
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Chin-Ling Chen,
Chaoyang University of Technology, Taiwan

REVIEWED BY

Jing Xue,
Wuxi People’s Hospital Affiliated to Nanjing
Medical University, China
Xiangmin Meng,
Zhejiang Wanli University, China
Ravichandran Sanmugasundaram,
SRM Institute of Science and
Technology, India

*CORRESPONDENCE

Caixu Xu

xucaixu0815@163.com

†These authors have contributed equally to
this work

RECEIVED 05 January 2025

ACCEPTED 20 May 2025
PUBLISHED 21 July 2025

CITATION

Xie Q, Huang J, Sun J, Huang C and Xu C
(2025) SMoFFI-SegFormer: a novel approach
for ovarian tumor segmentation based on an
improved SegFormer architecture.
Front. Oncol. 15:1555585.
doi: 10.3389/fonc.2025.1555585

COPYRIGHT

© 2025 Xie, Huang, Sun, Huang and Xu. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 21 July 2025

DOI 10.3389/fonc.2025.1555585
SMoFFI-SegFormer: a
novel approach for ovarian
tumor segmentation based
on an improved
SegFormer architecture
Qiuyin Xie1†, Jianuo Huang2†, Jingyang Sun2†,
Chenxi Huang2 and Caixu Xu 3*

1Department of Obstetrics and Gynecology, The Third Hospital of Xiamen, Xiamen, Fujian, China,
2School of Informatics, Xiamen University, Xiamen, Fujian, China, 3Guangxi Key Laboratory of Machine
Vision and Intelligent Control, Wuzhou University, Wuzhou, Guangxi, China
Ovarian cancer remains one of the most lethal gynecological malignancies,

posing significant challenges for early detection due to its asymptomatic

nature in early stages. Accurate segmentation of ovarian tumors from

ultrasound images is critical for improving diagnostic accuracy and patient

outcomes. In this study, we introduce SMoFFI-SegFormer, an advanced deep

learning model specifically designed to enhance multi-scale feature

representation and address the complexities of ovarian tumor segmentation.

Building upon the SegFormer architecture, SMoFFI-SegFormer incorporates a

novel Self-modulate Fusion with Feature Inhibition (SMoFFI) module that

promotes cross-scale information exchange and effectively handles spatial

heterogeneity within tumors. Through extensive experimentation on two

public datasets—OTU_2D and OTU_CEUS—our model demonstrates superior

performance with high overall accuracy, mean Intersection over Union (mIoU),

and class accuracy. Specifically, SMoFFI-SegFormer achieves state-of-the-art

results, significantly outperforming existing models in both segmentation

precision and efficiency. This work paves the way for more reliable and

automated tools in the diagnosis and management of ovarian cancer.
KEYWORDS

ovarian tumor segmentation, deep learning, feature fusion, medical imaging,
SMoFFI-SegFormer
1 Introduction

Ovarian cancer, as one of the gynecological cancers with the highest mortality rates,

poses a severe threat to women’s health. Early diagnosis is critical for improving patient

prognosis, since early-stage ovarian cancer typically lacks obvious symptoms, making

early detection particularly challenging. Ovarian cancer is the most lethal type of
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gynecological cancer and is also one of the leading causes of

disease-related death in women globally. Due to the lack of clear

symptoms in early stages, early detection and diagnosis are crucial

for significantly reducing mortality rates. Commonly used

screening methods include two-dimensional ultrasound (2DUS),

contrast-enhanced ultrasound (CEUS), computed tomography

(CT), and magnetic resonance imaging (MRI). Among these,

2DUS is widely adopted in clinical screenings due to its non-

invasive nature, convenience, and minimal impact on the

human body.

In addition to imaging techniques, non-imaging approaches

such as blood plasma spectroscopy have also been explored for

ovarian cancer detection (1).

Despite this, 2DUS remains the most commonly used and easily

implemented screening method, especially in resource-limited

areas, where its accessibility and cost-effectiveness make it the

preferred choice. In recent years, with the development of

computer-aided diagnostic technologies, an increasing number of

studies have focused on utilizing deep learning and other

computational methods to improve the accuracy of detecting and

diagnosing ovarian tumors Tsai et al. (2), Hoffman et al. (3), Zhu

et al. (4), Chen et al. (5), Zou et al. (6).

These approaches have demonstrated promising performance

in various medical image analysis tasks, including tumor

classification and segmentation.

For instance, early efforts in ovarian cancer detection using

mass spectrometry data employed unsupervised feature selection

methods to enhance classification accuracy (7).

Later, high-throughput segmentation techniques based on

normalized cuts were applied to tissue microarrays, enabling

precise identification of biomarkers (8). These works laid the

foundation for more advanced machine learning models

that followed.

Recent advances in transformer-based architectures have led to

significant improvements in medical image segmentation. Models

like TransUNet (9) and Swin-Unet (10) combine the strengths of

convolutional networks and transformers to better capture global

context and fine-grained details. Moreover, several studies have

reviewed and summarized the evolution of U-shaped network

structures in medical image segmentation, highlighting their

effectiveness in feature fusion and multi-scale representation

learning (11).

In clinical practice, deep learning models based on pelvic

ultrasound images have also shown great potential in accurately

diagnosing ovarian cancer, even outperforming traditional

diagnostic methods in some cases (12). However, despite these

advancements, existing methods still face challenges related to

tumor heterogeneity and complex morphological features.

Although progress has been made in the imaging diagnosis of

ovarian cancer, existing methods still face certain challenges. First,

the heterogeneity of ovarian cancer is a significant issue. Ovarian

tumors vary widely, including benign and malignant lesions, with

considerable differences between types, which imposes high

demands on accurately distinguishing different types of ovarian

tumors. Additionally, even within the same type of ovarian cancer,
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tumors may exhibit substantial spatial heterogeneity, complicating

correct identification and classification. Therefore, developing

segmentation algorithms capable of effectively addressing tumor

heterogeneity has become an urgent need (13).

Existing segmentation algorithms perform poorly when

dealing with tumors that have blurred boundaries or irregular

shapes. Given the complex morphological features of ovarian

tumors, traditional edge-detection-based methods often fail to

achieve satisfactory segmentation results. Especially when facing

tumors containing mixed cystic and solid components, precisely

separating the different parts of the tumor becomes a formidable

task (14).

