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Pancreatic Ductal Adenocarcinoma (PDAC) accounts for a significant burden of

global cancer deaths worldwide. The dismal outcomes associated with PDAC

can be overcome by detecting the disease early and developing tools that predict

response to treatment, allowing the selection of the most optimal treatment.

Over the last couple of years, significant progress has been made in the

development of novel biomarkers that aid in diagnosis, prognosis, treatment

selection, and monitoring response. Blood-based biomarkers offer an alternative

to tissue-based diagnosis and offer immense potential in managing PDAC. In this

review, we have discussed the advances in blood-based biomarkers in PDAC,

such as DNA (mutations and methylations), RNA, protein biomarkers and

circulating tumor cells (CTC) over the last decade and also elucidated all

aspects of practical implementation of these biomarkers in clinical practice.

We have also discussed implementing multiomics utilizing more than one

biomarker and targeted therapies that have been developed using

these biomarkers.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) accounts for around 3% of all cancers in the

United States and about 7% of all cancer deaths estimated in 2023 (1). The last few years

have seen a significant increase in the global burden of PDAC diagnosis. The American

Cancer Society projects that in 2025, approximately 67,440 patients will be diagnosed with

PDAC, and an estimated 51,980 will succumb to the disease (2). Males are reported to have

a higher prevalence of PDAC compared to females. While smoking rates have declined over

recent decades, the rising incidence of diabetes is hypothesized to be a key driver of the

increasing PDAC cases. Biomarkers such as fasting blood glucose and insulin resistance
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have shown significant associations with PDAC, and patients with

the disease frequently present with elevated HbA1c levels (3). In

common clinical practice, PDAC is classified into resectable,

unresectable and borderline resectable to determine the possibility

of surgical intervention and the need for neoadjuvant therapy (4, 5).

A large proportion of patients have unresectable disease at the time

of diagnosis (6). At the time of initial presentation, 50% patients are

found to have metastatic PDAC, with 30-35% being unresectable

and only 10-15% being amenable to surgery (3). There may also be

the presence of pancreatic intraepithelial neoplasms (PanIN) which

may progress to high-grade dysplasia and PDAC (3).

Early-stage PDAC is clinically silent while patients with

advanced disease have nonspecific signs and symptoms in the

form of anorexia, weight loss, abdominal pain, jaundice, acholic

stools, and dark urine which are the manifestations of biliary tract

obstruction. The most commonly used diagnostic tools include tri-

phasic pancreatic protocol computed tomography (CT), magnetic

resonance imaging (MRI), and endoscopic ultrasound-guided fine

needle aspiration for cytological diagnosis (7). Serum carbohydrate

antigen (CA 19-9) has been used to aid diagnosis in symptomatic

patients and to predict recurrence after resection but its success as a

screening tool has been underwhelming. There has been no effective

strategy so far to screen and detect PDAC in early stages.

The management for PDAC currently depends on conventional

polychemotherapies with poor outcomes and targeted therapy are

seldom used (8). The dismal outcomes associated with PDAC

necessitate the urgent need to develop tools that can identify

cancer early (9). There is also an urgent need for tools to predict

prognosis and response to treatment. There has been a huge push in

the last couple of years towards the development of novel serum

biomarkers that can aid in diagnosis, prognosis and assist in

tailoring treatment and monitoring response post-treatment.

Based on current practice, tissue biopsies are the current

method to assess molecular information about the tumor and

essential for diagnosis, screening, and mutation expression. Tissue

biopsies come with its own inherent set of disadvantages: the

requirement of invasive surgery, which poses risks for the patient

(10). Besides, certain tumors are difficult to access on account of
Abbreviations: PDAC, Pancreatic ductal adenocarcinoma; PaIN, Pancreatic

intraepithelial neoplasms; DNA, Deoxyribonucleic acid; RNA, Ribonucleic acid

cfDNA, Cell-free DNA; ctDNA, Circulating tumor DNA; CTC, Circulating

tumor cells; AUC, Area Under Curve; NGS, Next Generation Sequencing;

ddPCR, Digital Droplet Polymerase Chain Reaction; VAF, Variant Allele

Frequency; FS, Progression-free Survival; OS, Overall Survival; cDCR,

Complete Disease Control Rate; NAC, Neoadjuvant chemotherapy; EMV,

Extracellular membrane vesicles; mRNA, Messenger RNA; tRNA, transfer

RNA; hTERT, Human Telomerase Reverse Transcriptase; EGFR, Epidermal

Growth Factor Receptor; ncRNA, Noncoding RNA; miRNA, Micro RNA;

snRNA, Small Nuclear RNA; piRNA, Piwi-interacting RNA; lnc RNA, Long

noncoding RNA; circRNA, Circular RNA; evLR, EV long RNA sequencing; CP,

Chronic Pancreatitis; HC, Healthy Controls; RT-PCR-Real-time Polymerase

Chain Reaction; LC-MS, Liquid Chromatography-Mass Spectrometry; ELISA,

Enzyme-linked Immunosorbent Assay.
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challenging anatomical locations, including in PDAC. There is also

an associated risk of augmenting the risk of metastatic seeding (11).

There can also be variations in the amount of tissue extracted and

results obtained due to the tumor heterogeneity, inter-operator

variation, and evolving nature of the tumor. Lastly, the costs

involved and the requirement of an operation theatre can be an

inhibiting factor that is a hindrance to tumor characterization (12).

Tumor monitoring is required at different times of the disease

course to monitor treatment, and it is not feasible to have repeat

biopsies every time (13). Monitoring using radiology while

providing a good physical estimation hardly provides any

evidence of molecular/pathological features that are vital to

understanding the prognosis and treatment (14). Liquid biopsy

and blood-based biomarkers are based on the principle that during

apoptosis and necrosis, a few of these biomarkers are released into

circulation, and their identification and capture provide an accurate

molecular and pathological characterization of the tumor (15). The

non-invasive nature of this process is appealing both to the patients

and the clinician to avoid potential complications and morbidity

associated with invasive biopsy measures and allow for dynamic

monitoring of the tumor at different time points (16). Studies have

been conducted in several malignant tumors with utility such as

prostate, colorectal, lung, and breast with a great amount of research

also having been conducted on PDAC (17–20).

While samples for liquid biopsy can be derived from both plasma

and serum, plasma samples are often preferable to serum samples for

analysis in clinical applications. This stems from the fact that while

serum may have higher amounts of circulating free DNA, RNA and

proteins, it is confounded by the presence of DNA, RNA and proteins

released during the lysis of circulating white blood cells, including

neutrophils, that reduce the relative proportion of tumor DNA, RNA

and protein (21). It is also a prerequisite to collect serum at room

temperature for clotting, which further increases the risk of cell lyses

and degradation of DNA, RNA and protein (22). Most studies,

however, are based on serum samples in spite of the advantages of

plasma in this regard. This is due to the convenience of serum use in

clinical laboratories or because of limitations in sample availability for

retrospective studies (22).

