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Background: MiR-136 is abnormally expressed in many types of metastatic

tumors and is closely associated with tumor cell proliferation, apoptosis,

invasion, and metastasis, indicating its important role in tumor development

and progression. This review summarizes current knowledge regarding miR-

136’s molecular mechanisms, functional roles, and impact on chemotherapy in

different human cancers.

Methods: A literature search was conducted in PubMed and Web of Science

using “miR-136” and “metastatic tumors” as English keywords, and in CNKI and

Wanfang databases using the same terms in Chinese. Studies related to miR-136

research in metastatic tumors and high-quality evidence from similar studies

were included. Meta-analyses, dissertations, conference papers, low-quality

articles, unavailable full-text articles, and republished articles were excluded.

Results: This review synthesizes the current understanding of miR-136’s role in

various cancers, including osteosarcoma, gastric cancer, gallbladder cancer,

esophageal cancer, prostate cancer, colorectal cancer, breast cancer, glioma,

and thyroid cancer. miR-136 acts as a tumor suppressor by targeting various

genes, including MTDH, PTEN, MAP2K4, MUC1, LRH-1, MIEN1, RASAL2, CYR61,

and KLF7. It influences multiple signaling pathways, including the ERK/mitogen-

activated protein kinase, Wnt/b-catenin, Ha-Ras, PI3K/Akt, Aurora-A kinase,

nuclear factor-kB, and JNK pathways. Furthermore, miR-136 is involved in

chemoresistance by modulating ROCK1, PPP2R2A, and the miR-136-Notch3

signaling axis.

Conclusions: MiR-136 demonstrates promising potential as a novel biomarker

and therapeutic target in various human cancers. Further research is needed to

fully elucidate its complex roles in cancer development, progression, and drug

resistance, particularly regarding its potential in immunotherapy.
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1 Introduction

MicroRNAs (miRNAs) are a class of non-coding, single-

stranded RNA molecules, approximately 22 nucleotides long,

encoded by endogenous genes. They participate in the

transcriptional regulation of gene expression in animals and

plants (1). By recognizing and binding to the 3′ untranslated

region of target gene mRNA, miRNAs inhibit mRNA translation

or promote degradation (2, 3). miRNAs can also affect histone

modifications and promoter site methylation to regulate target gene

expression (4, 5). A single miRNA can regulate the expression of

multiple target genes (6, 7), by modulating various mRNAs,

miRNAs functionally participate in a range of physiological and

pathological processes, including cell differentiation, proliferation,

migration, and apoptosis (8, 9). Abnormal miRNA expression has

been reported in various types of metastatic tumors (10, 11),

suggesting their potential oncogenic or tumor-suppressive

functions. MiR-136 is abnormally expressed in many types of

metastatic tumors and is closely associated with tumor cell

proliferation, apoptosis, invasion, and metastasis, indicating its

significant role in tumor development and progression (12–21).

Moreover, miR-136 contributes to cancer resistance to various

chemotherapeutic agents (21–24). Given its critical involvement

in tumor biology, miR-136 represents a promising biomarker and

therapeutic target for early cancer detection and treatment. This

review summarizes the signaling pathways and mechanisms of

action of miR-136 in various metastatic tumors, providing a

comprehensive understanding of its role in metastatic tumors.
2 Literature search strategy

This review was indexed in PubMed and Web of Science using

“miR-136” and “metastatic tumors” as English keywords. “miR-

136” and “metastatic tumors” were used as Chinese keywords in

CNKI and Wanfang databases. Studies were included based on the

following criteria: (1) relevance to miR-136 research in metastatic

tumors; and (2) provision of high-quality evidence. The following

exclusion criteria were applied: (1) studies not published in English

or Chinese; (2) meta-analysis, dissertations, conference papers, and

(3) low-quality, unavailable full-text and republished articles.

