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Activation-induced cytidine deaminase (AID) serves as a critical molecular

orchestrator in the germinal center (GC) reaction within secondary lymphoid

organs (SLOs), driving the production of high-affinity antibodies through somatic

hypermutation. While its pathological implications are well-documented - including

ectopic expression in non-B cell populations and transcriptional dysregulation linked

to hematological malignancies and solid tumorigenesis - the cellular provenance of

AID in solid tumors remains an unresolved paradox. This review advances two

principal hypotheses: (1) AID may derive from tertiary lymphoid structures (TLSs),

ectopic immune niches mirroring SLO organization, and (2) exhibits context-

dependent transcriptional duality, capable of both potentiating and suppressing

gene expression based onmicroenvironmental cues. Through systematic analysis of

AID/GC involvement across cancer subtypes, we delineatemechanistic connections

between lymphoid neogenesis and tumor progression. Our examination extends to

TLS architecture, revealing three critical dimensions: (i) structural organization and

cellular heterogeneity, (ii) developmental trajectories, and (iii) bidirectional

interactions with tumor microenvironments. Crucially, we establish functional

parallels between tumor-infiltrating B cells (TIL-Bs) in SLOs versus TLSs, while

elucidating the differential roles of AID in canonical GC versus TLS-associated GC

formation. This synthesis ultimately proposes that AID’s functional dichotomy -

acting as both oncogenic collaborator and tumor suppressor - underlies the

paradoxical prognostic associations observed with TLS presence across

malignancies. The review thereby provides a conceptual framework reconciling

AID’s dual functionality with the context-dependent immunobiology of tumor-

associated lymphoid structures.
KEYWORDS

activation-induced cytidine deaminase (AID), germinal center reaction, TLSs, TIL-B cells,
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1 Introduction

Activation-induced cytidine deaminase (AID) drives antibody

diversity and affinity maturation through somatic hypermutation

(SHM) and class switch recombination (CSR) within germinal

centers (GCs), thereby promoting B cell development and

humoral immunity (1–15). However, dysregulated AID

expression induces genotoxic off-target effects through aberrant

SHM/CSR activity, a key driver of oncogenic mutations (16).

Notably, tumor-associated AID expression demonstrates strong

spatial correlation with tumor-infiltrating B cells (TIL-Bs). These

lymphocytes are predominantly localized within tertiary lymphoid

structures (TLSs), ectopic immune aggregates that recapitulate

lymphoid organogenesis in tumor microenvironments (17–21).

In this review, we initially address the dual biological role of

AID: it can suppress tumor progression by silencing oncogenic

pathways (e.g., through DNA hypermethylation) or promote

malignancy by inducing mutagenesis via off-target deamination

(16, 22, 23). Next, we present a summary of the research findings

regarding AID’s involvement in the formation of GCs within

secondary lymphoid structures (SLOs) and its association with

cancers (16, 24, 25). Moreover, we provide an in-depth analysis of

the formation of tertiary lymphoid structures (TLS) and the

resulting two-sided impact on tumor prognosis (26–30). Finally,

we discuss the interrelationship between AID and TLS, emphasizing

AID-expressing tumor-infiltrating B cells (TIL-Bs) and TLS-

associated GCs (TLS-GCs), which serve as functional hubs within

tumor microenvironments (31, 32). We propose that AID’s

functional duality in TLS-GCs–mediated by its mutagenic and

immunomodulatory activities–underlies the paradoxical

prognostic effects of TLSs across cancer types.
2 The biochemistry and physiological
functions of AID

AID (Activation-Induced Cytidine Deaminase) was originally

identified as a novel gene product in murine CH12F3-2 B

lymphoma cel l s , where i t regulates immunoglobul in

diversification. As a member of the APOBEC (apolipoprotein B

mRNA editing enzyme, catalytic polypeptide-like) family, AID

harbors a conserved cytidine deaminase domain responsible for

its catalytic activity (33). Structurally, AID is characterized as a

cytidine deaminase containing an APOBEC1-homologous domain,

enabling its enzymatic function to mediate cytidine-to-uridine

(C→U) conversions in nucleic acids (34, 35). While APOBEC

family members primarily target RNA substrates, AID exhibits

unique biochemical specificity as a single-stranded (ss) DNA-

selective cytidine deaminase. This enzymatic activity catalyzes the

deamination of deoxycytidines (dCs) to deoxyuridines (dUs) in

DNAmolecules, distinguishing it from canonical APOBEC proteins

(1, 2). This dual functional capacity - evolutionary conservation of

RNA-editing motifs coupled with ssDNA substrate preference -

underpins AID’s specialized roles in genomic remodeling.
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The human AICDA gene, located on chromosome 12

(12p13.31), encodes the 198-amino acid activation-induced

cytidine deaminase (AID), a DNA-editing enzyme critical for

adaptive immunity. AID’s functional architecture comprises two

evolutionarily conserved domains: 1) a cytidine deaminase catalytic

core that converts cytosine (C) to uracil (U) in DNA, generating U:

G mismatches, and 2) an APOBEC1-homologous domain enabling

genome-wide recognition of the WRCY motif (W = A/T, R = A/G,

Y = C/T). This dual-domain synergy allows AID to selectively target

ssDNA regions, induce C→U deamination at defined sequence

contexts, and thereby initiate two essential processes for

immunoglobulin diversification—somatic hypermutation (SHM)

to enhance antibody affinity through targeted point mutations,

and class switch recombination (CSR) to alter antibody effector

functions via DNA recombination (1, 3, 4, 6, 8–10).
2.1 AID and SHM, CSR

AID serves as the central driver of somatic hypermutation

(SHM) and class switch recombination (CSR) through its

sequence-specific recognition of the WRCY motif (“hotspot”).

During SHM, AID generates U:G mismatches via cytosine

deamination in immunoglobulin heavy (IgH) and light (IgL)

chain variable region exons. These mismatches are processed

through DNA replication, base excision repair (BER), or

mismatch repair (MMR), ultimately producing C→A/T/G

substitutions and insertions/deletions that diversify antibody

affinity (1–10, 13–15, 36, 37). In CSR, AID induces double-strand

breaks (DSBs) in switch regions (Cm/Cg/Ca/Cd/Ce) of the IgH

constant region, which encode distinct antibody isotypes (IgM/IgG/

IgA/IgD/IgE). Antigen stimulation triggers IgH transcription,

forming stable R-loop DNA: RNA hybrids that expose single-

stranded DNA (ssDNA) in switch (S) regions. For instance,

during IgM-to-IgG switching, AID targets ssDNA in Sm and Sg
regions, creating U:G mismatches that are converted to DSBs via

BER/MMR. Subsequent repair mediates VDJ-Cg1 recombination

through Sg1-Sm looping, enabling precise deletion of intervening

constant regions while retaining antigen specificity in the expressed

IgG1 heavy chain (Igg1) (1–10, 38–43).
2.2 AID’s epigenetically modification
function

2.2.1 AID and DNA demethylation
Beyond its canonical roles in somatic hypermutation (SHM) and

class switch recombination (CSR), AID exhibits an evolutionarily

conserved capacity to initiate active DNA demethylation through 5-

methylcytosine (5mC) processing. AID mediates this epigenetic

regulation by deaminating 5mC to thymine, triggering subsequent

base excision repair (BER) and mismatch repair (MMR) pathways that

ultimately replace methylated cytosines with unmodified bases, thereby

promoting genome-wide demethylation (44). While the relative

contributions of BER versus MMR in methyl group removal remain
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debated, accumulating evidence positions AID as a key facilitator of

dynamic DNA demethylation through this mechanism (4, 15, 45). This

paradigm is strongly supported by zebrafish embryo studies

demonstrating a two-step demethylation process: 1) AID-catalyzed

5mC deamination generates T:G mismatches, followed by 2) BER-

mediated replacement through species-specific glycosylases–methyl-

CpG binding domain protein 4 (MBD4) in zebrafish and thymine-

DNA glycosylase (TDG) in mammals (46–48).