In our 2022 publication, we explored the potential of cell-free

DNA (cfDNA) testing (methylation and mutation) in clinical

settings (23). Despite its promising results in retrospective and

limited prospective studies, no new clinical applications have

emerged since then. In the sections that follow, we discuss other

important blood-based biomarkers such as RNA, proteins,

circulating tumor cells (CTC) and multiomic tests in addition to

cfDNA. We have focused on the recent advances in blood-based

biomarkers such as DNA (mutations and methylations), CTC,

RNA, and protein, and all aspects of practical implementation of

these biomarkers in clinical practice.
Cell-free DNA

Cell-free DNA (cfDNA) encompasses normal cell DNA, tumor

cell DNA, and exosomal DNA (24). As cancer cells undergo
frontiersin.org
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apoptosis or necrosis, genetic material is aberrantly released into the

bloodstream as either free nucleic acid or exosomes (24). It has been

hypothesized that cfDNA can potentially be used to diagnose and

stage PDAC, and research is also being conducted to investigate the

role of cfDNA as a potential predictor of treatment response.

Multiple studies have demonstrated over the last couple of years

the presence of high levels of cfDNA in blood of patients with

invasive tumors including pancreas, colon, and melanoma (25–27).

cfDNA in PDAC was first reported by Shapiro et al. in 1983 when

he found that cfDNA was significantly elevated in PDAC compared

to healthy controls (28). He hypothesized its utility as a potential

diagnostic and prognostic biomarker. In the past decade, we have

made huge strides in implementing cfDNA into clinical practice.

This has been supported by multiple studies demonstrating the high

degree of correlation that exists between tumor DNA and

cfDNA (29).

Numerous techniques are available to detect cfDNA of tumor

cells. The most popularly used techniques include droplet digital

PCR (ddPCR), Whole Genome Sequencing (WGS) and Whole

Exome Sequencing (WES) (30). Other techniques that have also

been used in studies include Beads, Emulsion, Amplification, and

magnetics (BEAMing), Cancer Personalized Profiling by Deep

Sequencing (CAPP-Seq), Tagged-amplicon deep sequencing

(Tam-Seq) (30). ddPCR identifies rare mutations and copy

number variations. The major limitation in ddPCR, in spite of its

high sensitivity, is that it is only able to detect specific genomic

sequences in the sample (31). BEAMing, while combining PCR with

flow cytometry, also suffers from similar limitations (32). CAPP-Seq

uses large genomic libraries in tandem with individual patient

sample sequences to identify cfDNA alterations. It compares well-

known tumor alterations with DNA oligonucleotides to identify

patient-specific alterations (33). While there is an advantage in the

identification of insertions/deletions, single nucleotide variants,

rearrangements, and copy variants, it often struggles to identify

fusions, which is not a problem with ddPCR, WES, or WGS. Tam-

Seq employs primers to tag and identify the desired genomic

sequence but requires that the sequence be characterized to be

included in the analysis (34). WGS and WES analyses all the

potential tumor mutations present in the entire genome allowing

for comprehensive analysis and characterization. The extensive

coverage comes with its own downside related to the increased

cost, error rate and sensitivity (35).

In our previous review (23), we have elucidated how cfDNA

somatic mutations can either be divided into specific mutations or

nonspecific total mutated cfDNA. Numerous studies in the past

have implicated KRAS mutations as a poor prognostic biomarker in

PDAC. It has been associated with advanced and metastatic diseases

and many studies have evaluated and found the presence of

mutated KRAS and its quantification as important factors in

determining the prognosis of PDAC (36). Ankeny et al. (37)

conducted one of the earlier studies to clinically explore the

utility of mutated KRAS in circulating tumour DNA (ctDNA)

and i t s impl ica t ion in PDAC. Us ing techniques of

immunocytochemistry and chip mounting, they counted the

number of CTC in PDAC and healthy controls. 78% patients in
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the PDAC group were found to have CTC in peripheral venous

blood compared to 3.6% in the non-adenocarcinoma group. There

was also a statistically significant difference that existed between

stage 4 and other PDAC. Overall CTC had an Area Under Curve

(AUC)=0.885 for discriminating locoregional disease versus

metastatic disease. Other frequently detected mutations in cfDNA

of patients with PDAC besides KRAS include TP53 and CDKN2A,

with ATM, PIK3CA, PTEN, TERT, NF1, JAK2, and GNAS

mutations also seen (29, 38). In a previous paper from 2022, we

have described in detail about the cfDNA genomic and epigenetic

biomarkers that have been studied to aid in the diagnosis of PDAC

and its role in determining the stage and prognosis in this

population (23). We will look at the most recent advances (last 3

years) in the field in this section (Table 1).

Numerous studies have been conducted in the last 3 years

utilizing cfDNA in diagnosing PDAC. Herreros-Villaneuva (39)

performed next-generation sequencing (NGS) on the plasma

samples of 27 patients with PDAC between 2016 and 2020 in

Spain using a commercial panel of 65 genes to detect cfDNA but

found that pathogenic mutations were detected only in 50% of

samples from patients with stage 3-4 PDAC, highlighting the need

for further work in this area. Sellahewa et al. (40) utilized ddPCR in

81 patients with PDAC and 30 patients with benign pancreatic

disease to analyze for KRAS G12/G13 ctDNA mutation and found

that KRAS G12/G13 mutations were detected in 63% of all patients

with PDAC and in 76% of patients who also had the same mutation

detected in primary. The specificity and tissue concordance were

100%. KRAS has also been used in conjunction with endoscopic

ultrasound-guided fine-needle aspiration (EUS-FNA) by Wang

et al. (41) who found that the addition of the ctDNA biomarker

increased the sensitivity and accuracy of EUS-FNA from 71.4% to

91.6% and 75.8% to 88.6% respectively. This probably represents a

more accurate role of ctDNA in PDAC diagnosis, where it can serve

in conjunction with other invasive diagnostic techniques that

otherwise perform poorly by themselves. Pol et al. (42) took a

unique approach, collecting samples from 203 healthy and 664

cancer plasma detection encompassing 12 cancer types and

employed whole genome sequencing to analyze the plasma

mitochondrial DNA fraction. They found that the mitochondrial

DNA fraction was elevated in 5 cancers-cholangiocarcinoma,

colorectal, liver, pancreatic, and prostate cancer, in comparison to

healthy individuals. This elevation in mitochondrial DNA was

independent of the remaining cfDNA fraction. A predictive

model integrating mitochondrial DNA and copy number analysis

increased the AUC from 0.73 when using copy number alterations

alone to 0.81.

An interesting study that was conducted post-2022 was the

KRASCIPANC study by Evrard et al. (43) who collected serum

samples from patients with unresectable PDAC on day 1 and before

each cycle of chemotherapy at different time points until the

progression of the disease. They developed an interesting risk

stratification tool that helped better understand the prognosis by

taking into account the ctDNA of mutated KRAS at day 0 and day

28 to classify PDAC into best, mid, and worst subcategories with

disease control rates of 88%, 53%, and 20% respectively. This
frontiersin.org
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TABLE 1 Latest developments in prognosis, and treatment response prediction of PDAC using DNA biomarkers.

