemographic groups

or describe the demographic characteristics and qualifications of

outcome and predictor assessors. Additionally, 98% of studies failed

to indicate where the study protocol could be accessed, and 96% did

not provide information on study registration or describe methods to

address model equity or justify their approach. The availability of

analytical code was also limited, with 93% of studies not providing

details on access. A critical issue was the complete absence of patient

and public involvement in study development (100%). Furthermore,

93% of studies did not compare development and evaluation data for

key predictors, while 96% did not report heterogeneity in model

performance. Lastly, 98% of studies did not present results on model
Frontiers in Oncology 04
updating, and 91% did not specify the level of user interaction or

expertise required for model implementation.
3.5 Risk of bias by PROBAST

The methodological quality assessment using PROBAST revealed

that 89% of the included studies exhibited a low overall risk of bias,

suggesting adequate internal validity in most evaluated studies (see

Table 1). Additionally, all studies demonstrated a low risk of bias in

terms of applicability, indicating that the assessed predictive models

are potentially transferable to real-world clinical settings.

At the domain level, the risk of bias in the participant and

outcome domains was minimal, with 98% of the studies showing a

low risk of bias in these areas. Regarding applicability, 100% of the

studies reported low concern for the applicability of participants,

while 98% indicated low concern for the applicability of outcomes.

However, the predictor domain showed an unclear risk of bias in

29% of the studies, both in terms of bias risk assessment and applicability.

Furthermore, in the analysis domain, only 76% of the studies exhibited a

low risk of bias, suggesting that a significant proportion may have

employed methodological practices that compromise the validity of their

findings. Issues such as handling of missing data, predictor selection, and

correction for overfitting require further attention to enhance the

robustness of predictive models in future studies.
FIGURE 1

Flowchart.
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TABLE 1 Risk of Bias by PROBAST.

ROB Applicability Overall

rs Outcome ROB Applicability

Low Low Low

Low Low Low

Low Low Low

Low Low Low

Low Low Low

Low Low Low

Low Unclear Low

Low Low Low

Low Low Low

Low Low Low

Low Low Low

Low Low Low

Low Low Low

Low Low Low

Low Low Low

Low Low Low

Low Low Low

Low Unclear Low

Low High Low

Low High Low

Low Low Low

Low Low Low

Low Low Low

Low Low Low

Low High Low

Low Low Low

(Continued)

Sm
ile

y
e
t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
5
.15

5
5
2
4
7

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

0
5

First author (year) Participants Predictors Outcome Analysis Participants Predict

Dong (2025) Low Unclear Low Low Low Unclear

Liang & Luo (2025) Low Low Low Low Low Low

Zhang et al. (2025) Low Low Low Low Low Low

Noman (2025) Low Low Low Low Low Low

Zhou (2025) Low Unclear Low Low Low Unclear

Liu (2025) Low Low Low Unclear Low Low

Franco-Moreno (2025) Low Unclear Low Unclear Low Unclear

Li (2025) Low Low Low Low Low Low

Hamano (2025) Low Low Low Low Low Low

Yin (2025) Low Low Low Low Low Low

Xiao (2025) Low Low Low Low Low Low

Liu (2025) Low Unclear Low Low Low Unclear

Su (2025) Low Unclear Low Low Low Unclear

Alshwayyat (2025) Low Low Low Low Low Low

Liu (2025) Low Low Low Low Low Low

Maleki (2025) Low Unclear Low Low Low Unclear

Park (2025) Low Low Low Low Low Low

EL kati (2024) Unclear Low Low Unclear Low Low

Wu (2025) Low Low Low High Low Low

Shan (2025) Low Low Low High Low Low

Ni (2025) Low Low Low Low Low Low

Rafiepoor (2025) Low Low Low Low Low Low

Shehta (2025) Low Low Low Low Low Low

Chiu (2025) Low Low Low Unclear Low Low

Wang (2025) Low Unclear Low High Low Unclear

Natha (2025) Low Low Low Low Low Low
o
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TABLE 1 Continued

