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Objective: Assisted reproductive technology (ART) has contributed to the birth of

over 10 million children worldwide; however, its long-term health impacts,

especially the potential risk of childhood cancer, continue to be a subject of

debate. This study aims to examine the most current risk associations between

ART and childhood cancer.

Methods:We conducted a comprehensive search across PubMed, Embase, Web of

Science, and Cochrane Library databases up to August 1, 2024. These studies aimed

to explore the association between ART and childhood cancer risk, covering overall

cancers, haematological malignancies, neural tumors, other solid tumors, and 11

specific cancers. Pooled analyses of risk estimates and 95% confidence intervals

were conducted using random effects models, while cumulative meta-analyses

were conducted to provide a time-based summary of the evidence. The study was

prospectively registered on PROSPERO (CRD42024547262).

Results: Sixteen large sample observational studies were included. Our findings

showed a 21% increased risk of overall cancer in children conceived via ART

(relative risk [RR] = 1.21, 95% CI, 1.11–1.33), with elevated risks also noted for

haematological malignancies (RR = 1.16, 95% CI, 1.05–1.28), neural tumors (RR =

1.19, 95% CI, 1.07–1.32), and other solid tumors (RR = 1.48, 95% CI, 1.26–1.73). Six

specific cancer types also demonstrated higher risks. The direction and

magnitude of the effects remained relatively constant over time, while the

degree of precision increased as data from newer studies were incorporated.

Sensitivity analyses confirmed the robustness of these findings, and no

publication bias was found.

Conclusions: Our findings suggest a potential risk association between ART and

childhood cancer, raising concerns regarding the future application of ART.
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These findings are critical in informing infertile couples considering ART about

the potential risks involved.

Clinical tr ial registration: https://www.crd.york.ac.uk/prospero/,

identifier CRD42024547262.
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Introduction

Reports indicate that 48 million couples and 186 million

individuals worldwide suffer from infertility (1, 2). The social

consequences of infertility are significant, as the problem can lead

to psychological distress, social stigmatization, economic strain, and

even divorce, thereby positioning it as a public health priority (2, 3).

This situation has improved with ongoing advancements in medical

treatments and technology, enabling millions of infertile couples to

conceive through ART (4). Currently, more than 10 million

children have been born through ART globally, accounting for

5.1% of all U.S. births (5). Previously, this technology was

considered safe; however, the short-term outcomes of children

conceived via ART, including fetal birth defects and growth

abnormalities, have been well-documented (6–8). However, the

medium- and long-term effects of ART on child health remain

largely unknown (9). In particular, the association between ART

and the risk of childhood cancer has been a subject of ongoing

controversy (5). Childhood cancers constitute the second most

common cause of childhood mortality in developed countries;

however, their etiology remains elusive, and their disease burden

is projected to rise significantly, with ART recognized as a possible

risk factor (10, 11). Several studies have indicated that certain

childhood cancers originate in the early stages of fetal

development and that events surrounding conception may play a

crucial role in these cancers (9, 12). Given that each stage of ART

implementation differs fundamentally from natural conception, it

may impact the early developmental stages of the embryo (13, 14).

Consequently, several researchers have proposed that ART could be

a potential risk factor for childhood cancer (15, 16).

In the 1990s, studies suggested that ART might increase the risk

of childhood cancer (17); however, subsequent research revealed no

significant risk association between ART and childhood cancer (18),
ymphoblastic leukemia;

ductive technology; CI,

m tumors; ET, embryo

tracytoplasmic sperm

ttawa Scale; OR, Odds

s.

02
and it may even offer protective benefits (19). The conclusions of

these studies lack persuasiveness due to limited sample sizes and

variability in research methodologies. Recent large cohort studies

investigating the link between ART and childhood cancer have

yielded inconsistent and controversial conclusions (20–22).

Currently, six published systematic reviews and meta-analyses on

this topic have not reached a unanimous conclusion regarding the

risk association between ART and childhood cancer, and the

opinions are evenly divided into those in favor and those against.

In 2005, Raimondi et al. (23) reported that there is no evidence

supporting an increased risk of childhood cancer associated with

ART. In 2019, a meta-analysis of cohort studies by Gilboa et al. (24)

concluded that ART, particularly IVF, is not associated with an

overall increased risk of childhood cancer. In 2020, Zhang et al. (25)

demonstrated that IVF, intracytoplasmic sperm injection (ICSI),

and fertility drugs are not linked to the risk of offspring cancer;

however, contrasting results were observed with frozen embryo

transfer methods. Conversely, in 2013, Hargreave et al. (15)

concluded that fertility treatments might increase the risk of

overall childhood cancers, haematological malignancies, neural

tumors, and other solid tumors. In 2019, Wang et al. (16) further

concluded that ART increases the risk of childhood cancers.

Additionally, in 2019, Chiavarini et al. (26) reported a positive

association between ART and the risk of childhood cancer. These

studies have found some evidence for a link between ART and

childhood cancer risk. However, a careful review has revealed

methodological flaws, including design limitations and inadequate

analytical approaches. For instance, studies with smaller sample

sizes may increase the risk of biased results, necessitating

revalidation of these findings.