Authors Year Target
Method
used

Results

Diagnostic biomarker

Herreros-
Villaneuva (39) 2022

KRAS, BRCA2,
FLT3, HNF1A NGS

Pathogenic mutations were detected only in 50% plasma samples of patients with stage 3-
4 PDAC.

Wang et al. (41) 2022 KRAS+ EUS-FNA ddPCR
Adding KRAS mutation increased the sensitivity and specificity of EUS-FNA from 71.4%
to 91.6% and from 75.8% to 88.6% respectively.

Sellahewa et al. (40) 2023
KRAS G12/
13 mutation ddPCR

ctDNA KRAS G12/13 mutations were detected in 63% of all patients with PDAC with a
specificity and tissue concordance of 100%.

Prognostic biomarkers

Umemoto et al. (44) 2023
KRAS mutations
in ctDNA

NGS
KRAS mutation detection rate was higher with metastasis to the liver(78%). In addition,
median maximum variant allele frequency (VAF) was higher with metastasis to liver(1.9%).

Shah et al. (47) 2024 KRAS ctDNA NGS
In patients treated with neoadjuvant chemotherapy, the presence of KRAS ctDNA at
diagnosis was associated with and independently predicted worse PFS.

Lim et al. (48) 2024
ATM, BRCA1, BRCA2,
MLH1, KRAS

ddPCR
Patients with alterations in DNA-damage repair genes showed better PFS (26.6 months vs
13.5 months, p=0.004). Patients with KRAS mutations had worse OS (8.5 months vs not
applicable, p=0.003).

Eckhoff et al. (49) 2024

16 individual-specific,
somatic single
nucleotide
variants ctDNA

ddPCR
During the immediate postoperative period (up to 9 weeks post-surgery), PFS and OS were
significantly inferior in patients who were ctDNA-positive versus ctDNA-negative (PFS 97
versus 297 days, p < 0.001; OS 110 versus 381 days, p < 0.001

Motobayashi
et al. (52)

2024 KRAS-mutated ctDNA ddPCR
An increase in KRAS-mutated ctDNA values(day 0-7) was found to be associated with
significantly shorter PFS (HR-24.234, p=0.0002).

Huang et al. (53) 2024
KRAS, TP53, SMAD4,
CDKN2A, ARID1A

ddPCR
Patients with high KRAS in ctDNA significantly more frequently had an OS(p<0.001) and
PFS<6 months(p=0.027), high TP53(p<0.001), ARID1A(p=0.040), SMAD4(p=0.007)
ctDNA OS<6 months, high CDKN2A ctDNA PFS<6 months(p=0.048)

Till et al
(PRINCE trial) (54)

2024 ctKRAS G12D, G12V ddPCR
Higher baseline G12D was strongly associated with worse OS (log-rank p=0.0010). Early-
on therapy clearance of G12D strongly associates with OS(p=0.0002).

Halkova et al. (55) 2024 KRAS ctDNA ddPCR
Patients with G12D mutation had six times shorter survival compared to patients without
mutation(27 days vs 161 days, p=0.02).

Maulat et al. (56) 2024 ctDNA, cfDNA ddPCR
Intraoperative ctDNA detection in peripheral blood was associated with worse PFS(HR-
3.26,p=0.010) and OS(HR-5.46, p=0.002).

Treatment response prediction

Evrard et al. (43) 2022
KRAS mutated ctDNA
on Day 0 and Day 28

ddPCR
Score combining cfDNA at diagnosis >= or <30 ng/mL and presence or not of KRAS-
mutated ctDNA at day 28 was an optimal predictor of cDCR(OR=30.7), PFS(HR=6.79),
OS(HR=9.98)

Kitahata et al. (45) 2023
KRAS
postoperative ctDNA

ddPCR
Patients with postoperative positive ctDNA had significantly shorter median OS(723 days)
than patients with negative ctDNA results(not reached). Combined ctDNA and CA19-9
showed cumulative effect on both PFS(p=0.0066) and OS(p=0.0046).

Hata et al. (46) 2023
KRAS
postoperative ctDNA

ddPCR
Patients with detectable postoperative ctDNA showed worse DFS(p=0.034) and OS
(p=0.022). Patients with postoperative ctDNA were more prone to developing hepatic
recurrence than with undetectable postoperative ctDNA(p=0.039).

Edland et al. (50) 2023 KRAS ctDNA ddPCR
Longitudinal ctDNA measurements during chemotherapy successfully revealed disease
progression in 20 (67%) of 30 patients with ctDNA detected at baseline, with a median
lead time of 23 days (P = 0.01) over radiological imaging.

Sudo et al. (51) 2024 BRCA1/2, ATM NGS
Objective response and PFS on platinum-containing chemotherapy were significantly better
in patients with germline BRCA1/2 mutations (63.2% vs 16.2% and HR=0.55, respectively)
F
rontiers in Oncology
ctDNA, Circulating tumor DNA; NGS, Next generation sequencing; PFS, Progression-free survival; ddPCR, digital droplet polymerase chain reaction; OS, Overall survival; cfDNA, Circulating-
free DNA; DCR, Disease control rate.
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essentially described a study that serves a dual purpose of providing

an understanding of the prognosis and treatment response. Another

important study was the Gozila study by Umemoto et al. in Japan

(44). Stratifying KRAS mutation rates by sites of metastasis, they

found that detection of KRAS mutations in ctDNA was significantly

higher in patients with metastasis to liver (75%) compared to lymph

nodes (60%) and lungs (46%). The median maximum variable allele

frequency (VAF) was also significantly higher with liver metastasis

(1.8%) than other sites. Another notable study conducted by

Kitahata et al. (45) found a strong correlation between the

presence of postoperative ctDNA and overall survival (positive

ctDNA with an OS of 723 days versus not reached for the

absence of ctDNA). Findings of Hata et al. (46) were in

agreement and they found that detection of postoperative ctDNA

was associated with worse overall survival (OS) and progression-

free survival (PFS). However, contrary to other studies, they

concluded that preoperative ctDNA did not affect long-term

outcomes. Shah et al. (47) investigated the utility of ctDNA in

localized PDAC to guide clinical decisions. Using a 105 NGS gene

panel to investigate patients with localized PDAC, they found that

the presence of baseline ctDNA was associated with a worse CA19-9

response than those in which baseline ctDNA was not detected,

thereby providing an alternative biomarker of treatment response to

neoadjuvant chemotherapy (NAC). Lim et al. (48) investigated the

prognostic value of DNA damage repair genes (ATM, BRCA1,

BRCA2, MLH1) and found the presence of mutations in DNA

damage repair genes were associated with a significantly better PFS

compared to those without mutations in these genes (PFS 26.6

versus 13.5 months). A hopeful prospect for the future is the

possibility of using individualised ctDNA panels for assessing the

prognosis and treatment response as assessed by Eckhoff et al. (49)

who tracked individual specific 16 single nucleotide variants for

ctDNA detection and described that its presence was associated

with worse RFS and OS. ctDNA represents a growing field in PDAC

to predict the prognosis and treatment response. One study by

Edland et al. (50) has also investigated how longitudinal ctDNA

monitoring revealed disease progression in 67% patients with a

median lead time of 23 days over radiological imaging. Other

possible mutations such as germline BRCA1/2 mutations may

demonstrate a better response to platinum containing

chemotherapy and may prove a vital role in decision making (51).