ROB Applicability Overall

s Participants Predictors Outcome ROB Applicability

Low Unclear Low Low Low

Low Unclear Low Low Low

Low Unclear Low Low Low

Low Unclear Low Low Low

Low Low Low Low Low

Low Low Low Low Low

Low Low Low Low Low

Low Low Low Low Low

Low Low Low Low Low

Low Low Low Low Low

Low Unclear Low Low Low

Low Low Low Low Low

Low Low Low Low Low

Low Low Low Low Low

Low Unclear Low Low Low

Low Low Unclear Low Low

Low Low Low Low Low

Low Low Low Low Low

Low Low Low Low Low

bility; Unclear, indicates unclear ROB/unclear concern regarding applicability.
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First author (year) Participants Predictors Outcome Analys

Gui (2024) Low Unclear Low Low

Şahin (2025) Low Unclear Low Low

Chen (2025) Low Unclear Low Low

Zhong (2025) Low Unclear Low Low

Pan (2025) Low Low Low Unclear

Wang (2025) Low Low Low Low

Wang (2025) Low Low Low Low

Nashat (2025) Low Low Low Unclear

Zhou (2024) Low Low Low Unclear

Torok (2025) Low Low Low Low

Bozcuk (2025) Low Unclear Low Low

Chen (2025) Low Low Low Low

Pan & Wang (2025) Low Low Low Low

Chufal (2025) Low Low Low Unclear

Miyamoto (2025) Low Unclear Low Low

Grosu (2025) Low Low Unclear Low

Huang (2025) Low Low Low Low

Zhang (2025) Low Low Low Low

Ramasamy (2024) Low Low Low Low

ROB, risk of bias; Low, indicates low ROB/low concern regarding applicability; High, indicates high ROB/high concern regarding applic
i
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3.6 AI performance metrics

In terms of the AI model family used, 73.3% of the studies

employed Supervised ML models (n = 33), while 24.4% used Deep

Learning models (n = 11). Regarding the specific AI models

identified as the best-performing, Random Forest (RF) and

XGBoost were the most frequently reported, each used in 17.8%

of the studies (n = 8). The performance metrics for each study are

presented in Table 2.
4 Discussion

Our study included 45 studies that employed ML models for

diagnostic, prognostic, and treatment outcomes in cancer patients.

The findings indicate several deficiencies in reporting quality, as

assessed by CREMLS and TRIPOD+AI. These deficiencies

primarily relate to sample size calculation, reporting on data

quality, strategies for handling outliers, documentation of ML

model predictors, access to training or validation data, and

reporting on model performance heterogeneity.

These reporting limitations align with the PROBAST risk of bias

assessment, which identified unclear risk of bias in the predictors and

analysis domains in approximately one in four included studies.

Therefore, it is plausible to conclude that reporting quality is most

limited in sections related to methodology, analysis, and elements that

support study reproducibility (e.g., code and datasets). These

limitations may introduce a higher risk of bias.

Our study aligns with previous research identifying significant

issues in the quality of reporting in studies employing AI techniques

to develop clinical prediction models, including the presence of

“spin” practices and poor reporting standards (12). Moreover,

another systematic review concluded that most studies are at high

risk of bias, citing issues such as small sample sizes, inadequate

handling of missing data, and lack of external validation (13). These

problems are not limited to predictive models for cancer but also

extend to other disciplines within clinical diagnostics, for instance,

cardiology or mental health (14, 15).

The potential of AI models to predict cancer diagnoses, prognosis,

and treatment are substantial, representing an opportunity to enhance

healthcare access (16). While some studies have demonstrated that the

diagnostic accuracy of AI models for detecting neoplasms is

remarkably high, particularly in cases such as upper gastrointestinal

tract cancers (17), the methodological quality of these studies remains

low, with a high risk of selection bias. Additionally, other review studies

evaluating the use of AI for predicting treatment and prognostic

outcomes in cancer patients have also identified reporting issues and

highly restricted access to data necessary for study replication (18, 19).

Regarding performance metrics, the evidence highlights the need to

standardize the reporting of metrics in studies due to variability in the

parameters used and the inconsistent reporting of performance

outcomes (20, 21).

Currently, several initiatives aim to promote the responsible use of

AImodels in oncology patients, such as theAmerican Society of Clinical

Oncology’s transparency principles for AI. These principles seek to
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TABLE 2 AI performance metrics by study.