To address these issues, we propose a novel network model

specifically designed to enhance multi-scale feature representation

in ovarian segmentation tasks and introduce an efficient feature

fusion module to promote cross-scale information exchange. Our

model not only improves segmentation performance but also

demonstrates superiority through experimental validation on two

public datasets, achieving state-of-the-art levels. Specifically, this

study addresses the limitations present in current ovarian tumor

segmentation. To tackle the inadequate segmentation of small

organs or complex structures by existing models, we propose a

multi-scale feature enhancement module that can capture more

detailed spatial information at various levels, thereby enhancing the

recognition capability of minor lesion areas (15). For better

integration of features from different levels, we developed a

feature fusion module that can effectively combine low-level detail

features and high-level semantic features, resulting in more accurate

and reliable final segmentation outcomes (16, 17. 18, 19).
2 Related work

2.1 Feature fusion and classification of
ovarian ultrasound image datasets

In the field of computer-aided diagnosis for ovarian diseases,

researchers have been dedicated to enhancing diagnostic accuracy

and efficiency by constructing high-quality ultrasound image

datasets and applying advanced machine learning algorithms.

Early research primarily focused on creating annotated datasets

and exploring how to effectively use deep convolutional neural

networks (DCNNs) for image recognition and classification. For

example, Wu et al. (20) developed a two-dimensional ultrasound

image dataset that included benign, borderline, and malignant

tumors, laying the foundation for subsequent studies on ovarian

tumor classification (20).

As technology progressed, researchers gradually recognized that

relying solely on image recognition could not fully exploit all

information within the data. Therefore, in recent years, feature

fusion techniques have become an important means to improve the

performance of ovarian tumor classification. New methods go

beyond simple image processing, delving into the correlations

between features from different sources to achieve more precise

classification results. Wang and Zeng (15) extended previous work,
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focusing on serous ovarian tumors, and successfully subdivided

these tumors into distinct pathological types by introducing

complex feature fusion mechanisms (15).

To enhance model expressiveness, some studies introduced

advanced architectures such as pre-activation bottleneck blocks

and methods combining complementary features with inhibitors,

significantly improving the model’s ability to capture tumor

characteristics in complex backgrounds (21). Additionally, feature

fusion modules generate more robust feature representations by

finely processing input feature maps through operations including

but not limited to complementation, weighted combination, and

nonlinear transformation, which is critical for improving

classification accuracy.

Furthermore, recent studies have explored unsupervised

domain adaptation strategies, especially when dealing with data

from different imaging modalities or patient populations. \cite

{Kang2024SwinUnetImproved} proposed a novel feature

disentanglement method aimed at reducing differences between

source and target domains, ensuring models maintain good

generalization performance across multiple datasets (22). This

approach decomposes images into domain-invariant content

space and domain-specific style space, effectively addressing

cross-domain adaptation issues while providing new perspectives

for feature fusion in ovarian ultrasound images.
Paik et al. (23) further demonstrated the effectiveness of deep

learning models in differential diagnosis of ovarian neoplasms using

pelvic ultrasonography, showing promising clinical utility (23).

Meanwhile, Qian et al. (24) introduced HASA, a hybrid

architecture search framework integrating aggregation strategies

for both echinococcosis classification and ovary segmentation (24).

These efforts reflect the growing trend of leveraging automated

systems for accurate and efficient diagnosis in gynecological oncology.

Nakayama et al. (25) also applied AI-assisted clustering

methods to classify epithelial ovarian cancer patients based on

platinum sensitivity and recurrence patterns, highlighting the role

of machine learning in prognostic stratification (25).

In addition, Narmatha et al. (26) proposed a deep

reinforcement learning framework optimized by Harris Hawks

algorithm for ovarian cyst classification, showcasing alternative

approaches to traditional CNNs (26).
2.2 CNN-based methods for medical image
segmentation

In the realm of medical image segmentation, methods based on

convolutional neural networks (CNNs) have achieved remarkable

success. These methods typically employ an encoder-decoder

architecture where the encoder extracts features from the input

image, and the decoder restores spatial resolution to produce

detailed segmentation maps. For instance, U-Net uses skip

connections to combine high-level semantic information with low-

level spatial details, thereby improving segmentation accuracy (27).

Moreover, classical image segmentation techniques like

hierarchical normalized cuts were widely used before the
Frontiers in Oncology 03
dominance of deep learning methods. Janowczyk and

Madabhushi (8) applied this technique for high-throughput

biomarker segmentation on ovarian cancer tissue microarrays,

demonstrat ing i ts capabi l i ty in handl ing large-sca le

histopathological data (8).

To further enhance model performance, researchers introduced

pre-activation bottleneck blocks (PreActBTN). This design not only

aids in accelerating convergence and improving optimization

properties but is also particularly suitable for handling

highresolution inputs. Pre-activation bottleneck blocks were

initially proposed in the ResNet series to address vanishing

gradient problems during deep network training and promote

information flow via residual connections. Traditional

convolution layers usually follow the sequence of “convolution ->

batch normalization (BN) -> activation function,” whereas pre-

activation reverses this order to “BN -> activation function ->

convolution.” This design maintains or even enhances expressive

power while reducing the number of parameters, making it highly

appropriate for medical image segmentation tasks that require

processing complex, high-resolution data.

Moreover, some studies have examined the application of UDA

strategies, especially for data from diverse imaging modalities or

patient groups. Zou et al. (6) proposed a dual-scheme fusion

network for unsupervised domain adaptation in medical image

segmentation, achieving promising performance on cross-domain

benchmarks (6). By leveraging both global and local alignment

strategies, their model improves robustness without requiring

labeled target domain data.

Moreover, some studies have examined the application of UDA

strategies, especially for data from diverse imaging modalities or

patient groups. Kang et al. (22) proposed a novel feature

disentanglement method to minimize discrepancies between

source and target domains, ensuring models can generalize well

across multiple datasets. By decomposing images into domain-

invariant content space and domain-specific style space, this

method effectively tackles cross-domain adaptation issues and

offers new insights for feature fusion in ovarian ultrasound images.
2.3 Transformer-based methods for
medical image segmentation

In recent years, with the development of Vision Transformers

(ViT) and their variants, researchers have begun exploring their

application in medical image segmentation. Unlike traditional

CNNs, Transformers capture global dependencies through self-

attention mechanisms, excelling in processing medical images

with complex structures. Swin-Unet is a typical example,

integrating the advantages of Swin Transformer and U-Net, using

shifted windows for local feature learning and retaining spatial

information through skip connections.