The sensitivity of cfDNA also depends on the number of

mutations and alterations identified, which can pose unique

challenges. Detecting a single mutation in thousands of

circulating cfDNA can significantly affect the ability to identify

cancer. In contrast, the detection of a larger number of alterations in

the genome increases the sensitivity by increasing the probability.

This has also been demonstrated in Monte Carlo simulations that

have shown that increasing the number of abnormalities from a few

to hundreds can improve their detection (57). This forms the basis

for fragmentomics, a novel approach developed over the last few

years that is based on low coverage of WGS of isolated cfDNA. One

of the first instances was described by Cristiano et al. (58) in 2019,

who developed a novel technique called as DELFI (DNA evaluation

of fragments for early interpretation) to analyze genome-wide
Frontiers in Oncology 05
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fragmentation profiles of 236 patients with breast, colorectal,

lung, ovarian, pancreatic, gastric, or bile duct cancer using

machine learning, they found that incorporating genome-wide

fragmentation features had sensitivities of detection ranging from

57% to >99% among the different cancers with a specificity of 98%

and an overall AUC of 0.94 (58). Three primary surrogates can be

measured in fragmentomics: the fragment size, the end motif, and

the nucleosome imprint. Numerous techniques have been described

that assist in the implementation of fragmentomics: calculation of

tumor fraction by enriching short fragments, motif diversity score

(MDS), orientation-aware cfDNA fragmentation (OCF), windowed

protection score (WPS), DNA evaluation of fragments for early

interception (DELFI), fragmentation evaluation of epigenetics from

cfDNA (FREE-C), Epigenetic expression interference from cell-free

DNA-sequencing (EPIC-seq) (59). The ideal choice of sample for

fragmentomics analysis was determined to be plasma by Lee et al.

(60), who found that while large fragments were increased in serum,

the KRAS-mutated fraction in serum was significantly lower than

that of plasma. One significant challenge in the implementation of

large-scale fragmentomics is that the small amount of cfDNA

makes library construction difficult, and the limited screening

accuracy in different states limits its utility in cancer screening (59).

There have been numerous studies done specific to PDAC in

fragmentomics. Liu et al. (61) utilized hybrid-capture-based cfDNA

sequencing to analyze cfDNA fragments in PDAC and found that

increasing the threshold of fragments decreases the ability to detect

KRAS mutations in plasma, and the ability to recover ultra-short

fragments increased the performance to detect KRAS mutations.

This was followed up by Zvereva (62), who studied the plasma DNA

samples of 40 patients with PDAC already known to carry KRAS

mutation at codon 12 and screened cfDNA using a 4-size amplicon

strategy to determine if their size would change detection rates, in

turn giving an idea of malignant vs non-malignant cfDNA fragment

sizes. They found that higher KRAS amplicon size (167bp and

218bp) was significantly associated with lower detectable cfDNA

mutant allelic fractions (p<0.0001). One of the latest studies was

performed by Shi et al. (63) who utilized fragmentomic features of

pancreatobiliary cancers and combined them with CA19-9 to create

a stacked model that was able to distinguish the respective cancers

with an AUC of 0.978 in the training cohort and 0.941 in the

validation cohort and performed fairly well even with low-coverage

sequencing depth (AUC=0.905). Integrating with CA 19-9

enhanced the performance of the stacked model even further,

achieving an AUC as high as 0.995.

Incorporating ctDNA into clinical practice with PDAC in

supplementation with radiological imaging and its translation

into better outcomes represents an exciting research proposition

that needs further investigation.
DNA methylation markers

DNA methylation is known to affect a variety of processes in

cells, including imprinting, transcriptional regulation and integrity
frontiersin.org
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of developmental processes (64). It mediates its influence via its

effects on promoters and enhancers (noncoding DNA elements),

which play an important role in gene regulation. In a normal cell, it

maintains genomic integrity by methylating the 5’ position of the

cytosine ring through a family of enzymes called as DNA

methyltransferases (DNMT). This occurs in regions of repetitive

genomic regions, including satellite DNA, long interspersed

transposable elements (LINEs) and short interspersed

transposable elements (SINEs). The principle of inhibiting gene

expression is secondary to two mechanisms-direct inhibition by

inhibition of specific transcription factors or indirectly through

recruitment of methyl-CpG-binding domain proteins (65). DNA

methylation can contribute to cancer in three ways: first, by

hypomethylat ion of the cancer genome disinhibit ing

tumorigenesis, second by focal hypermethylation at tumour

suppressor regions, and third, by direct mutagenesis through

deamination, UV irradiation or exposure to carcinogens (66).

There are three main techniques for identification of

differentially-methylated regions- bisulfite conversion-based

methods, restriction enzyme-based approaches and affinity

enrichment-based assays (67). Bisulfite-based methods are utilized

the most largely due to its economical nature and rapid results. On

the other hand, restriction-based enzyme approaches, while being

more accurate, are limited due to the higher costs involved in their

implementation. The third method of using an enrichment-based

assay is easy with good sensitivity and specificity. However, one

limitation of this approach is enrichment of sequences with higher

number of CpG is more frequent than CpG poor fragments leading

to its underrepresentation (67).

DNA methylation profiles of malignant conditions can be

undifferentiable from non-malignant conditions if they are

derived from the same tissue. One of the first studies utilizing the

methylation signature in cfDNA was performed by Leman-

Werman (68), who were able to interrogate methylome databases

to identify cell/tissue-specific methylation signatures of diverse

conditions, including multiple sclerosis, type 1 diabetes and

PDAC or chronic pancreatitis (CP). Li et al. (69) utilized the

hydroxymethylation profiles of colorectal, gastric, liver, thyroid,

and pancreatic cancer and compared them with their adjacent

tissues to find definitive signatures that were characteristic of the

cancer types. In the last few years, there has been significant

progress in the development of biomarkers identifying DNA

methylation aberrations that assist in the diagnosis and prognosis

of PDAC. Table 2 below highlights the latest advances in

methylated DNA biomarkers that have occurred over the

last decade.