First author Type Type of data Type of AI tested AI models used Best model AI metrics

, XGBoost AUROC: 0.989 (maximum), 0.781
(minimum); Brier Score: 0.118 (maximum),
0.01 (minimum)

XGBoost AUC (Training: 0.95, Validation: 0.78)

Logistic Regression Accuracy: 0.765 (LR), Precision: 0.750 (LR),
Recall: 0.710 (LR), F1-Score: 0.695 (LR),
AUC: 0.812 (LR)

LightGBM (for
recurrence), XGBoost
(for recurrence
type differentiation)

C-index: 0.837 (survival analysis), AUC:
92% (LightGBM for recurrence), Accuracy:
86% (XGBoost for recurrence
type classification)

Random Forest (RF) AUC: 0.925, Accuracy: 84.7%, Sensitivity:
90.5%, Specificity: 80.9%, Brier Score: 0.107

XGBoost (for
metastasis prediction)

AUC: 0.981 (training), 0.804 (testing); C-
index: 0.892 (training), 0.710 (testing)

CatBoost AUC-ROC: 0.86 (95% CI: 0.83–0.87),
Sensitivity: 62%, Specificity: 94%, PPV:
75%, NPV: 93%

Random Survival
Forest (RSF)

C-index: 0.968 (training), 0.936
(validation); AUC: 0.968 (training), 0.936
(validation); Brier Score: 0.067

Kernel Support Vector
Machine (KSVM)

AUC-ROC: 0.834

ResNet50 + MLP AUC-ROC: 0.96 (training), 0.87 (internal
testing), 0.85 (external validation)

RFE-XGBoost AUC-ROC: 0.89 (95% CI: 0.82–0.94),
Accuracy: 0.83 (95% CI: 0.76–0.90), F1
score: 0.81 (95% CI: 0.72–0.88), Brier
Score: 0.13 (95% CI: 0.09–0.17)
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(year) or developed

Dong (2025) Prognosis Cervical screening data, including hrHPV
full genotyping, cytology results, and
gynecological examination findings.

Supervised
Machine Learning

XGBoost, Support Vector Machine (SVM
Random Forest (RF), Naïve Bayes (NB)

Liang & Luo (2025) Prognosis Structured data Supervised
Machine Learning

XGBoost, MLP, KNN, Random Forest
(RF), Logistic Regression, AJCC Staging

Zhang et al. (2025) Prognosis Structured data (clinical, lab results) Supervised
Machine Learning

Logistic Regression, KNN, RF, SVM,
XGBoost, LightGBM

Noman (2025) Prognosis Clinical and pathological features (tumor
grade, ER status, HER2, lymph node
involvement, tumor size, survival status).

Supervised
Machine Learning

LightGBM, XGBoost, Random Forest,
Support Vector Machine (SVM), Neural
Networks (NN), K-Nearest
Neighbors (KNN)

Zhou (2025) Prognosis Clinical, demographic, psychological, and
health-related data.

Supervised
Machine Learning

Logistic Regression (LR), Support Vector
Machine (SVM), Random Forest (RF),
Extreme Gradient Boosting (XGBoost),
Gradient Boosted Trees (GBDT), Multi-
Layer Perceptron (MLP)

Liu (2025) Prognosis Pathomic features extracted from whole
slide imaging (WSI) histopathology.

Deep Learning, Weakly
Supervised Learning

DenseNet121, ResNet50, Inception_v3,
XGBoost, Random Forest, LightGBM,
Cox Regression

Franco-Moreno (2025) Prognosis Clinical and laboratory data (D-dimer,
hemoglobin, cholesterol, platelets, leukocyte
count, etc.)

Supervised
Machine Learning

CatBoost, XGBoost, LightGBM

Li (2025) Prognosis Clinical, pathological, and molecular data
(tumor stage, lymph nodes, neural
invasion, Ki67, biomarkers)

Supervised
Machine Learning

Random Survival Forest (RSF), Extreme
Gradient Boosting (XGBoost), Decision
Survival Tree (DST)

Hamano (2025) Prognosis Clinical and laboratory data (heart rate,
respiratory rate, leukocyte count, albumin,
C-reactive protein, etc.)

Supervised
Machine Learning

Fractional Polynomial (FP) Regression,
Kernel Fisher Discriminant Analysis
(KFDA), Kernel Support Vector Machine
(KSVM), XGBoost

Yin (2025) Prognosis Computed tomography (CT) images and
clinical data (tumor
characteristics, biomarkers).