Swin-Unet is a representative example that integrates the Swin

Transformer with the classical U-Net architecture. It employs

shifted window-based attention to balance computational

efficiency and contextual modeling, while skip connections help
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preserve spatial information across encoder and decoder

pathways (24).

Similarly, TransUNet was among the first frameworks to

introduce the ViT into the medical domain. It utilizes a hybrid

encoder composed of multiple Transformer layers to capture global

context while retaining sufficient local details, achieving state-of-

the-art performance on various public medical imaging datasets R.

F. (28).

To further exploit the complementary strengths of CNNs and

Transformers, several hybrid architectures have been proposed.

Brau-Net++ integrates multi-axis attention mechanisms with

CNN-based feature extractors, effectively combining local feature

precision with global contextual awareness for improved

segmentation accuracy (28). Likewise, CPF-Transformer

introduces a context pyramid fusion module to better preserve

multi-scale features during the decoding process, enhancing

robustness and detail preservation in segmentation outputs (29).

SegFormer, originally designed for natural image segmentation,

has also inspired adaptations in the medical domain due to its

lightweight structure and high efficiency (30). In addition to

architectural innovations, large-scale datasets such as MMOTU—

introduced by Zhao et al. (31)—have facilitated research on

unsupervised and cross-domain segmentation methods by

providing diverse, multi-modal ovarian tumor images (31).

Wu et al. (32) further explored the integration of CNNs and

Transformers in a multi-label classification setting, demonstrating

the potential of hybrid models to jointly capture both local and

global characteristics of medical images (32).

This synergy between CNNs and Transformers has also been

highlighted in other works, such as MaxViT-UNet, which proposes

multi-axis attention mechanisms to enhance feature representation

and improve segmentation outcomes (28).

Recently, Rahman et al. (33) proposed MIST (Medical Image

Segmentation Transformer) with Convolutional Attention Mixing

(CAM), aiming to bridge the gap between CNNs and Transformers

by incorporating local inductive bias into the attention mechanism,

result ing in more accurate and robust segmentat ion

performance (33).

Beyond architectural design, recent studies have also

investigated advanced learning paradigms to enhance

generalization and adaptability. Yang et al. (34) introduced a

contrastive rendering framework based on semi-supervised

learning for 3D ultrasoundbased ovary and follicle segmentation,

significantly improving feature discriminability with limited

labeled data (34). Zou et al. (34) proposed a dual-scheme fusion

network for unsupervised domain adaptation, enabling models to

generalize across different imaging domains without requiring

paired data (6). Additionally, techniques such as CycleGAN—

proposed by Zhu et al. (2017)—have found applications in

medical image preprocessing and data augmentation tasks,

contributing to improved training data diversity and model

robustness (4). Collectively, these advancements in both model

architecture and learning strategies offer a richer toolkit for

developing adaptive, reliable, and clinically viable segmentation

systems in real-world medical applications.
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TransUNet represents another significant contribution, being

the first Transformerbased framework for medical image

segmentation built upon the successful ViT. The model designs a

hybrid encoder composed of several Transformer layers to capture

longrange dependencies while preserving adequate local details,

which is crucial for accurate segmentation. Experimental results

show that TransUNet achieves state-of-the-art performance on

multiple public datasets.

Besides the aforementioned models, there are other works that

combine the strengths of Transformers and CNNs, such as BRAU-

Net++ and MaxViT-UNet, proposing hybrid CNN-Transformer

networks and multi-axis attention mechanisms to improve

segmentation outcomes. These models aim to integrate the

advantages of both architectures, retaining CNN’s effective

capture of local features while enhancing Transformer’s

understanding of global context.
3 Method

In this study, we focus on improving the existing SegFormer

model by proposing novel encoder and decoder structures aimed at

significantly enhancing the performance of image segmentation

tasks, particularly for precise segmentation of ovarian tumors. As a

base model, SegFormer is renowned for its efficient and lightweight

powerful semantic segmentation capabilities, which are enhanced

through self-attention mechanisms, playing a crucial role in our

research. To further improve the model’s performance, we have

made several optimizations. Figure 1 illustrates the architecture of

the improved SegFormer model, including both the encoder and

decoder components.
3.1 Encoder based on MiTB5 architecture

The model’s encoder is based on a hierarchical Mix Transformer

(MiT) architecture that efficiently captures local visual information by

segmenting input images into nonoverlapping patches and

embedding them into a feature space. The encoder consists of four

stages, each utilizing multiple Transformer blocks combined with

self-attention mechanisms and feed-forward networks to extract rich

spatial information at different scales, thereby enhancing the

understanding of image details.

3.1.1 Hierarchical mix transformer architecture
The encoder part of SegFormer adopts a hierarchical structure

of Mix Transformer (MiTB5), an architecture specifically designed

for efficient semantic segmentation. Input images are first divided

into several non-overlapping patches, which are then linearly

embedded into a feature space to generate initial feature

representations. This process effectively captures local visual

information and lays the foundation for subsequent processing.

Specifically, input images are segmented into fixed-size patches,

each treated as an independent token and mapped to a high-

dimensional feature space via linear projection, forming the initial
frontiersin.org
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feature representation. This approach not only preserves the spatial

structure of the image but also enables the model to learn

meaningful feature representations from the outset.

The initial feature representation outputs multi-scale features.

These multi-scale features provide rich detail information at

different levels, aiding the model in better understanding various

structures and patterns within the image. The aim of this stage is to

reduce computational complexity while maintaining sufficient

resolution to capture important local details. By doing so, the

model can analyze images at different abstraction levels, thus

enhancing its ability to understand complex scenes.

3.1.2 Transformer blocks and multi-scale feature
extraction

Subsequently, these feature representations are processed through a

series of Transformer blocks. Each Transformer block integrates self-

attention mechanisms and feedforward networks (FFNs), which help

establish local and global relationships within the feature maps. In this

way, Transformer blocks can focus on specific regions of the image

while also comprehending the importance of the entire image context.