AID catalyzes the deamination of 5-hydroxymethylcytosine

(5hmC), a product generated by ten-eleven translocation (TET)

family enzymes through 5-methylcytosine (5mC) hydroxylation,

into 5-hydroxymethyluracil (5hmU) (49, 50). The base excision

repair (BER) system, involving MBD4 or TDG, subsequently

replaces 5hmC with unmodified cytosine (46–48). Emerging

evidence reveals a bidirectional regulatory relationship between

AID and TET family members, particularly TET2, through

transcriptional and post-transcriptional mechanisms. These

interactions coordinate AID-associated active demethylation

processes in cancer biology, with significant implications for

hematological malignancies (51, 52). Notably, AID facilitates

TET2-mediated demethylation of the FANCA gene as a

transcriptional cofactor in diffuse large B-cell lymphoma

(DLBCL) (22), while paradoxically collaborating with DNMT1 to

maintain methylation at the BCL6 promoter (23). Beyond gene-

specific epigenetic regulation, AID deficiency induces genome-wide

methylation alterations, suggesting its dual role in both promoting

and suppressing DNA methylation through mechanisms extending

beyond its canonical enzymatic activity. This systemic impact

positions AID as a global modulator of epigenetic landscapes

rather than merely executing localized methylation changes.

2.2.2 AID in cellular reprogramming
Cellular reprogramming, the conversion of somatic cells (e.g.,

fibroblasts) into pluripotent stem cells, has been successfully achieved

through overexpression of defined transcription factors including

OCT4, SOX2, KLF4, and c-MYC to generate induced pluripotent

stem cells (iPSCs) (53, 54). This revolutionary approach offers

therapeutic potential for diverse pathologies including various

cancers, cardiovascular diseases, metabolic disorders, and chronic

inflammatory conditions. Emerging evidence suggests AID’s DNA

demethylation activity may facilitate pluripotency acquisition

through interactions with gene clusters in oocytes and primordial

germ cells (PGCs) (55, 56). Experimental models using mouse-

human interspecies heterokaryons (generated by fusing embryonic

stem cells with fibroblasts) demonstrated that OCT4 (POU5F1) and

NANOG reactivation during reprogramming requires AID-mediated

promoter demethylation - AID depletion impairs these processes by

preventing activation of methylated OCT4 and NANOG promoters

in somatic cells (53, 56). These findings establish AID’s essential role

in mammalian cellular reprogramming through active DNA

demethylation, as corroborated by multiple experimental systems

(4, 15, 49, 50, 53–56). In vivo investigations using germinal center B

cells (GCBs) from wild-type versus AID-deficient (Aicda-/-) mice

revealed altered patterns of differentially methylated cytosines
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(DMCs) during naive B cell-to-GCB differentiation, indicating

AID-dependent epigenetic remodeling during physiological cell

state transitions (57). Given its dual capacity to enable artificial

reprogramming and regulate natural differentiation processes, AID

emerges as a promising therapeutic target for neoplastic and systemic

disorders, highlighting its potential to modulate cellular plasticity

through epigenetic mechanisms.
2.3 New faces: AID’s emerging role in gene
transcription

While AID was originally characterized for its canonical role

in immunoglobulin gene diversification through cytidine

deamination-mediated somatic hypermutation (SHM) and class

switch recombination (CSR), emerging evidence reveals

multifaceted contributions to carcinogenesis and transcriptional

regulation. Although AID’s off-target activity at non-Ig loci has

been implicated in approximately 8% of cancer cases (58), recent

studies demonstrate that its non-enzymatic functions in

transcriptional modulation may constitute the predominant

oncogenic mechanism (22, 23). The molecular machinery

enabling AID’s genomic targeting shows striking parallels

be tween Ig and non-Ig contex t s : In ant ibody gene

diversification, AID requires collaboration with Spt5, RPA, and

RNA PolII to access single-stranded DNA substrates that facilitate

double-strand breaks (DSBs) (35–37, 59–63). Similarly, in diffuse

large B-ce l l lymphoma (DLBCL) , AID exhibi t s dual

transcriptional regulation - cooperating with TET2 to activate

FANCA expression while partnering with DNMT1 to repress

BCL6 (22, 23). These observations establish two critical

principles : (1) AID functions as a context-dependent

transcriptional cofactor, and (2) its regulatory outcomes

(activation vs. repression) depend on interacting partners within

distinct molecular complexes. This mechanistic plasticity enables

AID to exert bidirectional effects on gene expression, translating

to either tumor-promoting or tumor-suppressive roles depending

on cellular context. Such functional duality challenges

conventional paradigms and underscores the need for system-

specific evaluation of AID’s contributions to oncogenesis.

However, The characterization of AID as a functional cofactor

remains controversial, as over 50 reported binding partners are widely

considered likely experimental artifacts rather than biologically relevant

interactions (64). This skepticism arises from AID’s intrinsic

physicochemical properties as a highly charged, structurally dynamic

molecule prone to nonspecific electrostatic associations with diverse

proteins under experimental conditions (65, 66). While these

promiscuous binding tendencies complicate the validation of genuine

functional partnerships, emerging evidence suggests a subset of these

interactions may reflect context-dependent biological activities. This

paradox underscores the critical need for stringent validation through

orthogonal methodologies to distinguish physiologically meaningful

associations from spurious interactions inherent to AID’s

biochemical nature.
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2.4 Regulation of AID expression and
implications in disease

AID, initially recognized for its role in antibody diversification

in B cells, exhibits broader implications in non-B cells, where its

dysregulation may contribute to carcinogenesis (67). Chronic

inflammation, a key cancer risk factor, promotes aberrant AID

expression via TNFa-NF-kB signaling in inflammation-driven

cancers like H. pylori-associated gastric cancer and colitis-related

colon cancer (68, 69). Ectopic AID expression in tumors correlates

with mutations in oncogenes such as TP53, highlighting its

mutagenic potential (70).

AID forms a self-reinforcing loop by partnering with Gadd45 to

activate Pax5, which in turn binds the AID promoter, amplifying its

own expression. This auto-activation mechanism perpetuates off-

target effects, including oncogene promoter mutations and

chromosomal translocations (71).

As a transcriptional cofactor, AID interacts with RNA

Polymerase II and SPT5 to influence transcription elongation.