Deep Learning ResNet50 + Multilayer Perceptron (MLP)

Xiao (2025) Prognosis Clinical and pathological data (tumor
markers, blood tests,
histopathological features).

Supervised
Machine Learning

Cox proportional hazards model, Decision
Tree (DT), Random Forest (RF), Support
Vector Machine (SVM), Extreme Gradien
Boosting (XGBoost)
)

t
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TABLE 2 Continued

First author Type Type of data Type of AI tested AI models used Best model AI metrics

XGBoost AUC-ROC: 0.939 (training), 0.876
(validation), Accuracy: 0.8908

Radiomics-based Cox
Regression Model

AUC-ROC: 0.899 (1-year), 0.906 (3-year),
0.869 (5-year) in the test set; C-index:
0.819 (training), 0.892 (validation),
0.851 (test)

Random Forest (RF) AUC-ROC: 0.743, Accuracy: 70.78%,
Sensitivity: 94.52%

XGBoost AUC-ROC: 0.813 (1-year), 0.738 (3-year),
0.733 (5-year) in training; 0.781, 0.785,
0.775 in validation.

Naive Bayes AUC-ROC: 0.9795, Sensitivity: 85.71%,
Specificity: 100%, Accuracy: 97.14%, Brier
Score: 0.04

Random Forest AUROC: 0.88 (training), 0.88 (validation);
Sensitivity: 62%; Specificity: 94%

GMVO-
optimized DNN

Accuracy: 93.5% (WBCD), 96.73%
(WDBC); Precision: 88.06% (WBCD),
93.38% (WDBC); Specificity: 93.06%
(WBCD), 95.83% (WDBC); Sensitivity:
95.64% (WBCD), 98.25% (WDBC).

vgg19-combined
fusion model

AUC-ROC: 0.990 (internal test), 0.988
(external test); Accuracy: 0.935 (internal
test), 0.875 (external test); F1-score: 0.937
(internal test), 0.885 (external test).

3D-ResUNet Dice score: 0.8819; Precision: 0.905 (tumors
>20 mm); Recall: 0.9728 (tumors >20 mm);
F1-score: 0.9377 (tumors >20 mm)

Random Forest (RF) AUC-ROC: 0.99 (validation cohort);
Sensitivity: 92%; Specificity: 97%.
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9

(year) or developed

Liu (2025) Prognosis Clinical and laboratory data (blood tests,
tumor characteristics, surgical variables).

Supervised
Machine Learning

Extreme Gradient Boosting (XGBoost),
Random Forest (RF), Support Vector
Machine (SVM), k-nearest
neighbor (KNN)

Su (2025) Prognosis CT-based radiomics features and genomic
data (gene expression analysis
from TCGA).

Supervised
Machine Learning

Cox Regression, LASSO, Random Survival
Forest (RSF)

Alshwayyat (2025) Prognosis Clinical and pathological data (tumor
characteristics, treatment modalities, ER/
PR status).

Supervised
Machine Learning

Random Forest (RF), Gradient Boosting
Classifier (GBC), Logistic Regression (LR),
K-Nearest Neighbors (KNN), Multilayer
Perceptron (MLP)

Liu (2025) Prognosis Clinical and demographic data (tumor
characteristics, metastasis, lymph node
involvement, treatment history).

Supervised
Machine Learning

XGBoost, SHapley Additive exPlanations
(SHAP) tool for model interpretation.

Maleki (2025) Diagnosis Clinical and laboratory data (paraneoplastic
autoantibody panels from serum and CSF)

Supervised
Machine Learning

Naive Bayes

Park (2025) Diagnosis Electronic medical records (EMR)
including medications, laboratory data, and
clinical procedures.

Supervised
Machine Learning

Random Forest, Lasso Logistic Regression,
AdaBoost, Decision Tree, Naïve Bayes,
Multilayer Perceptron

EL kati (2024) Diagnosis Clinical and imaging data from WBCD
and WDBC.

Deep Learning Deep Neural Network (DNN) with three
hidden layers, optimized with Gradient
Multi-Verse Optimizer (GMVO).

Wu (2025) Diagnosis MRI-based radiomics and deep
learning features.