In addition, larger cohort studies conducted over the past four

years have introduced new and robust evidence into the field.

Notably, two cohort studies (20, 27) encompassing nearly 10

million participants have significantly enriched our knowledge

base, enhancing the persuasiveness of our findings. Therefore, the

aim of this study was to further assess the impact of ART on

childhood cancer and to examine future research trends. This study

also aims to provide couples considering ART with the latest

information on cancer risk and to assess whether ART should be

included as a risk factor for childhood cancer.
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Methods

Registration of review protocol

This study adhered strictly to the Preferred Reporting Items for

Systematic Reviews and Meta-Analyses 2020 (PRISMA) (28)

guidelines for a systematic review and meta-analysis of studies

examining the relationship between ART and childhood cancer

risk. The study protocol was registered and published in the

Prospective Registry for International Systematic Reviews

(PROSPERO), Registration No. CRD42024547262.
Search strategy

We conducted searches in the PubMed, Embase, Web of

Science, and Cochrane Library databases from inception to

August 1, 2024, for relevant publications. The language of the

publications was limited to English. The search strategies

included terms related to exposure (“Assisted reproductive

technology”, “Intracytoplasmic sperm injection”, “In vitro

fertilization”, “ART”, “ICSI”, “IVF”), specific populations

(“infant”, “pediatric”, “childhood”), and outcomes (“Neoplasms”,

“Cancer”, “Tumor”) via both MeSH terms and free-text keywords.

The reference lists of related articles were manually reviewed to

identify any relevant studies missed in the initial search. More

detailed information on the search process is available in the Search

Strategies for the Supplementary Material.
Eligibility criteria

As recommended, the PECO-S framework was employed to

delineate the research questions (29, 30). P-population: children

from any country or region; E-exposure: number of children

conceived via ART > 4000; C-comparison: unexposed

populations, including naturally conceived children, the general

population, children not conceived via ART, and naturally

conceived children of mothers with low fertility; O-outcome: the

outcome of interest was the risk of childhood cancer; S-study

design: our focus was on observational study reports, including

cohort studies, case-control studies, and cross-sectional studies.

We used the following exclusion criteria (1): duplicates of

literature or reports on the same cohort (2); studies with

unavailable data (3); studies on the offspring of childhood cancer

survivors (4); nonrelevant exposures, such as fertility medications

(5); nonrelevant outcomes, such as birth defects and cardiovascular

disease in children conceived via ART (6); nonrelevant study

designs, such as intervention studies, randomized controlled

trials, study protocols, reviews, commentaries, and case reports.

It is noteworthy that, as childhood cancer is a rare disease,

several studies have indicated that a sample size of at least 20,000

children is required to observe a doubling of cancer risk within a

cohort (31–33). In contrast, most existing large-sample studies (e.g.,

the Nordic ART registry) have typically included ≥4,000 children
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conceived via ART. A previous meta-analysis on this topic

recommended a minimum sample size of 5,000 children conceived

through ART; however, considering both statistical validity and data

availability, a threshold of 4,000 was selected (24). This approach

encompasses most high-quality studies while mitigating the

confounding effects of heterogeneity due to small sample sizes.
Definition

ART is defined to include all interventions where human

oocytes, sperm, or embryos are treated in vitro for reproductive

purposes (34, 35), including artificial insemination, conventional

IVF, ICSI, oocyte and embryo donation, and other forms of

treatment; fertility drugs alone are not included in this study.

Childhood cancers are defined with reference to the

International Classification of Childhood Cancer (ICCC-3) (36),

and classified on the basis of the results of previous studies. The

classification encompasses overall cancers, haematological

malignancies, neural tumors, other solid tumors, and 11 specific

cancers: leukemia [including acute lymphoblastic leukemia (ALL)

and acute myelocytic leukemia (AML)], lymphoma, central nervous

system tumors (CNS tumors), peripheral nervous cell tumors

(including neuroblastoma and other peripheral nervous cell

tumors), retinoblastoma, hepatic tumors, renal tumors, bone

tumors and extraosseous sarcomas, germ cell tumors, embryonal

tumors, and epithelial tumors and melanoma.
Study selection

Literature screening was conducted in two stages. Initially, two

authors (JYJ and ZSP) imported the search results into EndNote X9,

removed duplicates, and preliminarily selected studies by reviewing

titles and abstracts on the basis of predefined inclusion and exclusion

criteria. The second stage involved a detailed review of the full texts

to confirm their suitability for the meta-analysis. Any disagreements

during the screening process were resolved through discussions with

a third author (WHY) until a consensus was reached.
Data extraction

Two researchers (JYJ and ZSP) independently extracted the

data. Disputes were resolved by consulting a third researcher

(WHY) or, if necessary, by contacting the study authors for

clarification of unclear or missing information. Data on the

following study characteristics were extracted: lead author,

publication date, study design, geographic location, duration of

study, years of follow-up, maternal age at conceiving, type of ART

exposure, unexposed population, type of outcome cancer, number

of cancers in exposed children/total number of exposed children,

number of cancers in unexposed children/total number of

unexposed children, RR, 95% confidence intervals, and a list of

adjusted covariates. In cases of multiple publications on the same
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cohort, priority was given to selecting the most comprehensive and