While its highly charged structure allows nonspecific protein

binding, functional partnerships (e.g., with SPT5) appear critical

for targeting active transcription sites (35). Paradoxically, AID can

both activate and repress gene expression, acting as a molecular

“balancer” that fine-tunes oncogene activity. Though its precise

regulatory mechanisms remain elusive, emerging evidence

underscores AID’s dualistic nature—mediating both genomic

instability and epigenetic regulation—in cancer biology.
3 AID’s role in GC formation during
carcinogenesis

3.1 Germinal center

3.1.1 Anatomy and cellular composition of GC
Naive B cells, having completed V(D)J recombination of

immunoglobulin heavy (IgH) and light (IgL) chain genes via

RAG1/RAG2-mediated recombination in the bone marrow,

migrate to peripheral lymphoid tissues where they localize to

IgM+IgD+ interfollicular regions adjacent to T cell zones (44, 55).

Antigen presentation in subcapsular sinuses facilitates coordinated B-

T cell interactions, with T zone-derived signals promoting full B cell

activation and T follicular helper (TFH) cell differentiation (72, 73).

Activated B cells subsequently relocate to follicular centers, where

follicular dendritic cell (FDC)-supported proliferation generates

expanding B cell clusters that displace resident follicular B cells,

establishing early germinal centers (GCs) (74, 75). Histologically

distinct GC subcompartments emerge: the dark zone contains

densely packed centroblasts undergoing AID-driven somatic

hypermutation (SHM) of Ig variable regions, while the light zone

features FDC networks and TFH cells that mediate affinity-based

selection (76–78). Following SHM in the dark zone, B cells migrate to

the light zone where FDC-presented antigens test antibody affinity.

Low-affinity clones either undergo apoptosis or re-enter the SHM/

class switch recombination (CSR) cycle, while high-affinity variants
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exit the GC to differentiate into plasma cells or memory B cells

capable of rapid antigen recall responses (Figure 1) (79). This cyclical

process of mutation and selection optimizes antibody diversity and

specificity within the dynamic GC microenvironment.
3.1.2 Molecular control of GC reaction
Germinal center (GC) B cells exhibit fundamental biological

distinctions from their naive B cell precursors. First, while naive B

cells achieve functional maturity through sequential V(D)J

recombination of immunoglobulin heavy (IgH) and light (IgL)

chains during development, forming complete B cell receptors

(BCRs), GC B cells undergo secondary diversification via AID-

mediated somatic hypermutation (SHM) of variable regions and

class switch recombination (CSR) in constant regions, enhancing

antibody diversity and isotype flexibility (44). Second, GC B cells

display remarkable proliferative capacity with cell cycles lasting 5-6

hours, contrasting sharply with the quiescent state of naive B cells

- a metabolic transformation reflected in their enlarged cellular

morphology and heightened biosynthetic activity (80–83). Third,

GC B cells represent transitional precursors that ultimately

differentiate into memory B cells and antibody-secreting plasma

cells, completing the terminal phases of B cell development (84, 85).

These specialized properties necessitate precise molecular

regulation of GC reactions, governed by coordinated gene

networks (including AID, BCL6, MYC, IRF4, IRF8, and BLIMP1)

that balance proliferative expansion with genomic instability from

DNA breakage and repair processes (86, 87). The interplay of these

mechanisms enables the GC microenvironment to sustain rapid

clonal expansion while facilitating affinity maturation and

antibody diversification.

Following antigen stimulation, B cell receptor (BCR) signaling

activates downstream transcriptional regulators including the NF-

kB pathway, octamer-binding transcription factors OCT1/OCT2,

and their coactivator OBF1 (OCA-B/Bob1) (88–90). These factors

orchestrate germinal center (GC) formation through coordinated

regulation of BCL6, the master transcriptional regulator of GC

biology. In CD4+ T cells, OBF1 and OCT1/OCT2 directly bind the

BCL6 promoter to initiate its transcription, establishing a reciprocal

regulatory loop: BCL6 promotes T follicular helper (TFH) cell

differentiation, while TFH-B cell interactions further amplify

BCL6 expression (91–93). This self-reinforcing mechanism

stabilizes GC architecture through BCL6-mediated upregulation

of CXCR4, which regulates dark zone B cell positioning and GC

compartmentalization (94). Concurrently, interferon regulatory

factors (IRFs) exhibit temporal control over GC dynamics. Early-

phase IRF4, activated by BCR signaling in outer follicular B cells,

collaborates with IRF8 to initiate BCL6 transcription during GC

initiation (94–96). As the reaction progresses, IRF4 transitions to a

repressive role, downregulating BCL6 to facilitate GC resolution.

This dual-phase regulation by IRF4 ensures precise control of GC

lifespan, while IRF8 maintains early transcriptional activation

(Figure 2A). The integration of these pathways highlights the

multilayered regulation of GC formation, balancing sustained

proliferation with eventual termination through dynamic

transcriptional networks.
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Following germinal center (GC) formation, the spatial

organization of the dark zone (DZ) and light zone (LZ) is defined

by the differential expression of chemokine receptors CXCR4 and

CXCR5, respectively (97). Within this microenvironment,
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activation-induced cytidine deaminase (AID) plays a critical role

in facilitating somatic hypermutation (SHM) and class-switch

recombination (CSR)–two essential processes for antibody

diversification. In GC dark zone B cells, transcriptional regulators
FIGURE 2

Cell signaling in Germinal center (GC). (A) BCR signaling activate NF-kB, which initiate BCL6 expression. BCL6 is essential for the initiation of
germinal center. MEF2B, IRF8, IRF4, BLIMP1 and TP53 regulate BCL6 expression. BCL6 and BACH2 repress BCL6 expression. The cooperation of
these signaling allow the initiation of GC. (B) In the GC dark zone, AID is a critical enzyme for SHM; PAX5, E2A, and IRF8 control AID expression.
POLH, LIG4 and DNaseI highly expressed in DZ B cells to promote SHM. FOXO1 is responsible for maintaining the GC dark zone B cell program,
CCND3, YY1, NF-kB and c-MYC are critical for GC dark zone B cell proliferation and survival. In the GC light zone, CD40-CD40L signaling
stimulated NF-kB further activates IRF4 expression, which suppresses BCL6 gene. PAX5, E2A, and IRF4 are key factors in regulating the expression of
AID. FOXO1 motivates its downstream target BATF, regulates germline transcripts. GLT levels are key factors to elevate the accessibility of AID to
gene body in CSR.
FIGURE 1

Germinal center (GC) and AID. After antigen stimulation, the GC structure formed by a series of regulation. The follicular marginal zone B cells
around GC capture antigens, and these antigens were presented by follicular dendritic cells (FDCs) to CD4+ Follicular T helper cells (TFH), TFH
induces AID-mediated SHM of GC B cells in the GC dark zone and CSR of GC B cells in the GC light zone. Then the B cells in the GC light zone are
selected depending on the antigen-antibody affinity presented by FDCs and TFH cells, and the B cells with low antibody affinity undergo apoptosis,
or re-enter the dark and bright areas of GC to cause a new round of SHM and CSR; while the B cells with high-affinity antibodies migrate out of GC,
differentiate into plasma cells and memory B cells, and are reactivated when they are re-challenged by antigens.
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including PAX5, E2A, and IRF4 coordinately upregulate AID

expression to drive these genomic alterations (4, 24). This process

is further supported by the predominant expression of SHM-

associated DNA repair machinery components (POLH, LIG4, and

DNase I) in dark zone B cells. FOXO1 emerges as a central

coordinator of the dark zone program, maintaining AID protein

stability through post-translational modifications to ensure efficient

SHM (98). Furthermore, the transcription factor YY1 has been

shown to exert dual regulatory functions in dark zone B cells, being

indispensable for both cellular proliferation and survival through

mechanisms involving metabolic reprogramming and anti-

apoptotic signaling (99, 100) (Figure 2B).