Deep Learning Deep Transfer Learning (DTL) models:
vgg19, GoogLeNet, Inception_v3, Vision
Transformer (ViT).

Shan (2025) Diagnosis Multiphasic contrast CT images (arterial,
venous, and delayed phases).

Deep Learning 3D-ResUNet (coarse-to-fine
segmentation network)

Ni (2025) Diagnosis LDCT images, liquid biopsy (CACs),
clinical variables (age, extra-thoracic cancer
history, gender).

Supervised
Machine Learning

Random Forest (RF), Support Vector
Machine (SVM), Logistic Regression (LR),
Light Gradient Boosting (LGB), Least
Absolute Shrinkage and Selection
Operator (LASSO).
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TABLE 2 Continued

First author Type Type of data Type of AI tested AI models used Best model AI metrics

), Boosted
BF), K-
ural
ession,
s (NB).

Support Vector
Machine (SVM)

AUC-ROC: 0.94, Sensitivity: 91%

xNet,
tion_V3,

ResNetRS50 Accuracy: 97%, Recall: 99%, F1-score: 98%

nsformer
tNetV2B2,

Ensemble model (Swin
Transformer + Vision
Transformer
+ EfficientNetB5)

CSMUH dataset: Accuracy 97.31% (test),
99.77% (training). ISIC dataset: Accuracy
85.38% (test), 95.86% (training). False
negatives reduced from 124 to 45 (ISIC
dataset) and eliminated (CSMUH dataset).

Vector
e (DT)

Random Forest (RF) Accuracy: 96%, Precision: 90%, Recall:
100%, AUC: 0.97

yer
LPN),
)

Max Voting
ensemble method

Accuracy: 94.70%, Precision: 93.23%,
Recall: 92.54%, F1-score: 94.20%

YOLOv9 Improved Faster R-
CNN (with ROI
aligning, FPN, and
additional
convolutional layers)

mAP: 0.752, Sensitivity: 0.950, False
positive rate: 0.133

v8), YOLOv8 Accuracy: 95.35%, Precision: 0.972, Recall:
0.919, Sensitivity: 94.74%,
Specificity: 95.83%

ector
imination

XGBoost AUC-ROC: 0.875 (validation cohort);
AUC-ROC: 0.795 (SVM)

yer
orest (RF),
)

Multi-Layer Perceptron
(MLP) - Two-stage
MINT model

AUC-ROC: 0.92 (stage 1), 1.00 (stage 2);
Accuracy: 89.36% (external validation)

ector
arest

Bayes Model
integrating MRI

AUC-ROC: 0.829, Sensitivity: 76.9%,
Specificity: 83.3%
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(year) or developed

Rafiepoor (2025) Diagnosis MiRNA expression data from
GEO datasets.

Supervised
Machine Learning

Support Vector Machine (SV
Trees (BT), Bootstrap Forest
Nearest Neighbors (KNN), N
Networks (NeB), LASSO Reg
Nominal Logistic, Naïve Baye

Shehta (2025) Diagnosis Medical imaging (microscopic blood
smear images)

Deep Learning ResNetRS50, RegNetX016, A
Convnext, EfficientNet, Incep
Xception, VGG19

Chiu (2025) Diagnosis Dermoscopic images Deep Learning Swin Transformer, Vision Tr
(ViT), EfficientNetB5, Efficien
ResNet50, VGG16

Wang (2025) Diagnosis NBI endoscopic images and clinical data. Supervised
Machine Learning

Random Forest (RF), Suppor
Machine (SVM), Decision Tr

Natha (2025) Diagnosis Dermoscopic images Supervised
Machine Learning

Random Forest (RF), Multi-l
Perceptron Neural Network (
Support Vector Machine (SV

Gui (2024) Diagnosis DCE-MRI images Deep Learning Faster R-CNN, Mask R-CNN

Şahin (2025) Diagnosis CT images Deep Learning You Only Look Once (YOLO
YOLOv5, YOLOv7

Chen (2025) Diagnosis RNA-seq gene expression data from
granulosa cells.

Supervised
Machine Learning

LASSO Regression, Support V
Machine Recursive Feature E
(SVM-RFE), XGBoost

Zhong (2025) Diagnosis Label-free multiphoton imaging (MPM)
data, histopathology features,
clinical information.