up-to-date combined study (with the longest follow-up or analysis

covering the most participants).
Data synthesis and analysis

RR and 95% CI were used as summary indicators of

associations. The hazard ratio (HR), odds ratio (OR), and

standardized incidence ratio (SIR) are assumed to approximate

the same RR metrics because of the lower incidence of childhood

cancer. This study analyzed the combined RR via the DerSimonian–

Laird random effects model. In addition, according to Wang et al.

(16), for treatments that reported data on the risk of different types

of cancer within the same category, the RR for the combined cancer

category was calculated in pooled analyses using a fixed-effects

model in the same study (for details, see Research Data

Harmonization). We used the Cochran Q test and the I² statistic

to evaluate heterogeneity among studies, with an I² value greater

than 50% and a p-value less than 0.05 indicating substantial

heterogeneity (37, 38). To assess the extent of heterogeneity, we

estimated the 95% prediction interval, which is expected to contain

the true effects of 95% of future studies (39, 40). In addition, when

the number of studies reporting on a cancer outcome exceeded 10, a

cumulative meta-analysis was conducted for that cancer to evaluate

the accumulation of evidence over time (41, 42). Additionally,

subgroup analyses were conducted using prespecified study-level

characteristics, including geographic location, maternal age at

conceiving, and various unexposed populations (naturally

conceived children, the general population, children not

conceived via ART, and children from mothers with low fertility

who were naturally conceived), to identify significant factors

contributing to the heterogeneity of the primary outcome for this

cancer. To ensure the reliability of the naturally conceived

population, the general population and children not conceived via

ART were combined in the subgroup analyses. In addition, given

that childhood cancers encompass various cancer types and ART

comprises multiple therapy forms, these factors may also contribute

to heterogeneity. Therefore, pooled analyses were performed for

individual cancer types, and the associations between different ART

types and childhood cancer risk were discussed (the number of

studies reporting on some ART exceeded 5). We performed ‘leave-

one-out’ sensitivity analyses by removing one study per iteration to

examine the impact of individual studies on the overall effect

(cancer outcomes with ≥ 5 studies). Funnel plots were visually

inspected for publication bias, and Egger regression was used to

detect potential publication bias (43); adjustments were made via

the trim and fill method if significant bias was identified (44). A

two-tailed P value of 0.05 was considered statistically significant.
Evaluation of study quality

The quality of the studies included in this meta-analysis was

assessed via the Newcastle–Ottawa Scale (NOS) (45). The NOS
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comprises eight items across three dimensions—selection,

comparability, and outcome—with each item scoring one point.

Specifically, items concerning the control of confounders could

receive up to two points. Studies were categorized as low (0–3),

medium (4–6), or high (7–9) quality on the basis of their scores. In

addition, based on the Grading of Recommendations, Assessment,

Development, and Evaluation (GRADE) (46), this study assessed

the quality of evidence for each outcome and categorized it as

“high”, “moderate”, “low”, or “very low” quality to support

the conclusions.
Software, data, and code availability

Statistical analyses were performed via Stata 16 (Stata Corp,

College Station, Texas), and 95% prediction intervals were

calculated via the R package “metamisc” in R Studio version

(version 4.4.1).
Results

Literature search

Figure 1 displayed the PRISMA flowchart for this study. A total

of 14,342 potentially relevant articles were identified through

comprehensive database and citation searches. After removing

8,408 duplicates, a total of 73 documents were deemed eligible for

full-text review after screening the titles and abstracts. After further

review, 57 records were excluded for the following reasons

(eTable 1). Ultimately, 16 studies that reported on ART and

childhood cancer risk were included in this meta-analysis.
Characteristics and quality of the included
studies

Table 1 summarized the study designs and demographic

characteristics of the included articles, covering 16 large-scale

observational studies, which were all classified as cohort studies

(10, 11, 18–22, 27, 47–54).

This meta-analysis imposed no stringent publication date

restrictions; however, included studies were published between

2000 and 2024. Nine studies originated from Europe (France, the

Netherlands, the United Kingdom, Denmark, Finland, Norway,

Sweden) (18–21, 27, 47, 49, 52, 53), three from Asia (China, Israel)

(11, 50, 51), three from North America (United States, Canada) (10,

22, 48), and one from Oceania (Australia) (54). The average follow-

up duration was 7.5 years, and the maternal age at conceiving

ranged from 28 to 36 years. In this study, 1,091,652 children were

born through ART, of whom 1,789 were diagnosed with cancer.