Following rapid expansion in the germinal center (GC) dark

zone, B cells migrate to the GC light zone where they undergo three

critical processes: (i) antibody affinity maturation to produce high-

affinity antibodies, (ii) class switch recombination (CSR), and (iii)

differentiation into either plasma cells or memory B cells (101). In the

light zone microenvironment, CD40 signaling activates NF-kB to

enhance IRF4 expression, which subsequently suppresses BCL6

transcription (102, 103). The activation-induced cytidine deaminase

(AID) enzyme remains upregulated through cooperative regulation

by PAX5, E2A, and IRF4 (4, 24). Facilitated by follicular dendritic

cells (FDCs), AID mediates both CSR and somatic hypermutation

during affinity maturation (1–10).The CSR process is further

regulated by BATF, a FOXO1 downstream target that controls

germline transcript (GLT) expression in centrocytes (104). GLT

levels directly correlate with chromatin accessibility for AID-

mediated DNA modifications. Concurrently, IRF4 collaborates with

BLIMP1 to drive plasma cell differentiation through dual

mechanisms: suppressing GC B cell proliferation while activating

plasma cell differentiation programs (94, 95, 105). This differentiation

pathway is opposed by BCL6, which maintains GC B cell identity by

repressing PRDM1 (encoding BLIMP1) and STAT5 transcription

(106).The cell fate decision is further modulated by lineage-specific

regulators. Activated B cell Factor-1 (ABF-1), predominantly

expressed in memory B cells, promotes memory cell differentiation

from centrocytes (107). This intricate regulatory network ensures

proper balancing between antibody-producing plasma cells and long-

lived memory B cells (Figure 2B).

However, the molecular regulation of GC reaction involves a

plethora of molecules orchestrated by a complex gene network. The

exact underlying molecular mechanism remains unclear, and the

regulation of gene networks in the context of the GC reaction is

largely uncharted territory.
3.2 AID associated GC in hematological
malignancies

The germinal center (GC) reaction begins with antigenic challenge

of naive B cells, initiating a differentiation cascade that produces

centrocytes, plasmablasts, and ultimately either long-lived plasma

cells or memory B cells. This developmental progression crucially

depends on activation-induced cytidine deaminase (AID)-mediated

somatic hypermutation (SHM) and class switch recombination (CSR),
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which drive antibody diversification and functional specialization.

Notably, dysregulation at any differentiation node–particularly during

AID-dependent genomic remodeling –creates susceptibility to

malignant transformation. Such developmental aberrations are

clinically significant as they frequently underlie hematological

malignancies, with approximately 90% of lymphomas originating

from B cell lineage defects during GC maturation (5, 108–113).

Approximately 80% of germinal center (GC)-derived B cell

lymphomas are categorized as B cell non-Hodgkin lymphomas (B-

NHLs), encompassing three major subtypes: Burkitt lymphoma (BL),

follicular lymphoma (FL), and diffuse large B cell lymphoma (DLBCL)

(114–116). Anatomically distinct GCmicroenvironments contribute to

lymphoma pathogenesis - BL predominantly originates from dark zone

B cells undergoing rapid proliferation, while FL typically develops from

light zone centrocytes engaged in affinity maturation (117). DLBCL

demonstrates broader developmental plasticity, potentially arising from

dysregulated B cells at any GC transitional stage. This spectrum

includes two molecular subtypes: 1) germinal center B cell-like

(GCB) DLBCL, which emerges during active GC development, and

2) activated B cell-like (ABC) DLBCL, associated with differentiation

arrest at the plasmablast-to-plasma cell transition during early post-GC

maturation (118).

The pathogenesis of hematological malignancies—particularly B-

cell lymphomas arising from dysregulated germinal center (GC)

reactions—is strongly associated with diverse genetic abnormalities,

including point mutations and recurrent chromosomal translocations

(13). Notably, GC-derived B-cell non-Hodgkin lymphomas (B-

NHLs) frequently exhibit translocation events mechanistically

linked to activation-induced cytidine deaminase (AID) activity. In

sporadic Burkitt lymphoma, erroneous AID-mediated class-switch

recombination (CSR) drives immunoglobulin locus (Ig)-MYC

translocations, while diffuse large B-cell lymphomas (DLBCLs)

commonly harbor Ig-BCL6 translocations through similar

mechanisms. Furthermore, AID-dependent somatic hypermutation

(SHM) processes contribute to additional translocation patterns

observed in these malignancies. These genomic aberrations

collectively promote lymphomagenesis by disrupting oncogene

regulation, enhancing genomic instability, and conferring survival

advantages to malignant clones (109–111).

While essential for germinal center (GC) establishment and

function, activation-induced cytidine deaminase (AID) exhibits a

paradoxical role in lymphomagenesis through its enzymatic activity.

The enzyme’s physiological capacity to induce targeted DNA breaks–

facilitating somatic hypermutation and class switching–becomes

oncogenic when combined with defective DNA repair mechanisms,

particularly error-prone non-homologous end joining pathways (30).

This genomic instability manifests clinically as point mutations,

chromosomal translocations (e.g., MYC-IgH), and clonal evolution.

Strikingly, AID-deficient murine models demonstrate ~80% reduction

in chromosomal translocations and oncogenic mutations compared to

wild-type counterparts (119). These mechanistic insights confirm

AID’s dual functionality: its indispensable role in adaptive immunity

is counterbalanced by intrinsic genotoxic risks that contribute

significantly to B cell lymphomagenesis, highlighting its pathological

significance in GC-derived malignancies.
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3.3 AID associated GC in solid tumors

Under physiological conditions, activation-induced cytidine

deaminase (AID) specifically targets immunoglobulin (Ig) genes

to mediate somatic hypermutation (SHM) and class switch

recombination (CSR) during germinal center reactions. However,

pathological contexts reveal AID’s capacity for promiscuous

genomic targeting, termed AID’s off-target activity, which extends

to oncogenes (e.g., BCL6), tumor suppressors (e.g., TP53), and

genomic stability regulators (e.g., ATR) (16). This aberrant activity

manifests through three distinct oncogenic mechanisms:Genomic

Instability: Off-target deamination induces mutagenesis and

facilitates recurrent chromosomal translocations (e.g., c-MYC/

IgH), particularly when coupled with error-prone DNA repair

pathways. Ectopic AID expression in non-lymphoid cells further

exacerbates genomic instability, contributing to both hematological

and epithelial malignancies (16). Epithelial Plasticity: Aberrant AID

activity in epithelial tissues promotes epithelial-mesenchymal

transition (EMT) through transcriptional reprogramming,

facilitating tumor invasion and metastasis (16, 25). Epigenetic

Remodeling: AID’s recently characterized role in active DNA

demethylation enables cellular reprogramming via TET-mediated

oxidation pathways. This epigenetic regulatory capacity presents

novel therapeutic opportunities for cancer treatment through

differentiation therapy (4, 15, 51–55).