A plethora of studies have been conducted in the last ten years

that have furthered our understanding in the role of these DNA

methylation biomarkers in the diagnosis of PDAC. One of the

earlier studies assessing the role of DNA methylation in the

diagnosis of PDAC was conducted by Henriksen et al. (70) in

2016 who employed a 28-gene panel based on promoter

hypermethylation in PDAC, CP, and acute pancreatitis patients

and created a diagnostic prediction model (age >65, BMP3,

RASSF1A, BNC1, MESTv2, TFPI2, APC, SFRP1 and SFRP2) that
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had an area under the curve of 0.86 with a sensitivity of 76% and

specificity of 83% respectively. The authors of that study also

studied the 28 gene panel to create a prediction model (SEPT9v2,

SST, ALX4, CDKN2B, HIC1, MLH1, NEUROG1, and BNC1) that

enabled prognostication by differentiating stage 4 from stage 1-3

disease with an AUC of 0.87 and sensitivity, specificity of 74% and

87% respectively (71). Li et al. (72) performed a genome-wide

cfDNA methylation profiling study utilizing immunoprecipitation

with high-throughput sequencing and found a total of eight

biomarkers that achieved a sensitivity and specificity of 97.1%

and 98.0%, respectively, in the training cohort and 93.2% and

95.2% in the validation cohort. Majumder et al. (73) identified a

panel of 13 sets of methylated biomarkers that were individually

comparable to CA 19-9 and, when combined, performed superiorly

compared to either with an AUC of 0.90 (p<0.05). Miller (74)

assessed the utility of hypermethylation of the CpG island of

ZNF154 as a diagnostic biomarker for multiple cancers, including

colon, liver, ovarian, and pancreatic cancer patients. They collected

2711 peripheral blood samples and found that ZNF154 cfDNA

methylation outperformed KRAS mutation with an AUC of 0.85

compared to 0.67 for KRAS and were particularly helpful in the

diagnosis of early-stage disease (AUC=0.87). Wu et al. (75)

developed a targeted methylation sequencing assay called

PDACatch utilizing 546 plasma samples from 232 PDAC, 323

healthy controls and 25 patients with CP. Using a 56-marker

classifier, they found that this panel differentiated PDAC from

healthy controls (HC) and CP with an AUC of 0.91. Importantly, it

detected CA19-9 negative PDAC at sensitivities of 75% and 100% in

the validation and independent tests, respectively. Utilizing a

combination of PDACatch and CA19-9 outperformed either with

an AUC of 0.94 (p<0.001). Recently, Zhao et al. (76) identified a six-

methylation marker based on liquid biopsy utilizing samples from

262 patients with PDAC and 212 HC and found that the panel

achieved high sensitivity and specificity with 88.7% sensitivity for all

cases of PDAC and 78% for stage 1 patients. The panel also had a

high specificity of 96.8%. Combining the panel with CA19-9

improved the performance further, with a sensitivity of 95.7%

and 95.5% for overall cases and stage 1 patients and a specificity

of 96.8%. Kim et al. (77) assessed a 7-panel epigenetic biomarker

panel developed from 46 patients with PDAC who underwent

surgical resection in combination with KRAS and found that the

panel showed a sensitivity of 90% and 95% specificity with an

overall 93.3% accuracy in discriminating PDAC, which was

comparable to 90% showed with CA19-9 and CEA. Hartwig et al.

(78) utilized NGS followed by enrichment using methyl-binding

domains to compare 25 cases each of PDAC, pancreatitis, controls

and seven cases of IPMN and identified a 50 biomarker-based

discriminatory panel that showed an AUC of 0.85 and 0.88,

respectively, for the training and validation cohort and was also

able to distinguish high grade from low-grade IPMN.

Epigenetic biomarkers have also shown great utility in assessing

the prognosis of patients with PDAC. Garcia-Ortiz et al. (79)

analyzed plasma samples from 44 patients with metastatic PDAC

and found that NPTX2 methylation levels at diagnosis were

associated with poor prognosis and a cut-off of 6.06% were
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TABLE 2 Table showing the latest developments in diagnosis, prognosis, and treatment response prediction of PDAC using DNA
methylation biomarkers.

Authors Year Target Method used Results

Diagnostic biomarker

Henriksen et al. (70) 2016
28 gene panel based on
promoter hypermethylation Methylation-specific PCR

The diagnostic prediction model showed an AUC of 0.86 in
distinguishing PDAC from control with sensitivity of 76% and specificity
of 83% respectively

Li et al. (72) 2020

8 biomarker panel(TRIM73,
FAM150A, EPB41L3, SIX3,
MIR663, MAPT,
LOC100128977,
and LOC100130148)

Methylated DNA
immmunoprecipitation
coupled with high-
throughput sequencing
(MeDIP-seq)

The final prediction model achieved a sensitivity of 97.1% and a
specificity of 98.0% on the training cohort, the sensitivity and specificity
of the validating cohort was 93.2 and 95.2%, respectively

Majumder et al. (73) 2021
13-methylated DNA
marker panel

Target enrichment long-
probe quantitative
amplified signal method

Test set showed an AUC of 0.84 for biomarker panel alone, 0.87 for
CA19-9, and 0.90 for the combined panel. The combined panel was
significantly better compared to either(p=0.0382, p=0.0490, respectively).

Miller et al. (74) 2021 ZNF154 methylation DREAMing analysis
ZNF154 methylation performed better than KRAS with an AUC of 0.85
compared to 0.67 for KRAS.

Wu et al. (75) 2022
56 DNA-methylation based
biomarker panel

Reduced representation
bisulfite
sequencing (RRBS)

The panel achieved an AUC of 0.91 in the validation(sensitivity=84%,
specificity=89%) and independent cohort(sensitivity=82%,
specificity=88%). The combination of PDACatch and CA 19-9 had an
AUC=0.94, which was better than either PDACatch or CA19-9
alone(p<0.001).

Zhao et al. (76) 2024

6 methylation marker panel
(KCNA3, PRRX, CCNA1,
TRIM58, NR2F1-AS1)

Targeted bisulfite
sequencing panel

Diagnostic model with sex methylation markers achieved a sensitivity of
88.7% and specificity of 96.8%. Combining with CA19-9 improved the
sensitivity to 95.7% and decreased the specificity to 93.3%.

Kim et al. (77) 2024

7 epigenetic biomarker panel
(HOXA9, TWIST, WT1,
RPRM, BMP3, NPTX2,
BNC1) with KRAS

Bisulfite-free real-
time PCR

Plasma cfDNA analyzed using 7-panel biomarker and KRAS exhibited a
sensitivity of 90% and specificity of 95% respectively.

Hartwig et al. (78) 2024
50 methylation biomarker
based discriminatory panel

Panel distinguished pancreatobiliary cancers from pancreatitis with an
AUC of 0.85 and 0.88 in the training(n=45) and validation(n=37)
cohorts respectively

Prognostic biomarker

Heinreksen
et al. (71) 2017

28 gene panel based on
promoter hypermethylation Methylation-specific PCR

The prediction model enabled the differentiation of stage I-II from stage
III-IV disease (AUC of 0.82 (cut point 0.66; sensitivity 73%,
specificity 80%))

Pietrasz et al. (81) 2021 HOXD8, POU4F1 ddPCR

ctDNA was confirmed as an independent prognostic marker for PFS
(adjusted hazard ratio (HR) 1.5, CI 95% [1.03-2.18], p = 0.034) and OS
(HR 1.62, CI 95% [1.05-2.5], p = 0.029).