Moreover, in the control group, 28,612,981 children were born, of

whom 46,573 were diagnosed with cancer. These groups included

children aged 0–18 years. Additionally, except for the studies by

Wainstock and Bruinsma et al. (51, 54), the other studies provided
frontiersin.org
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detailed reports on the associations between ART and three types of

cancers in children: haematological malignancies, neural tumors,

and other solid tumors. Eight additional studies (10, 20, 21, 27, 47,

48, 51, 52) investigated the associations between various types of

ART and the overall risk of cancer in children. Among the 16 cohort

studies, the unexposed people in 8 studies were naturally conceived

children (10, 11, 20, 27, 48, 50, 51, 53), 5 studies had general

populations (18, 47, 49, 52, 54), 2 studies had children not

conceived via ART (19, 22), and 2 studies had mixed populations

(11, 21), including low-fertility but naturally reproducing

individuals and children not conceived via ART. There were two

groups of unexposed populations in the study by Weng et al. (11):

one naturally conceiving population and one mixed population. All
Frontiers in Oncology 05
studies adjusted or matched for potential confounders when

estimating the association between ART and childhood cancer

risk, with the exception of six studies (18, 21, 47, 49, 53, 54) that

differed in the extent of adjustment, as they adjusted only for

confounders such as year of birth, age, and sex.

Among the cohort studies included in this study, 15 reported

overall cancers, 14 reported haematological malignancies, 12 reported

neural tumors, and 13 reported other solid tumors (eTable 2).

Additionally, the number of studies reporting on each specific

cancer type was as follows: 12 studies reported on leukemia (3 on

ALL and 4 on AML), 8 on lymphoma, 12 on CNS tumors, 8 on

peripheral nervous cell tumors, 10 on retinoblastoma, 5 on hepatic

tumors, 10 on renal tumors, 7 on bone tumors and extraosseous
FIGURE 1

PRISMA flowchart of the systematic search.
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TABLE 1 Selected characteristics of 16 cohort studies included in review.
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Lead author,
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Outcome
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(2013 and 2018) (18, 49)
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Logan G Spector
(2019) (48)
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sarcomas, 2 on germ cell tumors, 3 on embryonal tumors, and 4 on

epithelial tumors and melanoma (eTable 2).

Among the various types of ART, 5 studies have explored the

association between IVF and the risk of childhood cancer compared to

the general population and unexposed populations conceived naturally.

The 16 studies included in this meta-analysis had NOS scores

ranging from 7 to 9. Therefore, the overall quality of this study was

rated as high (eTable 3).
ART and overall risk of cancer

In the present study, we observed a 21% increase in overall

cancer risk (RR = 1.21, 95% CI, 1.11–1.33) in children conceived via

ART (Figure 2a). Heterogeneity was observed among the studies (I²

= 56.08%, p = 0.004). We excluded five studies (18, 21, 47, 49, 54)

that varied in the degree of adjustment for confounders, resulting in

a pooled effect size of (RR = 1.26, 95% CI, 1.14–1.41) (eFigure Forest

Plot 1). Despite this, heterogeneity among the included studies

persisted (I² = 61.87%, p < 0.001). Excluding four studies, two (10,

20) that combined risk estimates for several types of ART and two

(48, 52) that employed a single ART risk estimate instead of any

ART risk estimate resulted in a pooled effect size of (RR = 1.22, 95%

CI, 1.06–1.40) (eFigure Forest Plot 2), while significant

heterogeneity persisted (I² = 65.77%, p < 0.001). A visual

inspection of the funnel plots indicated that the distribution of

studies was generally symmetrical, and Egger’s regression test

revealed no potential publication bias (t = 1.18, p = 0.258)

(eFigure Publication bias 1–3). The 95% prediction interval for

the pooled analysis ranged from 1.09–1.75, indicating that the true

RR for any given study typically lies within this range.

In addition, a cumulative meta-analysis based on year of

publication demonstrated (Figure 2b) that the first evidence of an

increased risk of overall childhood cancer with ART emerged in 2010,

with combined RR values ranging from 1.17 to 1.42. However, in 2013,

expanded data indicated that the risk association lacked statistical

significance. Subsequent research published in 2017 reaffirmed the

strong association between ART and overall childhood cancer risk.

Although subsequent studies have enhanced the precision of point

estimates, there has been no substantial change in the direction or

magnitude of the risk association, which has largely stabilized.
ART and the risk of haematological
malignancies, neural tumors and other
solid tumors

Figure 3 illustrates the risk associations for haematological

malignancies, neural tumors, and other solid tumors associated

with ART, respectively. The pooled results indicated that the risk for

haematological malignancies (RR = 1.16, 95% CI, 1.05–1.28), neural

tumors (RR = 1.19, 95% CI, 1.07–1.32), and other solid tumors

(RR = 1.48, 95% CI, 1.26–1.73) significantly increased in children

conceived via ART. Heterogeneity was observed only in studies

reporting other solid tumors (I² = 64.83%, p < 0.05), and cancer type
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may significantly influence heterogeneity. The visual funnel plots

were symmetrical, and none of the Egger regression tests indicated

potential publication bias in any category (haematological

malignancies: t = 2.16, p = 0.052; neural tumors: t = -0.14, p =

0.891; other solid tumors: t = 1.54, p = 0.151) (see eTable 2, eFigure

Publication bias 4–6 for details).