While tumor-infiltrating T lymphocytes (TIL-Ts) are well-

established immune components in tumors (120–122), B cells

also extensively infiltrate solid malignancies, forming tumor-

infiltrating B-cell subsets (TIL-B) that predominantly organize

into tertiary lymphoid structures (TLSs) or occasionally exist as

isolated clusters (17–21). Recent studies by Silina et al. have

classified TLS organization in lung tumors into three distinct

stages: early TLS (E-TLS), characterized by mixed CD3+ T-cell

and CD20+ B-cell infiltrates; primary follicle-like TLS (PFL-TLS),

featuring CD21+ follicular dendritic cell (FDC) networks that

stabilize lymphoid architecture; and secondary follicle-like TLS

(SFL-TLS), containing germinal center-like aggregates (GC-TLSs)

marked by CD23+ TIL-associated germinal centers (TIL-GCs) (26,

123, 124). These GC-TLSs, identifiable through co-expression of

BCL6, Ki67, and activation-induced cytidine deaminase (AID),

recapitulate physiological germinal center reactions encompassing

initiation, maturation, and maintenance phases (27, 28). Notably,

AID emerges as a critical regulator in tumor-associated TLS

development, with its functional interplay in GC-TLSs

underscoring its therapeutic potential as a target for amplifying

antitumor immune responses through TLS modulation (27, 28).
4 Tertiary lymphoid structures

Physiologically, secondary lymphoid organs (SLOs) such as lymph

nodes develop to regulate antibody diversity and facilitate affinity

maturation. Tertiary lymphoid structures (TLSs) demonstrate

remarkable morphological, cellular, and molecular similarities to

SLOs (26). These ectopic lymphoid aggregates are frequently
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observed in pathological contexts including chronic inflammatory

sites, autoimmune disorders, and tumor microenvironments (29, 30).

The architectural organization of mature TLSs mirrors that of SLOs,

featuring distinct compartmentalization: a central B cell follicle

containing naive B cells, surrounded by a germinal center (GC) with

proliferating B cells, and an adjacent T cell zone populated by T

lymphocytes and dendritic cells (DCs) (Figure 2) (26). Notably, key

chemokines involved in SLO development - including CCL19, CCL21,

CXCL13, and CXCL12 - are consistently detected in TLSs (125).

Furthermore, well-established TLSs contain stromal cell populations

resembling fibroblastic reticular cells (FRCs) and follicular dendritic

cells (FDCs), which are essential stromal components of SLOs (29, 30).

This structural and molecular conservation between SLOs and TLSs

strongly suggests that shared organizational mechanisms may govern

TLS formation. However, the precise role of these conserved elements

as potential TLS organizers requires further experimental validation

through focused mechanistic studies.
4.1 Inducers and organizers of TLS
formation

TLSs are ectopic structures that share similarities with SLOs.

They are characterized by the aggregation of immune cells,

including B cells, T cells, dendritic cells, high endothelial venules

(HEV), and fibroblasts (126).

In the developmental organization of secondary lymphoid

organs (SLOs), the coordinated interaction between lymphoid

tissue inducer (LTi) cells and lymphoid tissue organizer (LTo)

cells is essential (127, 128). Within lymph nodes, LTi cells—a

subset of innate lymphoid cells—collaborate with mesenchymal-

derived LTo cells, which subsequently differentiate into stromal

components such as follicular dendritic cells (FDCs) and

fibroblastic reticular cells (FRCs) (127, 128). In contrast, the

cellular orchestrators of ectopic tertiary lymphoid structure (TLS)

formation in humans remain poorly defined. However, mechanistic

insights from murine tumor models with TLSs suggest functional

parallels: T and B cells expressing lipoteichoic acid (LTA) have been

identified as potential LTi-like cells, while podoplanin-positive

(PDPN+) fibroblasts expressing lymphotoxin-beta receptor

(LTBR) may act as LTo-like cells (128). This cellular interplay

drives TLS organization, with activated PDPN+ fibroblasts

upregulating key chemokines such as CXCL13 and CCL19/

CCL21. These chemotactic signals recruit immune cells

expressing corresponding receptors (CXCR5 and CCR7,

respectively), thereby facilitating the spatial organization and

maintenance of TLS microarchitecture (29).
4.2 Cellular composition of TLS

Histopathological characterization using hematoxylin and eosin

(H&E) staining and immunohistochemical markers (e.g., CD20,

CD3, CD4, CD8, PNAd, and DC-LAMP) has consistently

demonstrated that tertiary lymphoid structures (TLSs) comprise
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organized aggregates of innate and adaptive immune cells encircled

by high endothelial venules (HEVs) (129). In malignancies such as

melanoma and non-small cell lung cancer (NSCLC), tumor-

associated TLSs exhibit architectural and cellular parallels to

secondary lymphoid organs (SLOs), containing distinct zones of

T lymphocytes (CD3+), mature dendritic cells (DC-LAMP+), and

follicular B cells (CD20+) (130). The maturation spectrum of TLSs

ranges from loosely aggregated immune cell clusters (indicative of

immature/early TLSs) to highly organized structures featuring

compartmentalized follicles with germinal centers (GCs) and

tumor antigen-specific T/B lymphocytes, mirroring the functional

organization of SLOs (Figure 3) (131).Recent advances in multiplex

immunophenotyping have refined the understanding of TLS

cellular dynamics. Proliferative GC B cells (Ki67+CD23+) within

TLSs express activation-induced cytidine deaminase (AID)—

critical for somatic hypermutation (SHM) and class-switch

recombination (CSR)—along with Bcl6, the master transcriptional

regulator of GC B cell differentiation (26, 29, 31). Stromal networks

of follicular dendritic cells (FDCs), identified by CD21 or CD23

expression, underpin TLS-GC microarchitecture. The peri-GC

regions are populated by macrophages (CD68+), cytotoxic CD8+

T cells, CD4+ T helper subsets, and specialized follicular helper T

cells (Tfh; Bcl6+PD-1+ICOS+IL-21+). Terminally differentiated

plasma cells (CD38+CD138+) frequently localize to TLS

peripheries, collectively indicating coordinated humoral immunity

(antibody production) and cytotoxic effector functions within

mature TLSs (29, 31, 117, 120).
4.3 TLS presence and composition in
tumors

The tumor microenvironment (TME) plays a pivotal role in

tumor initiation, progression, and metastasis through dynamic

interactions between malignant cells and their surrounding milieu
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(132, 133). This complex ecosystem comprises not only the

structural, functional, and metabolic characteristics of tumor

tissues but also extends to the intracellular environment of tumor

cells, including nuclear and cytoplasmic components (132, 133).