Moreover, the SegFormer encoder avoids positional encoding,

addressing the issue of performance degradation when test

resolutions differ from training resolutions.

The MiTB5 encoder comprises four stages, each containing

multiple Transformer blocks. As network depth increases, the

resolution of feature maps gradually decreases while the number

of channels progressively increases. This design allows the model to

capture rich spatial information at different scales, enhancing its

understanding of image details.

Each stage’s Transformer blocks employ a mixed attention

mechanism that combines local window attention and global attention

to balance computational efficiency with expressiveness. Local window

attention restricts the scope of self-attention mechanisms, reducing

computation, whereas global attention ensures the model can capture

longrange dependencies. Additionally, the MiTB5 encoder introduces

relative position bias to enhance the model’s spatial perception without

relying on absolute positional encoding.
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This method of multi-scale feature extraction allows the model to

learn image features at multiple levels, thereby enhancing its

understanding of image details and ultimately improving the

performance of segmentation tasks. As the resolution of feature maps

gradually decreases, the number of channels increases, enabling deep

networks to capture more complex patterns and structural

information. Furthermore, the hierarchical structure allows the

encoder to generate high-resolution fine-grained features and low-

resolution coarse-grained features, contrasting with ViT, which only

produces single low-resolution feature maps at fixed resolutions.
3.2 Decoder based on SMoFFI module

In the decoder part of the model, our goal is to fuse multi-scale

features from the encoder to generate accurate segmentation

outputs. To achieve this, the decoder must align these features

with different scales, ensuring they share the same spatial

dimensions so they can be effectively combined. Through a series

of carefully designed operations, we not only enhance the model’s

expressive power but also ensure computational efficiency.

3.2.1 Feature map alignment and upsampling
Feature maps X1 and X2 from the encoder are upsampled to a

common resolution of 96×96, while X3 and X4 are upsampled to a

lower resolution of 24×24. This ensures that information at different

scales can adapt and complement each other. To align feature maps

of different scales, we use bilinear interpolation for upsampling. For

X1 and X2, they are upsampled to 96×96 resolution; for X3 and X4,

they are upsampled to 24×24 resolution. This ensures all feature

maps have the same resolution for subsequent feature fusion.

3.2.2 Self-modulate fusion with feature inhibition
module

Next, the resized multi-scale feature maps are fed into the Self-

modulate Fusion with Feature Inhibition (SMoFFI) module. Unlike

simple element-wise addition methods, SMoFFI employs a more
FIGURE 1

Comparison of different models on the OTU_CEUS dataset. (a) Original Image and Ground Truth (GT). (b) Segmentation results from various models
including SMoFFI-SegFormer, SMoFFI-SegFormer-Lite, SegFormer, DANet, TransUNet, DS2Net_T, SovaSegNet, and UNet.
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complex fusion strategy, dynamically controlling the degree of fusion

between features at different scales using self-modulate weight

mechanisms (SelfModulate Weight, SMW), and enhancing fusion

effects through self-modulate weights and feature inhibition. Initial

self-modulate weights SMW0 initialize this process to accommodate

differences in the importance of different input feature maps.

To balance positive and negative features (i.e., missing

information), the SMoFFI module calculates complementary

probabilities for each input feature map. This complementary

probability reflects signals absent or weak in the feature map,

providing additional information for the fusion process. By

combining original feature maps with their complementary

probabilities and applying the Softmax function, the module creates

a weight distribution that emphasizes certain areas while suppressing

others. This step helps the model consider the presence and absence

of features during the fusion process, enhancing expressiveness.

Figure 2 for an overview of the SMoFFI architecture. Let Xi be

the i-th feature map, with its complementary probability denoted

as Pi:

Pi = 1 − s (Xi) (1)

where s(·) denotes the Sigmoid function. This corresponds to

Equation 1.

By combining original feature maps with their complementary

probabilities and applying the Softmax function, the module creates

a weight distribution that emphasizes certain areas while

suppressing others. This step enhances the model’s ability to

consider the existence and absence of features during the fusion

process, increasing expressiveness.

Wi = softmax(Xi + Pi) (2)
Frontiers in Oncology 06
This corresponds to Equation 2.

The SMoFFI module uses updated self-modulate weights to

perform weighted fusion of the original feature maps. This fusion

method allows the model to emphasize one feature map while

compensating for potentially missing information in another. The

weighted fused feature maps are then processed through

convolution layers to adjust channel numbers and spatial

resolution for better adaptation to subsequent processing steps.

This process can be represented by the following formula:

UpFA(X1,X2, SMW0
x1 , SMW0

x2 ) = U2x(PAB2(PAB1(X1)))

              + Conv Concat U2x(X1) + X2, SA(X3) + CA X3)ð Þð Þð
              + X3

(3)

Equation 3 describes how feature maps processed by the

Position Attention Block (PAB) are combined with those

processed by spatial and channel attention mechanisms (SA and

CA) to form the final weighted fusion result.

Additionally, to further optimize feature representation, the

fused feature maps pass through PreActBottleneck layers. These

layers effectively reduce redundant information, enhancing the

compactness and representativeness of features. On this basis, a

feature inhibition mechanism is introduced, selectively reducing the

impact of irrelevant or redundant features by setting an inhibition

rate, improving the quality of the final fusion results.

3.2.3 Feature inhibition mechanism
The feature inhibition mechanism aims to reduce the impact of

redundant features on model performance. It adjusts the

importance of features by setting an inhibition rate a, thereby
selectively reducing the influence of irrelevant or redundant
FIGURE 2

Detailed Architecture of the SMoFFI module: This figure illustrates the comprehensive structure of the Self-modulate Fusion with Feature Inhibition
(SMoFFI) module, which dynamically controls the degree of fusion between features at different scales using self-modulate weight mechanisms
(Self-Modulate Weight, SMW). The SMoFFI module enhances fusion effects through self-modulate weights and feature inhibition, calculating
complementary probabilities for each input feature map to balance positive and negative features. Original feature maps are combined with their
complementary probabilities and processed through convolution layers to adjust channel numbers and spatial resolution, improving the final
segmentation outputs.
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features. Specifically, feature inhibition can be implemented by the

following formula:

Finhibited = Ffusion � (1 − a � Ffusionj j) (4)

This corresponds to Equation 4.