In addition, the cumulative meta-analysis indicated that

evidence supporting an increased risk of haematological

malignancies (Figure 3A) and neural tumors (Figure 3B) among

children conceived via ART emerged in 2022, with combined RR

values fluctuating between 1.02 to 2.25 and 1.04 to 1.85,

respectively. Since 2022, there have been no substantial changes

in the direction or magnitude of these risk associations, which have

remained stable. In contrast, evidence of risk associations between

ART and other solid tumors (Figure 3C), which emerged in 2013,

ranged from 0.74 to 2.28 for the combined RR. Data from 2018

further reinforced the strength of this risk association. Subsequent

studies increased the precision of the point estimates but did not

alter the direction or magnitude of the association.
ART and the risk of specific cancers

eTable 2 summarizes the associations of risk between ART and

specific childhood cancers. Six specific cancers exhibited a

significantly increased risk, including leukemia (RR = 1.16, 95%

CI, 1.03–1.32) (Figure 4A), CNS tumors (RR = 1.22, 95% CI, 1.09–

1.38) (Figure 4B), retinoblastoma (RR = 1.74, 95% CI, 1.15–2.63)

(Figure 4C), hepatic tumors (RR = 2.73, 95% CI, 1.90–3.91), bone

tumors and extraosseous sarcomas (RR = 1.62, 95% CI, 1.26–2.07),

and epithelial tumors and melanoma (RR = 1.67, 95% CI, 1.22–

2.29). Additionally, there were also seven specific cancers for which

the risk was not significantly associated with ART, including

lymphoma (RR = 1.12, 95% CI, 0.90–1.39), ALL (RR = 1.14, 95%

CI, 0.95–1.36), AML (RR = 1.25, 95% CI, 0.72–2.18), peripheral

nervous cell tumors (RR = 1.01, 95% CI, 0.79–1.29), renal tumors

(RR = 1.27, 95% CI, 0.98–1.65) (Figure 4D), germ cell tumors (RR =

0.60, 95% CI, 0.25–1.42), and embryonal tumors (RR = 1.14, 95%
Frontiers in Oncology 10
CI, 0.99–1.32). Heterogeneity was observed solely in the study of

retinoblastoma (I² = 52.86%, p = 0.02), suggesting that different

types of cancer might significantly influence heterogeneity. Visual

inspection of the funnel plot revealed symmetry, and no publication

bias was detected via Egger’s test (p > 0.05), with the exception of

germ cell tumors (t = -5.23, p = 0.035) (eFigure Forest Plot 3–11,

eFigure Publication bias 7–19).

The results of the cumulative meta-analysis on ART and

leukemia are presented in Figure 4A. Evidence indicating a risk of

leukemia in children conceived via ART first emerged in 2024, with

combined RR values ranging from 0.91 to 1.21. Additionally,

evidence indicating the risk of CNS tumors (Figure 4B) and

retinoblastoma (Figure 4C) in children conceived via ART first

emerged in 2022, with combined RR values ranging from 0.96 to

1.85 and 0.91 to 6.64, respectively. No significant changes in

direction, estimation, or precision were observed in the

cumulative meta-analysis of these three cancer outcomes with

subsequent additions to the study data. However, the cumulative

meta-analysis of ART and renal tumor risk (Figure 4D) indicates

that the effect of ART on renal tumors continues to be insignificant,

despite the addition of new data over time.
Subgroup analyses

In this study, subgroup stratification was carried out for overall

cancers, haematological malignancies, neural tumors, other solid

tumors, leukemia, CNS tumors, retinoblastoma, and renal tumors

among children conceived via ART (eTable 4, Figure 5, and eFigure

Subgroup Analysis Forest Plot 1–24).

Stratified analyses by geographic region revealed a trend toward

a significantly lower cancer risk for studies conducted in European

countries, whereas non-European countries presented a

significantly higher cancer risk ratio for overall cancers (RR =

1.34, 95% CI, 1.13–1.59), neural tumors (RR = 1.28, 95% CI,

1.09–1.51), other solid tumors (RR = 1.76, 95% CI, 1.30–2.38),

and retinoblastoma (RR = 2.54, 95% CI, 1.17–5.52). Stratified

analysis by maternal age at conceiving indicated a trend towards
FIGURE 2

(a) Traditional meta-analysis of Risk of Overall cancer in children conceived via ART. (b) Cumulative meta-analysis of Risk of Overall cancer in
children conceived via ART.
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a reduced risk association between ART and childhood cancer when