Tumor cells actively manipulate their microenvironment through

autocrine and paracrine signaling mechanisms, creating self-

sustaining conditions that favor their proliferation and survival

(134). Conversely, systemic and local modifications in metabolic

pathways, secretory profiles, immune responses, and tissue

architecture exert regulatory influences that can either promote or

constrain tumor development (132–135). Within this intricate

network of interactions, tumor-associated tertiary lymphoid

structures (TLSs) have emerged as critical functional components

of the TME, demonstrating significant biological relevance in tumor

immunology (29).

TLSs have been observed not only in autoimmune diseases and

chronic inflammation but also, significantly, in various types of

cancers. In the context of cancer, TLSs serve as specialized

microenvironments for cancer-specific antigen presentation and

antibody production. However, it is important to note that different

types of cancer may exhibit distinct subsets of TLS cells (28). While

specific cells and chemokines are believed to play a role in

orchestrating TLS formation within tumors, the exact mechanisms

underlying this process remain unclear.
4.4 Bilateral impact of TLS on tumor
prognosis

TLSs are frequently observed in the context of chronic infection,

where they promote localized antiviral immune responses via the

activation of naive T cells. However, in the case of tumor-associated

TLSs, they often serve as a dual prognostic indicator for patient survival

(32).Numerous studies have highlighted the importance of the densities

of high endothelial venules (HEVs), CD4+ T cells, particularly TFH
FIGURE 3

TLS and AID. TLS forms during tumor formation. The TLS was similar to GC structure containing T zone and B zone. After antigen presentation by
FDCs to TFH, TFH helps AID-mediated AID-driven SHM and CSR of Ig genes for antigen-driven affinity maturation in GC reaction. Then B cells with
low antibody affinity undergo apoptosis, or re-enter a new round of SHM and CSR; while B cells with high-affinity antibodies migrate out of GC,
differentiate into plasma cells and memory B cells.
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subsets, B cells, and mature DCs in defining TLSs. Additionally, there

appears to be a positive correlation between TLS density, levels of

intratumoral T and B cells, and a Th1/cytotoxic immune profile

among tumor-infiltrating lymphocytes (TILs) (26, 28–30).

Emerging evidence indicates that tumor-associated tertiary

lymphoid structures (TLSs) may function as critical hubs for

initiating antitumor immunity by activating newly infiltrated

naïve T and B cells (129–131). Alternatively, their presence might

reflect preexisting robust intratumoral CD8+ T cell effector activity

—a well-established biomarker for favorable cancer prognosis.

Notably, TLSs in triple-negative breast cancer (TNBC), Merkel

cell carcinoma, and gastric tumors correlate with improved

clinical outcomes, marked by organized immune architectures

containing moderate tumor-infiltrating lymphocytes (TILs), Th17

cells, T-bet+ cells, and CD20+ B cells (Figure 3) (136, 137).

Paradoxically, however, certain malignancies exhibit adverse

associations with TLSs. In colorectal cancer (CRC), TLS presence

coincides with advanced disease stages, while in breast cancer, it

correlates with higher tumor grades, diminished intratumoral

immune cell infiltration, and increased lymph node metastasis

(26). Murine lung adenocarcinoma models further reveal TLSs as

recruitment sites for immunosuppressive regulatory T cells (Tregs),

a mechanism similarly observed in human lung transplant studies

(138, 139). These dualistic roles—enhancing antitumor responses in

some contexts while fostering immunosuppression in others—

underscore TLSs’ potential as precision therapeutic targets for

modulating cancer immunity (140, 141).

Taken together, these studies suggest that the prognostic value

of TLSs is dependent on the type of tumor. It is possible that

different types of tumors elicit qualitatively distinct immune

responses, which can be distinguished by their effector and

regulatory mechanisms. These responses may also evolve over

time. In some tumors or at certain stages, these immune cells

may primarily derive from conventional tumor-draining secondary

lymphoid organs (SLOs), while in other cases, they may arise from

tumor-associated TLSs (26–28). This highlights the notion that the

“quality” of TLSs may confer, or result from, distinct types of

immunity or immune regulation.
5 AID and TLS in tumors

5.1 TIL-B cells in tumors

The mechanisms driving tumorigenesis and malignant

progression involve intricate, multistep biological processes. To

improve cancer patient survival, significant research efforts have

focused on developing targeted anti-tumor strategies. Among these,

immunotherapy has emerged as a revolutionary frontier in

oncology. Immuno-oncology research encompasses both the

dynamic interplay between the tumor microenvironment (TME)

and immune cells and the design of therapeutic interventions to

augment existing cancer therapies. Notably, tumor-infiltrating

immune cells are increasingly recognized as critical mediators of
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anti-tumor immunity, with their functional states and spatial

distribution within the TME directly influencing therapeutic

outcomes (142).

Tumor-infiltrating T cells (TIL-Ts) represent primary cellular

targets for enhancing immunotherapy efficacy due to their central

role in antitumor immunity (17, 18, 122). However, tumors harbor

diverse immune populations, including functionally significant B-cell

subsets collectively termed tumor-infiltrating B cells (TIL-Bs) (19–21).

Emerging evidence underscores the therapeutic potential of TIL-B-

targeted strategies, with studies over the past decade demonstrating

their capacity to modulate antitumor responses. TIL-Bs comprise

heterogeneous subpopulations—naïve B cells, germinal center (GC)

B cells (TIL-GCs), memory B cells (TIL-Bmem), and antibody-

secreting plasma cells (TIL-PCs)—each exhibiting distinct functional

roles within the tumor microenvironment (TME) (28).

The critical role of B cells in secondary lymphoid organs (SLOs)—

particularly in generating high-affinity plasma cells (PCs) and memory

B cells (Bmem) during adaptive immune responses—is well-

established. Beyond their classical roles in SLOs, tumor-infiltrating B

cells (TIL-Bs) are increasingly recognized for their prognostic and

therapeutic significance in cancer immunotherapy. For instance, TIL-B

subpopulations, such as tumor-infiltrating plasma cells (TIL-PCs), have

been linked to improved clinical outcomes in patients receiving

immune checkpoint inhibitors (ICIs). In non-small cell lung cancer

(NSCLC), elevated TIL-PC levels correlate with prolonged overall

survival in anti-PD-L1-treated patients, a phenomenon associated

with lymphoid aggregation and tertiary lymphoid structure (TLS)

formation (143). Further supporting their functional relevance,

NSCLC studies reveal that exhausted PD-1hi CD8+ T cells recruit B

cells via CXCL13 secretion during anti-PD-1 therapy, as demonstrated

by Thommen et al. (144). Collectively, these findings from human

tumor analyses highlight TIL-Bs’capacity to orchestrate antitumor

immunity, positioning them as pivotal contributors to

immunotherapy efficacy.

Emerging evidence demonstrates that tumor-infiltrating B cells

(TIL-Bs) exhibit broad antigen-targeting capabilities, engaging

foreign antigens, self-antigens, and tumor-specific antigens within

the tumor microenvironment (TME). The antibodies produced by

tumor-infiltrating plasma cells (TIL-PCs) may originate from

preexisting germline precursors or undergo affinity maturation in

tertiary lymphoid structure-associated germinal centers (TLS-GCs).