Studies were selected according to these criteria (Figure 1). miR-

136 and the target genes in tumors are listed in Table 1.
3 Role of miR-136-5p in cancers

3.1 miR-136 and metastatic osteosarcoma

Metastatic osteosarcoma (OS) is the third most common primary

bone malignancy in children and adolescents (25), and commonly

occurs in the proximal tibia, humerus, and metaphyseal region of the

distal femur (26). The MTDH gene, located on human chromosome

8, facilitates tumor cells adhesion to distant blood vessels, playing a

critical role in cancer spread and metastasis. MTDH is a involved in
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several oncogenic signaling pathways, such as ERK/mitogen-

activated protein kinase, Wnt/b-catenin pathway, Ha-Ras and

PI3K/Akt pathways, Aurora-A kinase signaling pathway, and

nuclear factor-kB signaling pathway (27, 28). miR-136 inhibits the

proliferation, invasion, and migration of osteosarcoma cells by

negatively regulating MTDH.
3.2 miR-136 and metastatic gastric cancer

Metastatic gastric cancer (GC) has the highest mortality rate

among patients in China (29). Various pathogenic factors

contribute to GC development and progression, including

environmental factors, diet, infection, and genetic mutations,

particularly the abnormal expression of proto-oncogenes or

tumor suppressor genes (30). Compared with adjacent non-

neoplastic gastric mucosal tissues and normal gastric epithelial

cells, miR-136 expression was significantly increased while PTEN
FIGURE 1

Literature search strategy.
TABLE 1 miR-136 and the target genes in tumors.

Cancers/tumors Target genes

osteosarcoma MTDH

gastric cancer PTEN

gallbladder cancer MAP2K4

esophageal cancer MUC1

prostate cancer MAP2K4

colon cancer LRH-1

MIEN1

Triple-negative breast cancer RASAL2

glioma CYR61

KLF7

thyroid cancer MTDH
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mRNA expression was decreased (19). Bioinformatics analysis has

identified PTEN as a target of miR-136. Following miR-136

knockdown, PTEN mRNA and protein expression levels increase,

whereas p-AKT protein levels decrease. PTEN expression was

negatively correlated with miR-136 expression. PTEN negatively

regulates various biological processes through the PI3K/AKT

signaling pathway, including cell proliferation, migration,

invasion, and apoptosis (31–34). Therefore, inhibiting miR-136

can suppress the proliferation, invasion, and metastasis of gastric

cance r ce l l s by modu la t ing the PTEN/AKT/p-AKT

signaling pathway.
3.3 miR-136 and metastatic
gallbladder cancer

Metastatic gallbladder cancer (GBC) is the most common

malignancy of the biliary tract and the fifth most common tumor

of the digestive tract (35). Compared with normal gallbladder

epithelial cells, miR-136 is expressed at lower levels in gallbladder

cancer cells (36). Mitogen-activated protein kinase 4 (MAP2K4) has

been identified as a target gene of miR-136, which activates the JNK

signaling pathway, a key mediator in tumorigenesis and apoptosis

(36–38). In gallbladder cancer, miR-136 overexpression inhibits the

MAP2K4-mediated JNK signaling pathway, thereby regulating the

expression of downstream genes (39). Inhibition of the JNK signaling

pathway decreases vascular endothelial growth factor (VEGF)

expression, negatively regulating tumor growth and metastasis, as

VEGF activates the angiogenesis signaling cascade and promotes

tumor vascular endothelial cell proliferation, differentiation, and

migration (40). Simultaneous inhibition of the JNK signaling

pathway increases the ratio of c-caspase-3/t-caspase-3 and c-

caspase-9/t-caspase-9, thereby promoting apoptosis (41, 42).

Therefore, miR-136 overexpression inhibits angiogenesis and cell

proliferation in gallbladder cancer while promoting apoptosis,

suggesting a potential therapeutic role in gallbladder

cancer treatment.
3.4 miR-136 and metastatic
esophageal cancer

Metastatic esophageal cancer (EC) is the eighth most common

cancer and the sixth leading cause of cancer-related deaths

worldwide (43), EC comprises two main subtypes: esophageal

adenocarcinoma (EAC), which has an increasing incidence, and

esophageal squamous cell carcinoma (ESCC), prevalent in East

Africa, Central Asia, and China (44). miR-136 expression is reduced

in ESCC tissues, while MUC1 mRNA and protein expression levels

are elevated compared to those in adjacent normal tissues.