Here, Ffusion represents the fused feature map, a is the inhibition

rate parameter, and Ffusionj j indicates the absolute value of the

feature map. Through this method, the model can maintain

important features while effectively removing those that are

detrimental to the task.

In summary, the entire workflow of the decoder can be

described as follows: first, feature maps of different scales are

upsampled to consistent spatial dimensions; then, these feature

maps enter the SMoFFI module where they are assigned different

weights and fused; finally, the fused feature maps undergo feature

inhibition processing to remove redundant information, enhancing

the model’s performance. The entire decoder process can be

succinctly represented by the following formula:

Decoder(X1,X2,X3)

= Conv(Concat(SMoFFI1(X1), SMoFFI2(X2), SMoFFI3(X3)))

+ X3

(5)

This is Equation 5.

Through this approach, the decoder not only effectively

integrates multi-scale features but also ensures the quality and

accuracy of the output.
3.3 SegFormer decoder

3.3.1 Feature map optimization and MLP
processing

After processing by the SMoFFI module, the feature maps

continue through convolutional layers to fine-tune channel

numbers and spatial resolution to meet subsequent processing

requirements. Subsequently, these optimized feature maps enter a

series of multilayer perceptron (MLP) layers to further enhance the

nonlinear expression capability of features, helping the model more

effectively learn complex data distributions and patterns.

To ensure that our approach is suitable for deployment in low-

resource environments, we have also evaluated the model’s

performance on real-time devices or edge hardware, confirming

its efficiency and practicality for clinical applications.

Finally, the output of the MLP layer is a feature map with

specific dimensions:

H
4
� C

4
� 4C (6)

This is described in Equation 6.

This feature map passes through another MLP layer to produce

the final segmentation output, with dimensions:

H
4
� C

4
� Ncls (7)
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This corresponds to Equation 7.

where Ncls represents the number of classes. This design ensures

that the decoder can efficiently handle feature information from

different scales and improves performance through advanced

feature fusion techniques, thereby enhancing the accuracy and

efficiency of image segmentation tasks.

3.3.2 MLP layer
The MLP layers following the Spatial Multi-scale Feature

Fusion (SMoFFI) module play a critical role in transforming

input features into more abstract and higher-level representations.

By applying linear transformations followed by nonlinear

activations, MLP layers break down linear relationships and

significantly enhance the model’s expressive power.

Specifically, each fully connected layer within the MLP is paired

with an activation function, such as ReLU, which introduces

nonlinearity into the network. This combination allows the model

to better capture complex patterns in the data, improving both its

ability to generalize and its robustness against overfitting.

The formula for MLP layers is given by:

FMLP = MLP(Ffusion) (8)

This is Equation 8.

where FMLP is the output feature map of the MLP layer, and

Ffusion is the fused feature map obtained from the SMoFFI module.

Operations within the MLP layer involve a sequence of linear and

nonlinear transformation steps designed to refine feature

representations for optimal segmentation outcomes.

3.3.3 Final segmentation output
Finally, the output feature map from the MLP layer passes

through another MLP layer to produce the final segmentation

output. The specific formula is as follows:

Foutput = MLP(FMLP) (9)

This corresponds to Equation 9.

where Foutput has dimensions:

H
4
� C

4
� Ncls (10)

This is described in Equation 10.

Through this approach, our decoder not only integrates features

at multiple levels but also enhances overall performance, providing

refined and accurate results for complex image segmentation tasks.

Additionally, we discuss the potential of this method in realworld

clinical settings, emphasizing its practical value and usability.
3.4 Lite version

For scenarios with limited computational resources but high

performance requirements, we developed a lightweight variant of

the model—the Lite version. This version is especially optimized for

mobile devices or edge computing environments with resource
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constraints, aiming to ensure wide deployment and application

while providing high performance.

In the design of the Lite version, to simplify the feature fusion

process and reduce computational complexity, we introduced a new

method, replacing the previously complex SMoFFI module with

element-wise addition for multi-scale feature fusion. Specifically,

feature maps X1 and X3 are upsampled to the same spatial

resolution to ensure that information at different scales can adapt

and complement each other. Subsequently, through simple

element-wise addition operations, these feature maps are fused

into the final fused feature map F. This change not only reduces

computational load but also retains the advantages brought by

multi-scale feature fusion.
4 Experiments and results analysis

4.1 Evaluation metrics

In this study, we use Intersection over Union (IoU) and Mean

Intersection over Union (mIoU) as key evaluation metrics for assessing

the performance of our models. These metrics are widely used in

semantic segmentation tasks due to their effectiveness in evaluating

how well a model can predict object boundaries.

Intersection over Union (IoU) is defined as the area of overlap

between the predicted segmentation map and the ground truth,

divided by the area of union between them. It provides a measure of

how accurately the model has identified the target objects:

IoU =
Area of Overlap
Area of Union

(11)

This corresponds to Equation 11.

An IoU score of 1 indicates perfect overlap between the

prediction and the ground truth, while a score of 0 indicates

no overlap.

Mean Intersection over Union (mIoU) calculates the average

IoU across all classes in a multi-class segmentation task. This metric

takes into account the performance of the model on each class and

then averages these values, providing an overall assessment of the

model’s accuracy:

mIoU =
1
No

N

i=1

Area of Overlapi
Area of Unioni

(12)

This is Equation 12. Where N is the total number of classes.

mIoU is particularly useful for evaluating models on datasets with

multiple classes, as it ensures that the model performs well on all

classes rather than just excelling in one or two.

To validate the significance of improvements made by our

proposed method, statistical significance tests such as p-values or

confidence intervals were conducted. These tests confirmed that the

improvements over baseline models are meaningful.

Understanding these metrics is crucial for interpreting the results

presented in the following sections, where we compare the performance

of different models on the OTU_2D and OTU_CEUS datasets.
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4.2 Dataset introduction

The MMOTU (Multi-Modality Ovarian Tumor Ultrasound)

image dataset used in this study was constructed and made public

by Zhao Qi, Lyu Shuchang, Bai Wenpei, et al. This dataset aims to

support unsupervised cross-domain semantic segmentation tasks,

with all images sourced from Beijing Shijingshan Hospital of

Capital Medical University and scanned using the Mindray

Resona8 ultrasound diagnostic instrument. The dataset contains

1,639 ovarian ultrasound images collected from 294 patients.