Supervised
Machine Learning

Decision Tree (DT), Multi-La
Perceptron (MLP), Random F
Support Vector Machine (SV

Pan (2025) Treatment MRI-based radiomics and clinical data
(tumor morphology, enhancement

Deep Learning Logistic Regression, Support
Machine (SVM), Bayes, K-Ne
M
(
e
r

le

a

t
e

a
M
M

,

l

M

V
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TABLE 2 Continued

First author Type Type of data Type of AI tested AI models used Best model AI metrics

ion Tree, radiomics and
clinical data

(SVM), Random
e (DT), XGBoost,
ession, K-Nearest
layer Perceptron
g Tree (GBT),
Network (BPNN),
ion.

SVM + RF AUC-ROC: 0.972 (training), 0.922 (internal
validation), 0.78 (external validation);
Sensitivity: 85.52%, Specificity: 97.73%.

lysis, Forward- Meta-analysis
optimized gene
signature (LAMC2,
TSPAN1, MYO1E,
MYOF, SULF1)

AUC-ROC: 0.99 (training), 0.89 (external
validation), 0.83 (peripheral
blood validation)

(SVM), Decision
r, Logistic
rceptron,

Support Vector
Machine (SVM)

Accuracy: 95.24% (volumetric response),
84.13% (histologic response); Sensitivity:
95.65% (volumetric), 89.47% (histologic);
Specificity: 94.12% (volumetric),
88% (histologic)

(SVM), XGBoost,
cision Tree (DT),
ne (GBM),
ls (GLM), Least
election

Support Vector
Machine (SVM)

AUC-ROC: 0.908 (training), 0.666
(validation cohort 1), 0.776 (validation
cohort 2)

nalysis (QDA),
t, Neural Network,
(SVC)

Quadratic Discriminant
Analysis (QDA)

AUC-ROC: 0.829 (regression), 0.8295
(progression), 0.841 (stationary)

, Extra Trees Deep Q-
Network (DQN)

AUC-ROC: 0.80 (DQN), 0.73 (ETC)

(RSF), Bayesian
Variation

Multi-omics-driven
Machine Learning
Signature (MOMLS)

AUC-ROC: 0.875 (validation cohort);
Kaplan-Meier survival analysis showed
significant prognostic differences.
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(year) or developed

characteristics, and diffusion-
weighted imaging).

Neighbors (KNN), Decis
Random Forest

Wang (2025) Treatment Clinical, serological, and ultrasound
imaging data.

Supervised
Machine Learning

Support Vector Machine
Forest (RF), Decision Tr
LightGBM, Logistic Reg
Neighbors (KNN), Mult
(MLP), Gradient Boostin
Backpropagation Neural
LASSO, Stepwise Regres

Wang (2025) Treatment Transcriptomic data (RNA expression) and
qPCR analysis.

Supervised
Machine Learning

Random-effects meta-an
search optimization

Nashat (2025) Treatment Contrast-enhanced computed tomography
(CECT) imaging and clinical features.

Supervised
Machine Learning

Support Vector Machine
Tree, K-Nearest Neighbo
Regression, Multilayer P
Random Forest

Zhou (2024) Treatment Blood biomarkers (C-reactive protein,
neutrophil count, lactate dehydrogenase,
alanine transaminase).

Supervised
Machine Learning

Support Vector Machine
Random Forest (RF), De
Gradient-Boosted Mach
Generalized Linear Mod
Absolute Shrinkage and
Operator (LASSO)

Torok (2025) Treatment Serum N-glycome analysis using capillary
electrophoresis with laser-induced
fluorescence detection (CGE-LIF).

Supervised
Machine Learning

Quadratic Discriminant
Random Forest, XGBoo
Support Vector Classifie

Bozcuk (2025) Treatment Clinical and mutational data (age, ECOG
score, mutation type, metastases, smoking
status, blood biomarkers)

Reinforcement
Learning

Deep Q-Network (DQN
Classifier (ETC)

Chen (2025) Treatment Multi-omics data (scRNA-seq, bulk
transcriptomics, GWAS)

Supervised
Machine Learning

Random Survival Forest
Deconvolution, Gene Se
Analysis (GSVA)
e
r
i

s

a

e

i
e
S

A
s
r

)

t
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First author Type Type of data Type of AI tested
r developed