Bioinformatic analysis and luciferase activity assays confirm

MUC1 as a miR-136 target, with an inverse correlation between

their expression levels (45). miRNAs bind to the 3′ untranslated
region (3′-UTR) of their target mRNAs, reducing their stability and

post-transcriptional expression, thereby influencing biological

processes such as cell growth, proliferation, differentiation, and
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death (46). Additionally, miR-136 upregulation reduces survival,

inhibits colony formation, and induces apoptosis in ESCC cells

under irradiation, whereas MUC1 upregulation reverses these

effects. miRNAs can also influence cellular responses to precision

drugs by interfering with DNA repair and drug targets (47).
3.5 miR-136 and metastatic
prostate cancer

Metastatic prostate cancer (PCa) is a common malignancy and

the second most prevalent tumor of the urinary and reproductive

systems (48). The occurrence and progression of PCa are regulated

by miRNAs, and PCa-related miRNAs research provides novel

biomarkers for diagnosis and treatment (49, 50). miR-136

expression is reduced in PCa tissues and cell lines, whereas its

upregulation inhibits PCa cells. A luciferase reporter assay has

confirmed that mitogen-activated protein kinase 4 (MAP2K4) is a

miR-136 target gene. MAP2K4 is upregulated in PCa tissues, and its

expression levels are inversely correlated with miR-136 levels.

MAP2K4, located on chromosome 17, is involved in various

tumorigenic and pathophysiological processes, including cell

proliferation, invasion, metastasis, and apoptosis (51–53). In PCa,

MAP2K4 overexpression promotes cell proliferation and metastasis

while inhibiting G1-S phase arrest and apoptosis (39, 54).Thus,

miR-136 may suppress PCa proliferation and invasion by targeting

MAP2K4, making it a potential candidate for PCa therapy.
3.6 miR-136 and metastatic
colorectal cancer

Metastatic colon cancer (CC) is one of the most prevalent

malignancies and the fourth leading cause of cancer-related deaths

worldwide (55). Hepatic receptor homolog-1 (LRH-1), a member of

the nuclear receptor subfamily, is a recognized oncogene in many

cancers (56), promoting the proliferation, invasion, and migration of

cancer cells (57). LRH-1 plays a crucial role in various biological

processes, including bile acid homeostasis, reverse cholesterol

transport, steroid production, differentiation, and development

(58). LRH-1 knockdown has been shown to inhibit colon cancer

cell proliferation and induce G0/G1 cell cycle arrest (59).

Additionally, LRH-1 promotes colon cancer cell growth by

inhibiting the recruitment of p53 to the promoter of the cell cycle

inhibitor p21 (60). Wnt signaling is aberrantly activated in

approximately 80% of colon cancers (61), and its downstream

genes, including cyclin D1, cyclin E1, and c-Myc, are implicated in

the proliferation and metastasis of colon cancer cells (62). LRH-1 is a

novel co-activator of Wnt signaling pathway transduction (59, 63),

and can interact with transcription factor 4 and b-catenin to promote

the expression of cyclin D1, cyclin E1, and c-Myc (63). miR-136 offers

a novel pathway for the inhibition of Wnt signaling by significantly

reducing the expression of cyclin D1, cyclin E1, and c-Myc in colon

cancer through LRH-1 suppression (20).

MIEN1, located in the 17q12 region of the chromosome near

the Her-2/neu locus (64), is frequently dysregulated in various
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cancers (65, 66). MIEN1 expression is elevated in colorectal cancer