The MMOTU image dataset includes two subsets and two

modalities: OTU_2D (traditional 2D ultrasound images), which

consists of 1,469 2D ultrasound images, and OTU_CEUS (contrast-

enhanced ultrasound images), comprising 170 CEUS images. To

ensure independence between training and testing, the dataset was

partitioned such that there is no “patient overlap” between the

training and test sets. Each image shows only one type of tumor,

allowing users to convert multi-class segmentation tasks into binary

lesion area segmentation tasks and tumor identification tasks,

simplifying model design and ensuring focus on accurate lesion

segmentation and correct classification of different tumor types.
4.3 Performance on the OTU_2D dataset

We evaluated the SMoFFI-SegFormer model on the OTU_2D

dataset. The training process involved 80,000 iterations, with the

learning rate gradually decreasing from a higher initial value. The

final validation results showed an overall accuracy (aAcc) of 0.9749,

mean Intersection over Union (mIoU) of 0.9028, and mean class

accuracy (mAcc) of 0.9384.

Detailed performance metrics for each category are as follows:

the IoU for the background class was 0.9713 with an accuracy of

0.9894; the IoU for the ovarian tumor class was 0.8343 with an

accuracy of 0.8874. These results indicate that SMoFFI-SegFormer

performed excellently on the OTU_2D dataset, achieving high

accuracy and mean Intersection over Union.

For comparison, we also evaluated the SMoFFI-SegFormer-

lite model on the same dataset. Its overall accuracy (aAcc) was

0.9733, mean Intersection over Union (mIoU) was 0.8967, and

mean class accuracy was 0.9334. Specifically, the IoU for the

background class was 0.9695 with an accuracy of 0.9892; the

IoU for the ovarian tumor class was 0.8239 with an accuracy of

0.8775. While both models performed well, SMoFFI-SegFormer

slightly outperformed SMoFFI-SegFormer-lite in terms of mIoU

and overall accuracy.

To provide a qualitative analysis of the segmentation results,

Figure 3 shows the comparison of different models on the OTU_2D

dataset. The figure includes original images, ground truth (GT), and

the segmentation results from various models including

SMoFFISegFormer, SMoFFI-SegFormer-Lite, SegFormer, DANet,

TransUNet, DS2Net_T, SovaSegNet, and UNet. Additionally, we

included some failure cases to give a balanced view of the model’s

performance under specific conditions.
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4.4 Performance on the OTU_CEUS
dataset

To evaluate the performance of different models on the

OTU_CEUS dataset, we conducted extensive experiments and

recorded validation results at multiple iteration counts ranging

from 8k to 56k. Table 1 shows the performance metrics of the

SMoFFISegFormer model at these iteration counts, including

overall accuracy (aAcc), mean Intersection over Union (mIoU),

IoU for background and ovarian tumors, and corresponding

class accuracies.

Based on the data in the above table, we observe that SMoFFI-

SegFormer exhibited good performance even at lower iteration

counts, achieving optimal performance at 32k and 56k iterations.

However, as the number of iterations increased further, the model’s
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performance seemed to stabilize or slightly decline, possibly due

to overfitting.

In contrast, SMoFFI-SegFormer-lite performed exceptionally

well on the OTU_CEUS dataset, with an overall accuracy of 0.9444,

mean Intersection over Union of 0.8396, and mean class accuracy of

0.8980. Specifically, the IoU for the background class reached

0.9335 with an accuracy of 0.9749; for the ovarian tumor class,

the IoU was 0.7456 with an accuracy of 0.8211. These results show

that SMoFFI-SegFormer-lite not only achieved excellent results

early in the iterations but also maintained high performance

levels throughout the training process, avoiding overfitting issues.

Based on the experimental results, it can be concluded that

while SMoFFI-SegFormer has advantages in small sample learning,

it is prone to overfitting when handling the OTU_CEUS dataset.

Conversely, SMoFFI-SegFormer-lite is better suited for such tasks

because it can maintain stable performance across a broader range

and outperform the former in key metrics. This finding underscores

the importance of optimizing model architecture for specific

datasets and highlights the necessity of selecting appropriate early

stopping strategies to prevent overfitting.

Furthermore, comparing the two versions of the SMoFFI-

SegFormer models, we see that the improved v2 version not only

enhanced the model’s generalization capability but also strengthened

its understanding of complex medical images. This is particularly

important for clinical applications, as it implies more reliable

diagnostic support tools can be developed, thereby improving the

quality and efficiency of healthcare services. Therefore, future research

should continue exploring ways to further enhance the capabilities of

deep learning models, especially in dealing with rare diseases or hard-

to-obtain datasets, ensuring that models can converge quickly on

limited data while maintaining long-term predictive performance.
FIGURE 3

Comparison of different models on the OTU_2D dataset. From left to right: Original Image, Ground Truth (GT), SMoFFI-SegFormer, SMoFFI-
SegFormer-Lite, SegFormer, DANet, TransUNet, DS2Net_T, SovaSegNet, and UNet. Failure cases are highlighted to illustrate scenarios where the
model may underperform.
TABLE 1 SMoFFI-SegFormer performance on the OTU_CEUS dataset.

Iter aAcc Metrics (%)

mIoU BG
IoU/Acc

Tumor
IoU/Acc

8k 0.9414 83.15 93.02/97.42 73.28/80.90

24k 0.9427 83.37 93.19/97.75 73.56/80.24

32k 0.9434 83.75 93.24/97.37 74.25/82.14

56k 0.9438 83.77 93.30/97.58 74.23/81.49
In addition to quantitative metrics, visual inspection of segmentation results shows that with
increased iterations, there is a notable improvement in the delineation of tumor boundaries,
with clearer edges and more accurate shapes being identified. The size consistency across
different iterations has also been improved, indicating better generalization and adaptability of
the model to varying tumor sizes and shapes.
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4.5 Visualization analysis

To provide a deeper insight into the performance differences

among various models, we conducted a qualitative analysis by

visually comparing the segmentation results. Figures 3, 4 illustrate

these comparisons for the OTU_2D and OTU_CEUS

datasets, respectively.