maternal age was ≥30 years, such as overall cancer (RR = 1.15, 95%

CI, 1.03–1.28), neural tumors (RR = 1.15, 95% CI, 1.01–1.31), and

other solid tumors (RR = 1.40, 95% CI, 1.17–1.67). In contrast, the

risk associations tended to increase at maternal age at conceiving

less than 30 years, as was observed for overall cancers (RR = 1.33,

95% CI, 1.12–1.57), neural tumors (RR = 1.27, 95% CI, 1.07–1.52),

other solid tumors (RR = 1.73, 95% CI, 1.17–2.56), and CNS tumors

(RR = 1.30, 95% CI, 1.01–1.67). Stratified by the unexposed

population, there was a significantly increased risk ratio of cancer,

such as overall cancer (RR = 1.27, 95% CI, 1.13–1.44), neural

tumors (RR = 1.24, 95% CI, 1.10–1.39), other solid tumors (RR =

1.50, 95% CI, 1.21–1.87), CNS tumors (RR = 1.28, 95% CI, 1.12–

1.47), and retinoblastoma (RR = 1.94, 95% CI, 1.09–3.43), and an

increased risk of other solid tumors (RR = 1.57, 95% CI, 1.26–1.94),
Frontiers in Oncology 11
among children conceived via ART compared with the general

population or children not conceived via ART.

Specific cancers often show a potentially positive associated risk

in various types of stratified analyses; however, the rarity of these

cancers makes conducting actual studies more challenging. In this

regard, we cannot exclude the possibility that the elevated risk

significance may not be detectable due to limited statistical power

and an insufficient number of studies.
IVF and overall risk of cancer

This meta-analysis did not find conclusive evidence for an

association between IVF and childhood cancer risk (RR = 1.28,

95% CI, 0.98–1.66) (eFigure Specific types of ART Forest Plot 1).
FIGURE 3

Traditional and Cumulative meta-analysis of Risk of Haematological malignancies (A), Neural tumors (B) and Other solid tumors (C) in children
conceived via ART.
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Importantly, owing to high heterogeneity (I² = 81.14%, p < 0.001),

which was significantly reduced (I² = 45.49%, p = 0.14) after we

considered the confounding of small-sample studies and excluded

the study with the lowest number of exposures with an IVF

exposure of 4,324 (51), the combined effect sizes were (RR = 1.13,

95% CI, 0.96–1.32) (eFigure Specific types of ART Forest Plot 2),

and conclusions remained unchanged. Both before and after the

exclusion of studies, visual funnel plots remained symmetrical, and
Frontiers in Oncology 12
Egger’s test did not reveal publication bias (all p > 0.05) (eFigure

Publication bias 20–21).
Sensitivity analysis

In a sensitivity analysis, this study evaluated the impact of

various exclusion criteria on overall cancer risk estimates for
FIGURE 4

Traditional and Cumulative of Risk of Leukemia (A), CNS tumors (B), Retinoblastoma (C) and Renal tumors (D) in children conceived via ART.
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children conceived via ART (eFigure sensitivity analysis 2–3). The

results remained largely unchanged by the exclusion of either the

five studies with differing confounder adjustments or the four

studies that adjusted for ART exposure. Additionally, not a single

study influenced the risk outcomes for overall cancer,

haematological malignancies, neural tumors, other solid tumors,

or specific cancers among children conceived via ART, confirming

the robustness of the results (eFigure sensitivity analysis 4-14).
Evidence appraisal using GRADE

In contrast to randomized controlled studies, observational

studies are usually graded up or down from Grade C due to

deficiencies in study design. For detailed evaluation procedures,

see etable 5. Most of the results of the current study had an evidence
Frontiers in Oncology 13
grade of C, especially retinoblastoma, hepatic tumors, bone tumors

and extraosseous sarcomas, which had a grade of B. Overall, the

GRADE scores indicate that the level of evidence for the results of

the current study is of high quality among observational studies and

can effectively support the risk association between ART and

childhood cancer.
Discussion

To our knowledge, this is the largest and most comprehensive

meta-analysis to explore the association between ART and childhood

cancer risk, utilizing a large sample from observational studies. This

meta-analysis, which involved 30 million children, demonstrated

that ART was associated with an increased risk of overall cancer in

children (RR = 1.21, 95% CI, 1.11–1.33) compared with natural
FIGURE 5

Subgroup forest plot of the association between ART and childhood cancer risk. CI, confidence interval; rr, relative risk; parallel lines, represent
confidence intervals for individual effect sizes; vertical black line, invalid line of binary classification variable (1.00); red box, summary value of effect
sizes for each type of cancer; green box, estimates of effect sizes that are currently not statistically significant; blue box, estimates of effect sizes that
are statistically significant; I2, heterogeneity between studies within subgroups; p-value: p < 0.05 indicates statistical significance.
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conception, the general population, children not conceived via ART,