This antibody production is likely driven by the overexpression of

immunogenic antigens in the TME (145). Functionally, TIL-PC-

derived antibodies can mediate antitumor effects through multiple

mechanisms: direct neutralization of tumor antigens, antibody-

dependent cellular cytotoxicity (ADCC) via recruitment of

natural killer (NK) cells, and opsonization-enhanced phagocytosis

by macrophages and dendritic cells. Despite these advances, key

questions remain unresolved, including the precise contribution of

TIL-B-derived antibodies to tumor control, their specificity profiles

across cancer types, and the regulatory pathways governing their

functional plasticity in immunosuppressive TME niches. Further

mechanistic studies are required to fully elucidate TIL-

Bs’therapeutic potential and limitations in oncology.
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5.2 AID and TLS-GC formation

Tertiary lymphoid structures (TLSs) are ectopic lymphoid

aggregates observed in diverse pathological contexts, including

infectious diseases, autoimmune disorders, cancers, and transplant

rejection. Structurally analogous to secondary lymphoid organs

(SLOs), TLSs harbor germinal centers (GCs) where B cells undergo

proliferation, somatic hypermutation (SHM), and class-switch

recombination (CSR) of immunoglobulin (Ig) genes to achieve

antigen-driven affinity maturation (31, 32). Central to these

processes is the enzyme activation-induced cytidine deaminase

(AID), which catalyzes SHM and CSR in both SLO-derived GCs

and TLS-associated GCs (TLS-GCs) (31, 32). Despite their ectopic

nature, TLS-GCs recapitulate key functional and molecular features

of SLO-GCs, including AID’s dual role in adaptive immunity and

genomic instability. Within TLS-GCs, AID not only facilitates

antibody diversification but also induces off-target effects, such as

mutagenesis of non-Ig genes (e.g., oncogenes or tumor suppressors)

and transcriptional regulation as a cofactor (16, 22, 23, 146). These

off-target activities—linked to promoter mutations, chromosomal

translocations, and dysregulation of cancer-related genes—

underscore AID’s capacity to drive carcinogenesis. Conversely,

AID-mediated transcriptional modulation can silence or activate

oncogenic pathways, revealing its context-dependent regulatory

duality (16, 22, 23, 146). This mechanistic ambivalence mirrors the

paradoxical role of TLSs in tumor biology, where they may either

foster antitumor immunity or promote malignant progression. The

interplay between AID’s dual functions and TLS activity thus

provides a molecular framework to explain their bidirectional

impact on tumorigenesis (Figure 3).
5.3 AID and tumor-associated TLS

Ongoing studies are actively investigating the interplay between

activation-induced cytidine deaminase (AID) and tumor-associated

tertiary lymphoid structures (TLSs). TLSs are enriched with

lymphocytes exhibiting immune activation markers, including

proliferating (Ki67+) cells, AID-expressing B cells undergoing

somatic hypermutation (SHM), and T cells polarized toward Th1/

Tc1 differentiation (Tbet+), all of which correlate with favorable

clinical outcomes (26–28, 31, 48, 130, 131). These observations

suggest that the functional activity of TLS-resident lymphocytes—

rather than TLS presence alone—may drive antitumor effects.

Quantitative analyses further reveal dynamic compositional features

within TLSs, such as the frequency of Ki67+ proliferating

lymphocytes, AID+ B cells, and CD4+/CD8+ T cells with Th1/Tc1

phenotypes, which collectively reflect immune activation states

(26–28, 31, 48, 130, 131). Notably, B cells in tumor-associated TLSs

exhibit hallmark features of antigen-driven affinity maturation: AID-

dependent antibody class switching, clonal expansion, and SHM.

These processes are tightly regulated by local antigen presentation,

facilitated by T follicular helper (Tfh) cell interactions within the TLS

microenvironment (27, 72, 91). Collectively, these findings position

AID not only as a mediator of B cell diversification but also as a
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molecular bridge linking TLS functionality to adaptive antitumor

immunity. The spatial and temporal coordination of AID activity,

antigen presentation, and lymphocyte activation within TLSs

underscores their potential as immunological hubs capable of

shaping tumor progression and therapeutic responses.

As critical components of the tumor microenvironment (TME),

all B-cell subsets—from naïve B cells to antibody-secreting plasma

cells (PCs)—exert multifaceted roles that are intrinsically linked to

the composition and maturation of tumor-associated tertiary

lymphoid structures (TLSs) (147, 148). Within the TME, tumor-

infiltrating B cells (TIL-Bs) encounter diverse antigens, including

foreign, self-, and tumor-specific antigens, which they internalize and

process. In immature TLSs, B cells exhibit broad responsiveness to

antigenic stimuli, marked by activation-induced cytidine deaminase

(AID) expression that initiates early adaptive responses (18, 149).

Antigen-driven AID activation further triggers a regulatory network

promoting the development of TLS-associated germinal centers (TIL-

GCs), a pivotal step in TLS maturation (31, 32, 145). Immature TLSs

are characterized by immunosuppressive B-cell functions, where AID

may facilitate low-affinity antibody production that inadvertently

supports immune evasion. In contrast, mature TLSs enable B cells to

undergo clonal expansion, AID-mediated somatic hypermutation

(SHM), class-switch recombination (CSR), and affinity maturation,

ultimately generating PCs that secrete high-affinity IgG or IgA

antibodies (144, 145). Notably, TLS-derived PCs can produce

antibodies targeting tumor-associated antigens; however, their

functional outcomes depend on the immunological context of the

TME. These antibodies may either mediate antitumor effects (e.g., via

neutralization or antibody-dependent cytotoxicity) or paradoxically

promote tumor progression (e.g., through immune complex-

mediated inflammation or growth factor signaling) (150–152). This

duality mirrors AID’s dual role in TLS biology—driving both

protective immunity and oncogenic genomic instability—and

underscores the context-dependent interplay between TLS

maturation, antibody specificity, and tumor fate.
5.4 The impact of AID on the development
of tertiary lymphoid structures

AID serves as a critical regulator in the formation and

functional maturation of tertiary lymphoid structures (TLSs)–

ectopic lymphoid aggregates that emerge under chronic

inflammatory conditions or within tumor microenvironments.

These organized lymphocyte clusters, composed of B and T cells

in spatial arrangements resembling secondary lymphoid organs,

have been clinically associated with enhanced anti-tumor immunity

and improved prognostic outcomes in various cancers. AID’s

principal biological function involves mediating two essential

processes in B cell diversification: somatic hypermutation for

antibody affinity optimization and class-switch recombination for

antibody isotype modification. Emerging evidence indicates that

AID activity extends beyond antibody diversification to support

TLS development. In tumor-associated TLSs, upregulated AID

expression facilitates B cell maturation and promotes the
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formation of germinal center-like microdomains, thereby enabling

localized adaptive immune responses against malignancies (153,

154).The prognostic significance of TLSs in cancer progression has

been closely linked to AID-driven immunomodulatory

mechanisms. Through its enzymatic activity, AID enhances B cell

receptor diversity within TLSs while simultaneously interacting

with immune regulatory networks to maintain these lymphoid

structures’ architectural integrity and functionality (155). This

dual role positions AID as a molecular orchestrator that shapes

the tumor immune microenvironment through both cell-intrinsic

genetic modification and microenvironmental modulation. The

synergistic relationship between AID and TLS components

underscores the therapeutic potential of targeting this pathway to

amplify anti-tumor immunity in chronically inflamed tissues.
5.5 AID-mediated mutations and
tumorigenesis