Stubbe et al. (82) 2021 hypermethylated SFRP1
deamination followed
by PCR

Patients with hypermethylated SFRP1 had a shorter median OS than
unmethylated patients(3.2 vs 6.3 months)

Garcia-Ortiz
et al. (79) 2023 NPTX2 methylation ddPCR

Higher circulating NPTX2 methylation levels at diagnosis were associated
with poor prognosis and efficiently stratified patients for prediction of
overall survival (6.06% cut-off, p = 0.0067)

Koukaki et al. (80) 2024 BRCA1,2 methylation Methylation-specific PCR

BRCA 1 and 2 methylated status in operable pancreatic cancer had a
poorer outcome than non-methylated one (p=0.012,
p=0.001, respectively).

Treatment response prediction

Stubbe et al. (82) 2021 hypermethylated SFRP1
deamination followed
by PCR

Gemcitabine-treated patients with hypermethylated SFRP1 had a shorter
median overall survival (mOS) (4.4 months) than unmethylated patients
(11.6 months).
F
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ddPCR, Digital droplet Polymerase Chain Reaction; mOS, Median overall survival; PFS, Progression-free survival; AUC, Area under curve; ctDNA, Circulating tumor DNA; cfDNA, Circulating-
free DNA.
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significant in stratifying patients(p=0.0067) into low-risk (OS-410

days) versus high-risk (OS-187 days). Koukaki et al. (80) tested the

applicability of BRCA1 and 2 methylation status in cfDNA as a

prognostic biomarker in 55 patients with operable and 50 patients

with metastatic pancreatic cancer. They found that in patients with

operable pancreatic cancer, a methylated BRCA1 and 2 promoter

status conferred a poorer outcome than a non-methylated one

(p=0.012, p=0.001, respectively). One of the most important studies

in this regard was done by Pietrasz et al. (81) when they

prospectively collected 372 plasma samples based on 354 patients

targeting two methylated markers (HOXD8 and POU4F1) and

found that ctDNA positive for them was an independent

prognostic biomarker for PFS (adjusted HR=1.5(1.03-2.18)) and

OS(HR=1.62(1.05-2.5)).

While a number of studies have studied potentially useful

diagnostic and prognostic biomarkers in DNA methylation for

PDAC, a biomarker that can assist with treatment response

prediction remains elusive. One such study was performed by

Stubbe et al. (82) who exploited secreted frizzled-related protein 1

(SFRP1) hypermethylation as an independent prognostic

biomarker for survival and gemcitabine effectiveness in patients

with stage 4 PDAC. In a cohort of 40 patients, Stubbe found that

hypermethylated SFRP1 was associated with a shorted median OS

compared to unmethylated patients (3.2 vs 6.3 months, adjusted

HR-3.53(1.85-6.74)). Furthermore, they found that gemcitabine-

treated patients with hypermethylated SFRP1 had a shorter median

OS of 4.4 months vs 11.6 months in unmethylated patients, thereby

predicting response to gemcitabine (HR-3.48(1.39-8.70)). DNA

methylation biomarkers represent an interesting prospect that

holds great relevance and may become an important part of

clinical practice in the following years.
Circulating tumor cells

CTCs are tumor cells that have separated from the primary

tumor and are carried by the bloodstream or the lymphatic system

(83). They were first described by Ashworth who had noticed that

some cells in the blood of metastatic cancer resembled tumor cells

in the primary tumors (84). Although CTCs derive their origin from

primary tumours, they behave differently in some ways. The most

important feature that distinguishes them from the primary tumour

is the epithelial-mesenchymal transformation (EMT) properties

that facilitate them to break from the primary tumour, intravasate

into the bloodstream, disseminate in clusters of CTC that increase

their ability to metastasize and demonstrate stem-cell-like

properties (85). Studies have shown the existence of CTC even in

the early stages of tumor evolution (86). Due to the EMT property

of these cells, it is essential to detect tumor cells not only with

epithelial markers available at the origin but also to include

mesenchymal markers that improve the sensitivity of their assays.

CTC monitoring essentially acts as a monitor for genomic

instability and provides additional information with regard to

tumor resistance and metastases, serving as a tool for treatment

response and precision medicine (83). Molecular and pathological
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concordance of CTC with the primary tumor has been a topic of

debate, with numerous studies showing mixed results.

Traditionally, CTCs were analyzed using FISH and flow

cytometry (87). With the advances in molecular biology over the

last decade and the advent of single-cell sequencing, it has become

possible to conduct extensive genomic, transcriptomic, proteomic

and DNA methylation analysis that has broadened our horizon and

expanded the utility of CTC. Essentially, CTC technologies can be

based on three principles-1) capture and enrichment, 2) detection

and identification, and 3) release (88). Capture and enrichment

involves interaction between CTC and materials either through

physical interactions or antigen-antibody interactions. The second

method involves the utilization of ultrasensitive techniques for

small quantities of CTC through fluorescence microscopy,

spectrophotometry, flow cytometry, electrical impedance, and

Raman scattering (88). Released CTC finds utility in genomic,

transcriptomic, proteomic analysis and CTC culture. Capture and

enrichment based on physical properties often suffer from severe

shortcomings, including being inefficient, impure, and lacking

specificity. The only advantage is the decreased cost (89).

Antigen-antibody-based capture and enrichment utilize EpCAM

and vimentin to enrich CTC and negatively enrich CD45 to remove

leucocytes (90). This technique has been widely utilized with the

CellSearch system based on a similar principle (91). The problem

with this system is that CTC are heterogenous with variable

EpCAM expression that might lead to inaccurate results (92).

New technologies for CTC analysis include nanotechnology-based

techniques and microfluidic-based techniques (93, 94). These two

techniques transcend the limitations posed by the earlier two

techniques but have their own shortcomings. Microfluidic-based

cell sorting has not been widely adopted because of the long set-up

time, high initial cost, bulky instrumentation, and limited ability to

perform single-cell molecular analysis (93). Nanotechnology-based

techniques are cost-effective and simple. However, nanoparticle

probes’ aggregation and binding can affect the results’ reliability and

reproducibility (94).