or the unexposed population with low fertility but natural

conception. Specifically, the risks for hematological malignancies

(RR = 1.16, 95% CI, 1.05–1.28), neural tumors (RR = 1.19, 95% CI,

1.07–1.32), other solid tumors (RR = 1.48, 95% CI, 1.26–1.73), and

certain specific cancers including leukemia, CNS tumors,

retinoblastoma, hepatic tumors, bone tumors and extraosseous

sarcomas, and epithelial tumors and melanomas, were significantly

elevated. In addition, the findings suggested that different types of

specific cancers might significantly influence the heterogeneity of the

primary outcome. A further outcome of our research, a cumulative

meta-analysis based on time lapses, revealed initial associations

between ART and other solid tumors as early as 2013, with new

cancer type risks emerging in 2022. Although subsequent studies

have refined our estimates, no significant shifts in the direction or

magnitude of risk associations have been observed, indicating stable

outcomes. The data consistently support a robust link between ART

and childhood cancer risk. However, we cannot rule out potential

confounders such as the effects of ART and underlying parental

infertility, which may contribute to increased cancer risk in offspring.

Information on procedures such as IVF and ICSI (55), along with

pertinent time-varying covariates during treatment (56), will aid in

further clarifying the mechanisms underlying this association.

Furthermore, this association remained consistent across subgroup

analyses involving geographic regions, maternal age at conceiving,

and populations of unexposed groups. Notably, women younger

than 30 years who used ART might have had a higher risk ratio of

cancer in their offspring (RR age<30 = 1.33, RR age≥30 = 1.15)

highlighting the importance of promoting natural conception

among younger women. These findings provide valuable insights

for future research, clinical practice, and advice for couples

considering ART.

Our results contradict those of a 2019 meta-analysis by Gilboa

et al. (24), which reported no significant association between ART

and childhood cancer risk (RR = 0.99; 95% CI, 0.85–1.15). This

discrepancy may stem from Gilboa’s inclusion of data from 2018

case-control studies (57), potentially introducing bias into the pooled

results. Conversely, Wang et al.’s (16) meta-analysis of observational

studies from the same year, which explored fertility treatments and

childhood cancer risk, aligned closely with our findings, with RRs for

overall cancer, haematological malignancies, and other solid tumors

in offspring of 1.16, 1.39, and 1.57, respectively. Nevertheless, their

study concluded that the association between ART and the risk of

neural tumors was not significant (RR = 1.15, 95% CI, 0.89–1.47), a

finding that contradicts our conclusions. This discrepancy could be

attributed to the inclusion of inconsistent study types and a greater

number of small cohort studies (17, 31, 58, 59). In contrast, our study

utilized more comprehensive and representative data, comprising

1,091,652 children conceived via ART and 1,789 childhood cancer

cases, nearly threefold the number included in the 29 observational

studies, which featured 327,884 children conceived through fertility

treatments and 578 childhood cancer cases. In the 2020 study by

Zhang et al. (25), which explored various fertility treatments and

their risk for offspring cancer, our IVF findings aligned with their

conclusions, revealing no evidence of an increased childhood cancer
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risk associated with IVF. Considering the scarcity of research on

various ART types and their associations with childhood cancer risk,

along with the very low incidence of cancer, the inclusion of

numerous studies with small sample sizes and zero cancer cases in

the exposure group in meta-analyses can exacerbate confounding

issues, potentially leading to unreliable outcomes (60). Therefore, we

advocate the inclusion of large studies to more accurately determine

the actual risk association between ART and childhood cancer.

Despite pooling and analyzing data from a large sample of

studies, we encountered the same issues as those reported by Wang

et al. It remains unclear whether factors related to the ART

implementation process or underlying parental fertility issues

contribute to the increased risk of childhood cancers. The

mechanisms underlying ART’s increased risk of childhood

cancers remain largely unproven, with current hypotheses

suggesting epigenetic disorders as a potentially influential

pathway (61–63). Dynamic epigenetic regulation of gene

imprinting, governed by both DNA methylation-dependent and

DNA methylation-independent mechanisms, dictates the

expression of specific genes on the basis of parental origin (64).

Recent studies (65, 66) have established a connection between

abnormal gene imprinting and the onset of childhood cancers,

including retinoblastoma and neuroblastoma. Studies (67, 68)

indicate that ART encompasses various stages of conception,

ranging from gamete production stimulation to embryo in vitro

culture, which includes processes such as ovarian stimulation, in

vitro oocyte maturation, and gamete or embryo cryopreservation.

Each step of the ART process has the potential to disrupt the normal

genetic imprinting process, thereby increasing the risk of adverse

pregnancy and neonatal outcomes (7, 69). Research conducted by

Luke et al. (10) identified an increased cancer risk in children

conceived via ART as well as their siblings who were not, suggesting

that shared genetic or environmental factors may influence cancer

susceptibility. In addition, infertility itself might increase epigenetic

risk in children (70). Research (71) suggested that children born to

mothers facing fertility challenges are at increased risk of

developing cancer during childhood and early adulthood.

Moreover, the largest cohort study in Asia, conducted by Weng

et al. (11), indicated that this increased cancer risk may stem more

from ART than from underlying fertility issues.