AID plays a dual role in both physiological immunity and

oncogenesis. While essential for generating antibody diversity

through somatic hypermutation (SHM) and class-switch

recombination (CSR) in normal B cells, AID’s mutagenic activity

also drives genomic instability by introducing off-target mutations in

non-immunoglobulin genes, including oncogenes and tumor

suppressor loci. Within tertiary lymphoid structures (TLSs), this

aberrant activity becomes particularly consequential. AID-mediated

mutations in TLSs can accelerate tumor evolution by fostering genetic

heterogeneity, thereby promoting aggressive cancer phenotypes. For

example, in B-cell malignancies such as follicular lymphoma and

chronic lymphocytic leukemia, AID-generated mutational signatures

are recurrently linked to disease progression and therapy resistance

(156, 157). These mutations often activate oncogenic pathways (e.g.,

MYC, BCL2) or disable tumor suppressors (e.g., TP53), directly

enabling malignant transformation. Furthermore, TLSs create a

permissive niche for AID dysregulation: the chronic inflammatory

milieu and sustained antigen exposure in TLSs upregulate AID

expression, amplifying its mutagenic impact and perpetuating a cycle

of DNA damage and clonal selection (153, 158). Thus, AID’s role in

TLSs epitomizes its paradoxical nature—orchestrating adaptive

immunity while simultaneously fueling tumorigenic evolution.
5.6 The relationship between AID and
immune responses

The interplay between AID and immune responses is

multifaceted, particularly within tertiary lymphoid structures

(TLSs). AID not only drives the production of high-affinity

antibodies through somatic hypermutation and class-switch

recombination but also supports B-cell differentiation into plasma

cells, a cornerstone of adaptive humoral immunity. Within TLSs,

AID’s influence extends beyond B-cell maturation: it shapes T-cell

responses by modulating cytokine networks and fostering the
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differentiation of T follicular helper (Tfh) cells. These Tfh cells

are indispensable for sustaining germinal center (GC) reactions,

where they provide critical co-stimulatory signals to B cells,

enabling robust antigen-specific antibody production (159,

160).Notably, TLSs enriched with AID activity correlate with

enhanced responses to immunotherapy. By creating an

immunologically active niche, TLSs promote T-cell infiltration,

activation, and tumor-targeting efficacy, thereby improving

checkpoint inhibitor outcomes. This synergy between AID-driven

antibody diversification and T-cell priming underscores TLSs’role

as hubs of coordinated antitumor immunity. Consequently,

dissecting AID’s regulatory dynamics within TLSs offers dual

insights: it elucidates mechanisms of immune evasion while

revealing therapeutic strategies to amplify antitumor responses

through selective modulation of AID activity, such as enhancing

its protective roles or mitigating its oncogenic effects (19, 154).
6 Conclusion

The dual roles of AID and TLSs in tumor biology—coupled with

AID’s critical function in germinal centers (GCs) and the GC-like

architecture of TLSs—prompt an examination of AID’s contributions

to TLS formation. Beyond its canonical role in antibody class-switch

recombination (CSR) and somatic hypermutation (SHM), AID exerts

context-dependent effects on tumor survival dynamics (161). First, AID

exhibits paradoxical roles in tumor progression, either promoting

oncogenesis through mutagenic activity or suppressing tumors via

enhanced immune surveillance. Second, TLSs demonstrate

dichotomous impacts on patient survival outcomes, with their

prognostic value likely modulated by AID activity levels. Finally, AID

facilitates the development of GC-like microanatomy within TLSs

during tumorigenesis, directly linking its enzymatic function to TLS

maturation and functionality (161). These interconnected roles

position AID as a molecular linchpin bridging adaptive immunity,

TLS biology, and tumor fate.

Emerging evidence demonstrates that AID engages in

multifaceted transcriptional regulation through collaborative

interactions with epigenetic modifiers such as DNMT1 and TET2,

particularly modulating tumor-associated gene networks (22, 23).

While AID is well-established as a genomic destabilizer in

hematologic malignancies, driving pathogenic mutations and

chromosomal translocations (129), recent studies reveal its

capacity for dual regulatory functions extending beyond canonical

deamination and demethylation activities (16, 22, 23). This functional

duality manifests through context-dependent partnerships with

transcriptional regulators, enabling AID to exert both positive and

negative control over gene expression. Notably, AID facilitates the

formation of germinal center (GC)-like tertiary lymphoid structures

(TLSs) while simultaneously exhibiting tumor-modulating

ambivalence–a paradoxical role that mirrors the observed dual

effects of TLSs in tumor microenvironments, where immune

activation and oncogenic progression may coexist depending on

molecular coordination.
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Our prior research has revealed non-canonical transcriptional

regulatory functions of AID, yet its potential bidirectional regulatory

effects on tertiary lymphoid structure (TLS) development and immune

modulation within tumor microenvironments (TME) remain

undefined. Urgent investigations are required to clarify how AID’s

dualistic gene regulatory mechanisms–balancing transcriptional

activation and suppression through dynamic partnerships with

epigenetic modifiers –influence TLS formation and subsequent anti-

tumor immunity. Given the proven clinical efficacy of engineered

immune cell therapies, elucidating AID’s mechanistic involvement in

TLS formation could uncover novel therapeutic targets for

microenvironment-modulating anti-cancer strategies. While CAR-T

cell therapy has demonstrated remarkable success in hematological

malignancies (162), next-generation engineered immune effectors

including CAR-NK cells and CAR-macrophages are emerging as

promising therapeutic platforms (163). This understanding may

inform the development of AID-enhanced CAR therapies that

synergistically harness lymphoid neogenesis and immune cell

engineering, translating mechanistic insights into clinical innovation.
7 Expert opinion

Emerging evidence suggests AID and tertiary lymphoid structures

(TLSs) hold promise as biomarkers for immunotherapy responsiveness,

yet critical questions must be resolved for clinical translation. A central

challenge lies in determining whether AID differentially regulates

immature versus mature TLS formation in tumors and how these

distinct maturation states influence patient survival outcomes. This

functional duality of AID–capable of both promoting lymphoid

neogenesis and potentially driving tumor evolution through genomic

instability –mirrors the paradoxical prognostic implications of TLSs in

cancer progression. Therapeutic strategies aiming to amplify AID

expression within tumor microenvironments (TME) could

theoretically enhance TLS maturation, with proposed methodologies

including localized delivery of AID-overexpressing vectors followed by

immunohistochemical validation of TLS structural completeness. While

mature TLSs may correlate with improved survival through enhanced

antitumor immunity, their establishment might concurrently foster

tumor heterogeneity via AID-mediated mutagenesis. These

mechanistic investigations into AID’s spatiotemporal regulation of

TLS development and functional polarization are essential for

optimizing therapeutic interventions, particularly in designing
Frontiers in Oncology 12
combination strategies that maximize TLS-mediated immune

activation while mitigating oncogenic risks inherent to AID activity.
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