tissues and is closely associated with tumor serous invasion, lymph

node metastasis, and advanced Dukes stage (67). miR-136 has been

shown to inhibit colon cancer cell invasion, migration, and EMT

progression by regulating the Akt/NF-kB signaling pathway

through its target gene, MIEN1 (66).
3.7 miR-136 and metastatic breast cancer

Metastatic breast cancer (BC) is the most common cancer in

women and a leading cause of cancer-related deaths (68, 69). Triple-

negative breast cancer (TNBC) is a heterogeneous group of breast

cancers characterized by the loss of estrogen receptor (ER),

progesterone receptor (PR), and human epidermal growth factor

receptor 2 (HER2) gene expression (70). The Ras pathway is one of

the most commonly dysregulated pathways in cancer, with Ras

protein mutations occurring at high frequency (71). Ras activity is

negatively regulated by Ras GTPase-a activating proteins

(RasGAPs), which catalyze the hydrolysis of Ras-GTP to Ras-

GDP (72). Interestingly, RASAL2, a GAP, has been identified as

an oncogene promoting tumor production and metastasis in

various cancers (73–75), However, rather than suppressing

tumors, RASAL2 facilitates mesenchymal invasion and metastasis

(73, 76, 77). In TNBC, miR-136 has been shown to act as a tumor

suppressor by directly targeting RASAL2. Through downregulation

of RASAL2, miR-136 effectively inhibits tumor growth and

metastasis, underscoring its therapeutic potential in TNBC.
3.8 miR-136 and metastatic glioma

Metastatic glioma is a common malignancy (78, 79).

Bioinformatic studies suggest that miR-136 can function as either

a tumor suppressor or an oncomiR, depending on the context.

Overexpression of miR-136 has been shown to inhibit glioblastoma

cell proliferation by targeting CYR61. Signal transduction via the

mTOR pathway is activated alongside miR-136 expression and is

dependent on the activities of AKT, ERK1/2, and mTORC1. miR-

136 expression is reduced in glioma tissues compared to adjacent

normal tissues. KLF7, a target gene of miR-136 (18), promotes

polyamine biosynthesis and glioma progression by activating

arginine succinate lyase (80). Overexpression of miR-136 has

been shown to inhibit glioma cell growth and migration.
3.9 miR-136 and metastatic thyroid cancer

Metastatic thyroid cancer (TC) is a common endocrine

neoplasm, accounting for approximately 3.1% of all human

malignancies (81). Papillary thyroid cancer, the most prevalent

pathological subtype of TC, constitutes approximately 80% of cases.

Its incidence is higher than that of other subtypes, such as

anaplastic, follicular, and medullary thyroid cancer. The incidence

of TC has increased in many countries. Although the overall

mortality rate of TC is relatively low, with a 5-year survival rate
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of 98%, the clinical outcomes of advanced TC remain poor. Nearly

half of patients with distant TC metastases die within 5 years of

diagnosis. Recurrence and lung metastasis remain the leading

causes of mortality in TC patients. Studies have reported higher

levels of miR-136 in papillary adenocarcinomas compared to

benign nodular goiter (82). MTDH has been identified as a target

gene in various cancers (13, 17), with its overexpression playing a

key role in cancer development. A luciferase reporter assay has

confirmed the targeted regulatory relationship between miR-136-5p

and MTDH (15).
4 miR-136 and chemoresistance
in tumors

Chemotherapy is one of the most common clinical treatments

for tumors; however, chemoresistance remains a widespread

challenge (83, 84). Cisplatin, one of the most effective

chemotherapeutic agents (85), inevitably encounters drug

resistance, limiting the efficacy of other agents and leading to

potential treatment failure. Abnormal miRNA expression can

disrupt the regulation of chemotherapy drug target proteins,

ultimately contributing to drug resistance. miR-136, one of the

most extensively studied miRNAs, is abnormally expressed in

various tumors. miR-136 overexpression reduces ROCK1

expression in cisplatin-treated tumor cells and attenuates the Akt/

mTOR signaling pathway, leading to chemoresistance (86).

Additionally, miR-136 overexpression promotes anlotinib

resistance in non-small cell lung cancer by targeting PPP2R2A,

thereby activating the Akt pathway. miR-136 can be transferred

from anlotinib-resistant cells to anlotinib-sensitive cells via

exosomes, inducing drug resistance and promoting cell

proliferation (22). In gliocytomas, miR-136 overexpression

enhances temozolomide cytotoxicity (24). In ovarian cancer, the

miR-136-Notch3 signaling axis plays a crucial role in the

development of chemoresistance (87). These findings suggest that

miRNA-mediated chemoresistance and chemo sensitization can be

modulated to enhance chemotherapy efficacy, offering new

strategies for overcoming tumor drug resistance.
5 miR-136 and immunotherapy

Immunotherapy is one of the most effective cancer treatment

strategies. Among immune checkpoint molecules, miRNA-based PD-

L1 regulation is the most widely studied. PD-L1, expressed on

immune and cancer cell surfaces, inhibits T-cell proliferation by

binding to its receptor, PD-1. In NSCLC, miR-34a directly binds to

the 3’-UTR of PD-L1, inhibiting its expression. miR-140 functions as

a PD-L1modulator in osteosarcoma (88), whereas miR-15a andmiR-

15b exert antitumor effects by blocking PD-L1 in neuroblastoma (89).