Existing studies have demonstrated heterogeneous results for the

association between ART and childhood cancer risk. Both this study

and the meta-analysis byWang et al. indicated that the association of

some cancer types with ART failed to reach statistical significance

(72), potentially due to the low incidence of rare tumors leading to

insufficient statistical power. However, several cohort studies have

identified potential trends in risk for specific tumor types. A large

cohort study in the United Kingdom, with a follow-up period of up

to 17 years, observed no increase in overall cancer risk in ART-

conceived children, but noted an increased risk of hepatoblastoma

and rhabdomyosarcoma (18). This result is in alignment with the

observed trend of increased risk of liver tumors in the US cohort

(48). Conversely, the study across four Nordic countries highlighted

an increased risk of central nervous system tumors and malignant

epithelial tumors (73). Importantly, data from the Danish 10 million
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cohort revealed an elevated risk of leukemia, sympathetic nervous

system tumors, and epithelial tumors and melanoma in FET-

conceived children compared to naturally-conceived children,

although these associations must be interpreted with caution due

to the limited number of cases (n<5) (27, 47). Notably, the

association of leukemia, the most common malignancy in children,

with ART has demonstrated a relatively stable trend of elevated risk

in multicenter studies (19, 20). The variability of the available

evidence may be attributed to (1) confounding effects of

underlying infertility and its associated pathologic states (2),

biological differences in various ART technology options (e.g., IVF,

FET), and (3) disparities in the completeness of cancer registry

systems across geographic regions. Future studies should establish

mega-sample cohorts through international multicenter

collaborations and implement uniform exposure classification

criteria to elucidate the causal associations and potential biological

mechanisms between specific cancer types and ART.

We recommend cross-linking future international (non-

national) registries that report outcomes after ART treatment

with cancer registries. Additionally, these registries should record

a specific set of variables associated with increased cancer risk, such

as type of infertility, duration of infertility, mother’s age at

conception, pregnancy cycle, primary versus secondary infertility,

male infertility, parental smoking status, mother’s BMI, fetal

growth/birth weight, and other relevant factors. To draw

definitive conclusions, reliable databases are needed to avoid the

risk of false or premature alarms, which can have detrimental

consequences in couples’ counseling.
Strengths and limitations

The key strengths of this evaluation include the following (1):

Given the low prevalence of childhood cancer, the inclusion of a

large dataset comprising 30 million childhood participants, 50,000

of whom had childhood cancer, enhances the statistical testing

capabilities. This approach reduces potential confounders and

minimizes small-sample bias, enabling more precise assessment of

risk associations between ART and childhood cancer (2). All

included studies are high-quality cohort studies rigorously

assessed for their methodology, with risk of bias assessments and

sensitivity analyses ensuring the credibility and robustness of

findings (3). Time-cumulative meta-analysis was used to

dynamically assess the trend between ART and childhood cancer

risk, with consistent results confirming the positive risk association

(4). Childhood cancers often develop before age 4 (74). A key

strength of this study is the average follow-up period of 7.5 years,

which enhances our ability to observe trends in overall and specific

childhood cancer risks (5). The study explored various subgroup

levels and ART types. Interestingly, the association with cancer risk

in children conceived via ART was more pronounced when the

mother was under 30 years of age at delivery, highlighting the

importance of hierarchical analysis to complement the results.

Overall, the results of this study are more comprehensive and

robust than those of previous studies with smaller samples.
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While the current meta-analysis has certain limitations, these

limitations are primarily intrinsic to the individual studies included

rather than to the meta-analytical methodology itself (1). The

absence of specific ART-related details such as ovarian

stimulation regimens and the limited number of unexposed

people with low fertility but natural reproduction in the studies

included in the current meta-analysis may interfere with an

accurate assessment of the association between ART and the risk

of cancer outcomes (2). The included studies were all cohort

designs, reducing selection bias and categorization errors, but

were also prone to missing-follow-up bias. The absence of case-

control and cross-sectional studies might affect the completeness

and certainty of the results (3). Additionally, the observational study

design has deficiencies and requires further improvement. For

example, controlling for concordance in fertility levels between

exposed and non-exposed populations is essential to fully explore

the risk association between ART and childhood cancer (4). We

acknowledged that although all the studies included in this analysis

were large cohort studies, the number of cases involving certain

specific rare cancers was still small. This limitation affected the

statistical precision of these estimates, and therefore caution needs

to be exercised in interpreting the results, particularly with data on

specific types of cancers (5). The associations between specific ART

and various childhood cancers could not be thoroughly investigated

due to the scarcity of extensive studies that uniformly reported on

individual ART and particular types of cancer.
Conclusions

Our meta-analysis, which involved high-quality observational

studies with large samples, revealed a significant association

between ART and increased risks of childhood cancer overall,

haematological malignancies, neural tumors, other solid tumors,

and six specific cancers. The results of the cumulative meta-analysis

indicated that the direction and magnitude of the effects on these

outcomes were largely consistent over time. These findings suggest

that infertile couples considering ART should be aware of the

potential increased cancer risk to their children.
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