Numerous studies have explored the role of CTC in PDAC

diagnosis, prognosis and treatment prediction. Table 3 highlighting

the studies assessing the diagnostic, prognostic and treatment

response prediction properties of CTC has been given below

Earl et al. (95) simultaneously explored the role of CTC and

KRAS mutant cfDNA in blood and found that the presence of CTC

correlated significantly with OS, 88 days for CTC positive versus

393 days for CTC negative, although they were only detected in 20%

of patients. Liu et al. (96) employed FISH to assess the subtype of

CTC with chromosome 8 centromere probe in 143 blood samples

from PDAC patients and healthy controls and found that both the

subtype and total CTC were significantly increased in PDAC

patients compared to healthy controls. Total CTC number had

75.8% sensitivity and 68.7% specificity at a cutoff value of 2 cells. 2

CTC subtypes as a cutoff showed a sensitivity of 53.7% and

specificity of 85.4%. Javed et al. (97) used transitional CTC to

assess recurrence risk one year postoperatively and found that

positive transitional CTC was associated with a higher rate of late

recurrence (HR=4.7(1.2-18.3)). One-year CTC positivity was
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TABLE 3 Table showing the latest developments in diagnosis, prognosis, and treatment response prediction of PDAC using CTC biomarkers.

Authors Year Target Method used Results

Diagnostic biomarker

Liu et al. (96) 2017

Chromosome 8
centromere
(CEP8) probe FISH

Total CTC number had 75.8% sensitivity and 68.7% specificity at a cutoff
value of 2. Sensitivity was 53.7% and specificity was 85.4% at a cutoff point
of 2 CTC subtypes cells/3.2 mL.

Zhu et al. (106) 2024
Portal venous CTC and
peripheral CTC Microfluidic biopsy

A combination of peripheral and portal CTC data along with CA19-9 results
showed to greatly improve the average accuracy of CA19-9-negative PDAC
patients from 47.1% with regular CA19-9 tests up to 87.1%.

Prognostic biomarker

Earl et al. (95) 2015 CTC
CellSearch with CD45-
positive cell depletion

CTC detected by CellSearch correlated significantly with OS, 88 days (27-
206) for CTC positive samples versus 393 days (284-501) for CTC negative
samples. CTC was detected in only 20% of patients, majority of which had
metastatic disease.

Okubo et al. (103) 2017 CTC CellSearch
CTC positivity was associated with a significantly lower OS even after
treatments(p=0.045).

Court et al. (102) 2018 CTC
Microfluidic
NanoVelcro assay

CTC count correlated with increasing stage (r=0.42, p<0.001). Patient with
occult metastatic disease had significantly more CTC than patients with
local disease (7 vs 1 CTC, p<0.0001). A cutoff of 3 or more CTC/4mL
identified patients with occult metastatic disease preoperatively (AUC 0.82
(0.76-0.98)).

Padillo-Ruiz
et al. (107) 2021

CTC-portal vs
central venous Immunocytochemistry

Patients with fewer than 185 CTC in portal vein exhibited a longer OS than
patients with more than 185 CTC (24.5 vs. 10.0 months; p = 0.018).
Similarly, patients with fewer than 15 clusters in portal vein showed a longer
OS than patients with more than 15 clusters (19 vs. 10 months; p = 0.004).

Zhao et al. (100) 2021
mesenchymal CTC,
hENT-1

CD45 negative
enrichment method

Mesenchymal CTC percentage could differentiate locoregional with
metastatic disease (0.2 vs 0.345, p=0.0244). It was also an independent
prognostic indicator of recurrence-free survival in resected patients
(p=0.001). hENT-1 expression in CTC was independent prognostic factor
for RFS (p=0.016).

Song et al. (99) 2021 EpCAM, Plectin-1
CellCelector, Whole
genome amplification

Patients with detectable EpCAM+ CTC less than one in peripheral blood
showed longer overall survival (OS) compared to patients with detectable
CTCs more than one (35.5 months vs. 16.0 months).

Xing et al. (104) 2021

CD44+ circulating
tumor endothelial
cells(CTEC)

Integrated subtraction
enrichment and
immunostaining-
fluorescence in situ
hybridization (SE-iFISH)

Preoperative CD44+ CTEC was significantly higher in patients with early
tumor recurrence(p=0.023)

Cheng et al. (105) 2022 FR+CTC Ligand-targeted PCR

In the surgical group, median disease-free survival (DFS) for patients with
high CTC levels versus low CTC levels (< 14.49 FU/3 ml) was 8.0 versus
26.0 months (P = 0.008).

Nitschke et al. (101) 2022 RARRES1

Microfluidic approach with
stable isotope labelling of
amino acids in cell culture

CTC positivity (≥3 CTC) at follow up period was significantly associated
with short recurrence-free survival (p = 0.002). Furthermore, detection of
RARRES1 positive CTCs was indicative of an even earlier relapse after
surgery (p = 0.001).

Javed et al. (97) 2022 transitional CTC Immunofluoroscent staining
Multivariate analysis demostrated that transitional CTC positivity was
associated with higher risk of late recurrence (HR:4.7(1.2-18.3))

Javed et al. (98) 2023 transitional CTC Immunofluoroscent staining

Postoperative transitional CTC were associated with poorer RFS, both in
patients with a delay in initiation (12.4 vs 17.9 months, P =0.004) or no
administration of adjuvant chemotherapy (3.4 vs not reached, p =0.016).

Treatment response prediction

Wang et al. (110) 2021 EpCAM positive CTC

Immunomagnetic
microspheres
and immunofluoroscence

CTC-positive patients with advanced PDAC also had shorter progression-
free survival (PFS) after chemotherapy with gemcitabine (P=0.01).

(Continued)
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associated with a higher rate of recurrence during the second year

(OR=13.1(1.6-1953.4)). The same group later also studied the use of

transitional CTC to study patients who had a delay in adjuvant

therapy by greater than 8 weeks and found that the presence of

transitional CTC was associated with a poorer relapse-free survival

both in patients with a delay in initiation(p=0.004) as well as no

receipt of adjuvant chemotherapy(p=0.016) (98). Song et al. (99)

found that postoperative patients with detectable EpCAM-positive

CTC of less than one in peripheral blood showed a longer overall

survival (35.5 months vs 16.0 months). Zhao et al. (100)

differentiated CTC into subtypes based on mesenchymal and

human equilibrate nucleoside transporter-1(hENT-1) and found

that mesenchymal CTC was detected in 81% of patients and it could

differentiate locoregional disease from metastatic disease based on a

percentage (p=0.0244). It was also an independent prognostic

indicator of recurrence-free survival in resected patients(p=0.001).