In breast cancer cells, PD-L1 activates PDCD4 via the PI3K/Akt

pathway, a process significantly enhanced by miR-21 (90). However,

the role of miR-136 in tumor immunotherapy remains unclear and

requires further investigation.
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6 miR-136 and other miRNAs

miR-136 stands out for its involvement in epigenetic regulation

(e.g., targeting EZH2) and its ability to enhance chemosensitivity in

cancer cells. Like miR-34a and let-7, miR-136 acts as a tumor

suppressor by targeting anti-apoptotic proteins and inhibiting

proliferation. Similar to miR-21 and miR-155, miR-136 regulates

the PI3K/AKT pathway, but it does so in a tumor-suppressive

manner, unlike the pro-tumorigenic effects of miR-21 and miR-155.

In conclusion, miR-136 shares some functional roles with other

miRNAs in cancer, such as regulating apoptosis and proliferation,

but its unique involvement in epigenetic regulation and

chemosensitivity distinguishes it from other miRNAs. Its

downregulation in cancer highlights its potential as a therapeutic

target or biomarker.
7 Summary

MiRNAs regulate the expression of their corresponding target

genes and exhibit direct or indirect carcinogenic or tumor-

suppressive effects in various cancers. Many studies have

identified miR-136 as a tumor suppressor gene. miR-136 is an

anti-invasive miRNA that inhibits mesenchymal invasion and

transfer in TNBC. The miR-136/RASAL2/MET axis functions as

a repressor of TNBC metastasis. miR-136 also negatively regulates

colon cancer progression by targeting LRH-1, preventing aberrant

activation of Wnt signaling. In gliomas, miR-136 inhibits

proliferation and induces apoptosis by regulating AEG-1 and

BCL-2 gene expression. Inhibition of miR-136 expression

upregulates its target AEG-1 gene and significantly improves the

metastatic ability of hepatoma cells. Additionally, miR-136

suppresses lung cancer cell proliferation, invasion, and migration.

In osteosarcoma, it negatively regulates MTDH, exerting tumor-

suppressive effects. miR-136 also inhibits the MAP2K4-mediated

JNK signaling pathway, thereby influencing downstream gene

expression. These findings suggest that miR-136 has broad

tumor-suppressive roles, making it a potential therapeutic target.

Furthermore, miRNAs regulate multiple target genes, underscoring

their functional diversity and importance in cancer treatment.
8 Future outlook

miR-136 plays a role in various signaling pathways in cancer

and has been identified as a promising biomarker for cancer

diagnosis and prognosis. Additionally, several cell-based and

preclinical studies have shown that blocking or inhibiting miR-

136 can lead to the regression of various cancer types, making it a

strong candidate for cancer drug discovery. miR-136 is also actively

involved in regulating drug resistance, and any effective miR-136

targeting strategy could help reduce cancer cell resistance and

recurrence. Several small-molecule inhibitors of miR-136 have

been reported; however, its functions in both cancerous and

normal cells are not fully understood. Using advanced sequencing
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techniques and powerful bioinformatics tools to explore the

regulatory function of miR-136 in complex oncogenic pathways

will enhance our understanding and reveal new potential

applications for miR-136 in cancer diagnosis and treatment.

Beyond investigating miR-136 itself, exploring effective drug

delivery methods is also essential. The emerging research focus on

exosomes offers new avenues for drug delivery. Exosomes are

messengers in cell-to-cell communication in the tumor

microenvironment, and exosomal circRNAs have been reported

to function as miRNA sponges, which are important in tumors.

However, the role of miR-136 in human cancer requires further

investigation. This review summarizes miR-136’s feasibility as a

diagnostic or prognostic biomarker and provides new perspectives

on cancer resistance and drug susceptibility research.
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