AI models used Best model AI metrics

pervised
achine Learning

LASSO Regression, Random Forest
(RSF), XGBoost

Random Forest (RSF) AUC-ROC: 0.961 (RSF), 0.903 (XGBoost),
0.864 (LASSO)

pervised
achine Learning

Gradient Boosting, LightGBM, XGBoost,
CatBoost, Logistic Regression, Random
Forest, K-Nearest Neighbors, Support
Vector Machines, Naive Bayes

Uncalibrated Gradient
Boosting Ensemble

AUC-ROC: 0.803, Recall: 0.526

pervised
achine Learning

Random Forest (RF), Boruta Algorithm Random Forest (RF) AUC-ROC: 0.94 (training),
0.87 (validation)

pervised
achine Learning

Random Forest (RF) Random Forest (RF) Accuracy: 84% (AI-assisted), Sensitivity:
85%, Specificity: 82%, Fleiss’ kappa: 0.92

pervised
achine Learning

eXtreme Gradient Boosting (XGBoost),
Cox Regression

XGBoost Accuracy: 57.89%, Sensitivity: 57.14%,
Positive Predictive Value: 44.44%, AUC-
ROC: 0.58

eep Learning Balanced Individual Treatment Effect for
Survival data (BITES), Cox Mixtures with
Heterogeneous Effects (CMHE), DeepSurv,
Cox Proportional Hazards (CPH), Random
Survival Forest (RSF)

Balanced Individual
Treatment Effect for
Survival data (BITES)

IPTW-adjusted HR: 0.84 (CRT vs. surgery
+ RT/CRT); 0.77 (surgery + CRT vs.
surgery + RT)

pervised
achine Learning

Multi-Layer Perceptron (MLP), Support
Vector Classification (SVC), Random
Forest, Adaptive Boosting (AdaBoost)

Multi-Layer Perceptron
(MLP) with
ADASYN sampling

AUC-ROC: 0.94 (combined model), 0.95
(clinical model for early-stage patients)
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(year) o

Pan & Wang (2025) Treatment Clinical data (immune cell profiling, HBV
DNA levels, antiviral treatment status).

Su
M

Chufal (2025) Treatment Clinical data and DIBH waveform
parameters (breath-hold amplitude,
duration, consistency).

Su
M

Miyamoto (2025) Treatment CT radiomics features (texture analysis,
intensity statistics, shape features).

Su
M

Grosu (2025) Treatment CT colonography images,
radiomics features.

Su
M

Huang (2025) Treatment Clinical and radiotherapy data (fraction
size, cumulative dose, interruptions),
pathological risk factors.

Su
M

Zhang (2025) Treatment Clinical and demographic data (tumor
stage, histological grade, treatment history).

D

Ramasamy (2024) Treatment CT radiomics features, clinical data
(performance status, treatment site,
smoking history, SBRT dose)

Su
M
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FIGURE 3

TRIPOD+AI checklist. +, Yes; -, No/No reported/The report is not clear; NA, Not applicable. 1) Identify the study as developing or evaluating the p
population, and the outcome to be predicted. 2) See TRIPOD+AI for Abstracts checklist. 3a) Explain the healthcare context, rationale for developi
existing models. 3b) Describe the target population and intended purpose of the prediction model, including intended users. 3c) Describe any kno
Specify the study objectives, including whether it describes development or validation of a prediction model. 5a) Describe sources of data separa
these data. 5b) Specify dates of collected participant data, including start and end of participant accrual. 6a) Specify key elements of the study set
eligibility criteria for study participants. 6c) Give details of any treatments received and how they were handled during model development or eva
checking across sociodemographic groups. 8a) Clearly define the outcome being predicted, time horizon, and assessment method. 8b) Describe
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FIGURE 3 (Continued)