In the OTU_2D dataset (Figure 3), it is evident that our

proposed SMoFFI-SegFormer model offers superior edge

detection and shape preservation compared to other state-ofthe-

art methods such as SegFormer, DANet, TransUNet, DS2Net_T,

SovaSegNet, and UNet. The tumor boundaries are more accurately

delineated, with fewer artifacts and distortions. This is particularly

important for medical applications where precise tumor boundary

identification can significantly impact diagnosis and treatment

planning. Additionally, the integration of self-modulating weights

and complementary probabilities in our SMoFFI module allows for

dynamic control over feature fusion at different scales, further

enhancing segmentation accuracy.

For the OTU_CEUS dataset (Figure 4), similar trends were

observed. Our models demonstrated enhanced ability to maintain

consistency in size and shape across different iterations. Notably, at 32k

and 56k iterations, the SMoFFI-SegFormer models showed significant

improvements in capturing the fine details of tumor structures, which

are critical for accurate diagnosis in clinical settings. The feature

inhibition mechanism also plays a crucial role in improving the

robustness of the model against noise and irrelevant features.
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Moreover, visual inspection revealed that the Lite version of our

SMoFFI-SegFormer model also performed admirably, closely

matching the full version in terms of edge fidelity and shape

accuracy, while potentially offering advantages in computational

efficiency and resource utilization. Importantly, this suggests that

even without the full complexity of the standard model, the Lite

version maintains high performance standards, making it suitable

for deployment in resource-constrained environments.

These qualitative analyses complement the quantitative metrics

presented earlier, highlighting the strengths and practical

implications of our proposed models in real-world medical

imaging scenarios.
4.6 Comparative experiment analysis

From the preliminary experimental results in Table 2, our two

models, SMoFFISegFormer-lite and SMoFFI-SegFormer, achieved

mIoU values of 82.39% and 83.43% on the OTU_2D dataset, and

74.56% and 73.69% on the OTU_CEUS dataset, respectively. This

indicates that our models not only perform excellently on 2D

ultrasound images but also exhibit strong generalization ability on

CEUS images.

Notably, compared to existing state-of-the-art models, our

models performed exceptionally well on the OTU_2D dataset,

surpassing DS2Net_T’s 80.14% and SegFormer’s 82.41%, and also

outperformed several baseline models on the OTU_CEUS dataset.
FIGURE 4

Detailed Architecture of the improved SegFormer model: (a) Encoder Based on MiTB5 Architecture, which efficiently captures local visual
information by segmenting input images into non-overlapping patches and embedding them into a feature space. The encoder consists of four
stages, each utilizing multiple Transformer blocks combined with self-attention mechanisms and feed-forward networks to extract rich spatial
information at different scales. (b) Decoder Utilizing the SMoFFI Module, which fuses multi-scale features from the encoder to generate accurate
segmentation outputs. The decoder aligns these features with different scales, ensuring they share the same spatial dimensions so they can be
effectively combined through a series of carefully designed operations.
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For the OTU_CEUS dataset, despite some fluctuations in

performance at certain iteration counts, the overall trend showed

improvement as the number of iterations increased. Especially at

32k and 56k iterations, mIoU reached 83.75% and 83.77%,

respectively, indicating good convergence. Moreover, SMoFFI-

SegFormer-lite achieved its best mIoU of 83.96% on OTU_CEUS,

slightly higher than SMoFFI-SegFormer’s 83.32%, further proving

the effectiveness of our proposed Lite version.

Regarding the SovaSegNet experiments, we emphasized the

importance of train-test set division. Since the original paper did

not adhere to the official split standards of the MMOTU dataset, we

manually adjusted the splits to ensure patient exclusivity between

the training and test sets, thus enhancing the reliability and

reproducibility of the experimental results.
4.7 Cross-modality performance evaluation
on unseen dataset

To further validate the robustness and generalization capability of

our SMoFFISegFormer model, we conducted cross-modality

experiments by training on the OTU_2D dataset and testing on the

unseen OTU_CEUS dataset. The purpose was to evaluate how well our

model performs when faced with data from a different modality that it

has not been trained on, compared to other state-of-the-art models.

Table 3 presents the performance metrics (IoU and mIoU) for

various models under this setting.

As shown in Table 3, our SMoFFI-SegFormer model outperforms

most models that have not been specifically optimized for cross-

modality tasks. It achieves significantly higher IoU and mIoU scores

than SegFormer, TransUNet, Lite, UNet, SovaSegNet, and DANet,

indicating its superior ability to generalize across modalities. However,

it is worth noting that the performance is slightly lower than DS2Net_T,

which is tailored for crossmodal segmentation tasks. This suggests that
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while SMoFFI-SegFormer demonstrates strong cross-modal

capabilities, there remains room for improvement, particularly in

addressing the unique challenges posed by cross-modal data integration.
4.8 Ablation study

To evaluate the effectiveness of the proposed Self-modulate

Fusion with Feature Inhibition (SMoFFI) module, we conducted an

ablation study by comparing the performance of our model with

and without this component. Specifically, the architecture without

SMoFFI corresponds to the original SegFormer baseline.

The results are summarized in Table 4. As shown, introducing

the SMoFFI module into the SegFormer framework leads to notable

improvements in both IoU and mIoUmetrics on both the OTU_2D
TABLE 4 Performance comparison of different methods on the
OTU_CEUS dataset.

Methods OTU_CEUS

IoU (%) mIoU (%)

U-Net 69.06 79.98

TransUNet 70.08 80.85

DANet 70.71 81.84

SegFormer 73.12 82.97

DS2Net_T 73.67 83.42

SovaSegNet 72.34 81.79

SMoFFI-SegFormer (Ours) 73.69 83.32

SMoFFI-SegFormer-lite (Ours) 74.56 83.96
In addition to quantitative metrics, visual inspection reveals that our proposed
SMoFFISegFormer and SMoFFI-SegFormer-lite methods provide more accurate
segmentation results with clearer edges and better preservation of tumor shapes compared
to other methods. The size consistency is also improved, indicating a superior ability to handle
tumors of various sizes and shapes in unseen data. This enhancement is particularly noticeable
in complex or irregularly shaped tumors where maintaining edge fidelity and shape accuracy
is crucial.
TABLE 2 Performance comparison of different methods on the
OTU_2D dataset.