assessors. 8c) Report any actions to blind assessment of the outcome. 9a) Describe the choice of initial predictors and any pre-selection before model building. 9b) Clearly define all predictors, including how
ifications and demographic characteristics of predictor assessors. 10) Explain how study size was determined, including sample size calculation. 11) Describe how missing
itting data. 12a) Describe how data were used for development and evaluation of model performance. 12b) Describe how predictors were handled in the analyses. 12c)
building, hyperparameter tuning, and validation. 12d) Describe how heterogeneity in estimates and model performance was handled. 12e) Specify all measures and plots
2f) Describe any model updating arising from evaluation. 12g) Describe how model predictions were calculated. 13) Describe methods for handling class imbalance and
pproaches used to address model fairness and their rationale. 15) Specify the output of the prediction model and rationale for classification thresholds. 16) Identify
evaluation data. 17) Name the ethics committee that approved the study and describe consent procedures. 18a) Give the source of funding and role of the funders. 18b)
ancial disclosures. 18c) Indicate where the study protocol can be accessed or state if unavailable. 18d) Provide registration information or state if not registered. 18e)
rovide details of analytical code availability. 19) Provide details of patient and public involvement or state no involvement. 20a) Describe the flow of participants through
b) Report characteristics overall and by data source, including key demographics. 20c) Compare development data with evaluation data for key predictors. 21) Specify the
vents in each analysis. 22) Provide full details of the prediction model, including accessibility. 23a) Report model performance estimates with confidence intervals. 23b)
el performance. 24) Report results from model updating, including updated model. 25) Provide overall interpretation of results, including fairness. 26) Discuss study
27a) Describe handling of poor-quality or unavailable input data. 27b) Specify required user interaction and expertise. 27c) Discuss future research steps

Sm
ile

y
e
t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
5
.15

5
5
2
4
7

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

14
and when measured. 9c) Describe qual
data were handled and reasons for om
Specify model type, rationale, steps for
used to evaluate model performance. 1
recalibrating predictions. 14) Describe a
differences between development and
Declare any conflicts of interest and fin
Provide details of data availability. 18f) P
the study, including follow-up time. 20
number of participants and outcome e
Report results of heterogeneity in mod
limitations, biases, and generalizability.
and generalizability.
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enhance transparency in AI models within oncology, potentially

improving their real-world application and supporting clinical

decision-making (22). However, a recent review published in a journal

of this scientific society found that adherence to these principles remains

limited, highlighting the need to promote their implementation (23).

Nevertheless, this issue does not appear to be exclusive to oncology. A

systematic review identified risks of bias and reporting quality issues in

ML models across various healthcare contexts, not just oncology (13).

Therefore, poor reporting quality seems to be a broader issue affecting

health-related disciplines in general.

Incorporating cost-related information into AI model

evaluations is essential for their real-world applicability.

Understanding both direct and indirect costs would facilitate the

integration of these models into clinical practice by providing a

clearer assessment of the financial requirements for infrastructure,

staff training, and implementation logistics (24). One of the key

reporting limitations identified in the included studies was the lack

of information on costs and the consequences of classification

errors. This may be because most studies focus primarily on

accuracy and effectiveness while overlooking the associated costs,

despite evidence suggesting that AI can reduce the costs of cancer

diagnosis and treatment (25). Additionally, assessing the economic

impact of classification errors could help balance model

performance with cost-effectiveness, ensuring that AI-driven tools

provide both clinical and economic value. Future studies should

integrate cost analyses alongside model performance metrics to

enhance the feasibility and adoption of AI in oncology.

The analysis of AI model data must be transparent, as improper

handling of missing data, outliers, participant imbalance, or

dimensionality reduction can introduce biases into the model. For

instance, internal biases and errors during model training may lead

to misclassifications, potentially resulting in biased clinical

decision-making if the model is implemented in real-world

settings (26). Therefore, it is essential for AI models to ensure

transparency throughout this process by sharing data, code, and any

other materials that enable replication (22).

The main strength of our study lies in the detailed assessment of

reporting quality using the CREMLS checklist and TRIPOD+AI

checklist, and the risk of bias evaluation with PROBAST. However,

an important limitation of our study is that it is not a systematic

review encompassing all available evidence frommultiple databases,

resulting in limited representativeness.
5 Conclusion

Our study, using CREMLS and TRIPOD+AI, identified that AI

models in oncology exhibit reporting limitations, particularly in the

methodology sections related to predictors and the analysis plan.

These findings align with an unclear risk of bias in one out of every

four included studies, as indicated by PROBAST in the Predictors

and Analysis domains. Additionally, our study outlines the specific

areas where reporting is deficient, providing researchers with

guidance to improve reporting quality in these sections and,

consequently, reduce the risk of bias in their studies.
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