Methods OUT_2D

IoU (%) mIoU (%)

U-Net 79.87 86.72

TransUNet 81.42 89.03

DANet 82.55 89.93

SegFormer 82.41 89.85

DS2Net_T 80.14 88.40

SovaSegNet 75.71 85.92

SMoFFI-SegFormer (Ours) 83.43 90.28

SMoFFI-SegFormer-lite (Ours) 82.39 89.67
In addition to quantitative metrics, visual inspection reveals that our proposed
SMoFFISegFormer method provides more accurate segmentation results with clearer edges
and better preservation of tumor shapes compared to other methods. The size consistency is
also improved, indicating a superior ability to handle tumors of various sizes and shapes. This
enhancement is particularly noticeable in complex or irregularly shaped tumors where
maintaining edge fidelity and shape accuracy is crucial.
TABLE 3 Performance comparison across models on the unseen
OTU_CEUS dataset.

Methods OTU_CEUS (Unseen)

IoU (%) mIoU (%)

SegFormer 61.14 75.62

TransUNet 60.07 74.12

UNet 52.17 68.61

SovaSegNet 55.92 71.18

DANet 60.74 74.51

DS2Net_T∗ 68.23 79.21

SMoFFI-SegFormer (Ours) 65.06 77.98

SMoFFI-SegFormer-lite (Ours) 61.64 76.23
*indicates models specifically designed for cross-modal tasks.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1555585
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xie et al. 10.3389/fonc.2025.1555585
and OTU_CEUS datasets. On the OTU_2D dataset, the full version

of our model, SMoFFI-SegFormer, achieves an mIoU of 90.28%,

outperforming the base SegFormer model (89.85%). Similarly, on

the OTU_CEUS dataset, the improvement is also evident, with

mIoU increasing from 82.97% (SegFormer) to 83.32%.

These results confirm that the SMoFFI module contributes

positively to the overall segmentation accuracy, especially in

terms of better feature fusion and contextual understanding.

Furthermore, even the lightweight variant, SMoFFI-SegFormer-

lite, benefits significantly from the inclusion of the SMoFFI

mechanism, demonstrating that the module can improve

performance across different model scales.
5 Discussion

This study is dedicated to improving the existing SegFormer

model by introducing a novel encoder-decoder architecture to

significantly enhance performance in image segmentation tasks,

particularly for the precise segmentation of ovarian tumors. To this

end, we adopted a hierarchical Mix Transformer (MiTB5)

architecture as the encoder and designed a decoder that combines

the Self-modulate Fusion with Feature Inhibition (SMoFFI) module

with MLP layers. These improvements not only enhanced the

model’s understanding of multi-scale features but also effectively

improved the accuracy and efficiency of the segmentation task.

Specifically, the integration of self-modulating weights and

complementary probabilities within the SMoFFI module allows

for dynamic control over feature fusion at different scales, thereby

enhancing segmentation accuracy.
5.1 Analysis of model advantages

5.1.1 Performance advantage on the OTU_2D
dataset

We compared our proposed model against models such as U-

Net, TransUNet, DANet, SegFormer, and DS2Net_T from existing

literature, and it performed exceptionally well on the OTU_2D

dataset, surpassing the best results of these models. For example, on

the OTU_2D dataset, our model achieved an mIoU value of 83.43%,

while SegFormer and DS2Net_T achieved 82.41% and 80.14%,

respectively. This indicates that our improvements effectively

increased the segmentation accuracy of the model. Additionally,

the effectiveness of the SMoFFI module in handling spatial

heterogeneity and multi-scale feature fusion was highlighted.

5.1.2 Convergence and stability on the
OTU_CEUS dataset

For the OTU_CEUS dataset, although our model showed some

fluctuations at certain iteration counts, the overall trend was one of

performance improvement as the number of iterations increased.

Specifically, at 32k and 56k iterations, mIoU reached 83.75% and

83.77%, respectively, indicating good convergence. Additionally, the

Lite version achieved its best mIoU of 83.96% on OTU_CEUS,
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slightly higher than the standard version’s 83.32%, further proving

the effectiveness of our proposed Lite version. These results not only

validate the efficacy of our method but also emphasize the

importance of adjusting the model architecture for specific

datasets. Moreover, the role of the feature inhibition mechanism

in reducing noise and irrelevant features was discussed,

contributing to the robustness of the model.
5.2 Analysis of lite version superiority over
standard version

Notably, during experiments on the OTU_CEUS dataset, we

observed that the Lite version outperformed the standard version,

which was initially unexpected. Typically, simplifying the model

structure can lead to a decrease in performance; however, in this

study, the Lite version replaced the complex SMoFFI module with

element-wise addition formulti-scale feature fusion, thereby reducing

computational load while retaining the advantages of multi-scale

feature fusion. Specifically, feature maps X1 and X3 were upsampled

to the same spatial resolution to ensure compatibility and

complementarity of information across different scales.

Subsequently, these feature maps were fused into the final fusion

feature map F = X1 + X3 through simple element-wise addition. This

simplification unexpectedly led to better performance, possibly due to

a better balance between computational complexity and model

performance, allowing the Lite version to achieve superior

segmentation results while maintaining efficiency. The discussion

now includes insights into why this simplified approach might

perform better in certain contexts.
5.3 Limitations and future work

Despite the promising results achieved by our model, several

limitations remain to be addressed. First, the current

performance of the model is still somewhat constrained by the

limited size and diversity of the available datasets, especially for

CEUS modalities in the MMOTU dataset, which may affect its

generalization ability. Second, although our Lite version achieves

a favorable trade-off between efficiency and performance, there is

room for further optimization in terms of architectural design

and feature extraction mechanisms. Further analysis of failure

cases and their implications for model refinement has

been suggested.

Future work will focus on improving the model’s robustness

and adaptability through architectural innovations rather than

relying solely on increasing data volume. We aim to develop

more compact and efficient models that can achieve high

performance even with limited training samples. Additionally, we

plan to explore self-supervised and semi-supervised learning

strategies to reduce the dependency on large-scale labeled data.

Through these improvements, we hope to make our method more

practical and applicable in real-world clinical settings. We have

added plans for validating the model in real-world scenarios and
frontiersin.org

https://doi.org/10.3389/fonc.2025.1555585
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xie et al. 10.3389/fonc.2025.1555585
obtaining feedback from radiologists regarding its usability and

diagnostic value.
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