Nitschke et al. (101) employed RARRES1 expression in CTC using

the technique of stable isotope labelling of amino acids in cell

culture (SILAC) and concluded that CTC detection on follow-up

was significantly associated with short recurrence-free survival

(p=0.002), and presence of RARRES1 expression was indicative of

an even earlier relapse after surgery(p=0.001). CTC used

preoperatively has also been found to have significant

implications on prognosis. Court et al. (102) preoperatively

assessed CTC in 100 PDAC patients and found that a cut-off of 3

or more CTC in 4 mL correctly identified occult metastatic disease

preoperatively (AUC-0.82(0.76-0.98)). Okubo et al. (103) assessed

the use of CTC in 65 patients with advanced PDAC (borderline/

unresectable) and found that the overall survival rate was

significantly lower in patients with positive CTC (p=0.045). This

confidence was accentuated further in borderline patients with CTC

positivity(p=0.0051). It also served as an independent prognostic

factor. Preoperative CD44+ circulating tumor endothelial cells
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(CTEC) have also been found to be significantly associated with

early tumor recurrence (DFS<6 months, p=0.023), as demonstrated

by Xing et al. (104). Similarly, folate receptor-positive CTCs have

been studied by Cheng et al. (105) who found that there was a

significantly decreased median disease-free survival (DFS) for

patients with high CTC levels (8 vs 26 months, p=0.008). An area

of great interest recently has been the isolation of CTC from portal

venous samples, considering the greater proportion of CTC

detected closer to the source. Zhu et al. (106) combined

peripheral and portal venous CTC with CA 19-9 and found that

this combined biomarker panel could improve the accuracy of

CA19-9 negative PDAC from 47.1% to 87.1%. Furthermore, portal

venous blood samples were found to have twice the number of CTC

as peripheral blood (21.4 cells vs 10.9 cells per 5 mL). Padillo-Ruiz

et al. (107) also explored this concept by comparing CTC in portal

venous blood with a central venous catheter (CVC) and found that

while there was no significant correlation observed in CVC

analyses, there was a significantly increased OS in patients with

less than 185 CTC (24.5 vs 10.0 months, p=0.018) for a sample

drawn from the portal vein.

Further studies are required to explore the role of CTC in

treatment response prediction in PDAC. One study was conducted

by Freed et al. (108) when they assessed the response of PDAC

patients on Poly ADP-ribose polymerase inhibitor (PARPi) therapy

using a mesenchymal-epithelial CTC ratio(phi). They found that

phi(p=0.0093) could differentiate responders and non-responders

with higher confidence than CA 19-9(p=0.033). Further, for CA 19-

9 non-producers, phi correctly predicted the outcome in 72% of

PDAC patients. Yu et al. (109) utilized a chemosensitivity assay to

determine an effective regimen based on FOLFOX and gemcitabine-

paclitaxel regimen and found that the assay was able to predict an

effective regimen with significantly longer PFS (7.8 months vs 4.2

months, HR=0.35, p=0.0002) and overall survival (21 months vs 9.7
TABLE 3 Continued

Authors Year Target Method used Results

Treatment response prediction

Yu et al. (109) 2022

Gene expression
templates for seven
chemotherapeutic agents

Collagen adhesion
matrix, qPCR

Patients receiving an effective regimen as predicted by the ChemoSensitivity
Assay experienced significantly longer mPFS (7.8 months v 4.2 months, HR
= 0.35, p = 0.0002) and mOS (21.0 months v 9.7 months, HR = 0.40, p =
0.005), compared with an ineffective regimen.

Lee et al. (111) 2023
CD45,
EpCAM, vimentin

Microfabricated filter-based
enrichment system followed
by
immunofluoroscent staining

Total CTC count and vimentin-positive CTC was significantly associated
with treatment response during chemotherapy(p=0.024 and
0.017 respectively)

Freed et al. (108) 2023 anti-EpCAM, anti-FAPa Microfluidic approach

PDAC receiving poly ADP-ribose polymerase inhibitor(PARPi) were
evaluated for CTC. Numerical ratio of the number of mesenchymal to
epithelial ratio (phi) was used as an indicator of therapy. A decreasing value
of phi during treatment was indicative of tumor response to the PARPi.
Distinguishing responders from non-responders occured with higher
confidence using phi(p=0.0093) compared to CA19-9(p=0.033)
CTC, Circulating tumor cells; PARPi, Poly-ADP ribose polymerase inhibitor; CD45, Cluster of differentiation 45; EpCAM, Epithelial cell adhesion molecule; qPCR, Quantitative-polymerase
chain reaction; mPFS, Median progression-free survival; mOS, Median overall survival; HR, Hazard ratio; RFS, Relapse-free survival; DFS, Disease-free survival; CTEC, Circulating tumor
endothelial cells; FISH, Fluoroscent in-situ hybridization; CEP8, Chromosome 8 centromere.
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months, HR=0.40, p=0.005). Gemcitabine resistance was also

studied by Wang et al. (110), who found that CTC-positive

patients with advanced PDAC had a shorter PFS after

chemotherapy with gemcitabine, which was indicative of

treatment resistance(p=0.01). Lee et al. (111) also studied the

treatment response prediction ability of CTC and found that CTC

count and subtype CTC vimentin positive significantly correlated

with treatment response during chemotherapy (p=0.024, p=0.017).

Research on CTC has been remarkable and shows great promise in

clinical application of PDAC.
RNA biomarkers

The first instance of circulating free nucleic acids dates back to

1970s when they were isolated from the blood of cancer patients

(112). It was initially hypothesized that these circulating free RNAs

came from cancer cells. Later, as more research was done the origins

of the circulating RNAs were attributed to necrosis and apoptosis of

cancer cells and also thought to be actively secreted by the tumors in

extracellular vesicles (113). During apoptosis, DNA, RNA, protein,

and cellular organelles are packaged in the form of apoptotic bodies

and released into circulation. Apoptotic bodies are a component of

extracellular membrane vesicles (EMV), which play an important

role in phagocytosis and the horizontal transfer of genes (114, 115).

The other two parts of EMV include exosomes and microvesicles.

Exosomes represent the smallest EMV actively secreted, while

microvesicles are produced as a budding of the plasma

membrane. Both of them play an important role in intracellular

communication (114, 115). Kopreski et al. detected the first

extracellular human mRNA in the blood of melanoma patients

(116). Following this, multiple other studies found other forms of

RNA in the serum or blood (117). RNA are relatively unstable

molecules theoretically susceptible to degradation by the abundant

ribonucleases in the blood. This is overcome by packaging RNA

along with lipids and proteins in the form of vesicles to transport

them outside the cell and protect it from outside degradation. The

free RNA released into the circulation can be divided into coding

RNA and non-coding RNA. Coding RNAs include messenger RNA

(mRNA). mRNA are the protein-coding regions that contain the

information produced from DNA transcription, which then

undergo multiple processes, including 5 methyl capping, splicing,

and 3 polyadenylation to produce refined mRNA finally. Analyzing

cell-free circulating mRNA can prove an important cancer

biomarker tool. Analysis of circulating mRNA provides the

benefit of analysis of alternate and splicing variants through

which epigenetic transcriptional regulation can be revealed.

Human telomerase reverse transcriptase (hTERT) mRNA has

been studied in multiple cancers. Telomerase activity and length

correlates with cellular senescence (118). hTERT mRNA is

upregulated in multiple cancers, including breast cancer,

hepatocellular cancer, gastric cancer, and prostate cancer (118).

Another notable mRNA that has been extensively studied includes
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epidermal growth, receptor (EGFR) which is overexpressed in the

peripheral blood of patients with pancreatic, non-small cell lung,

colon cancer and can be detected using RT-PCR (119, 120).

Unfortunately, mRNA molecules typically tend to be between 300

and 4000 base pair in size and due to the long size along with the

presence of high RNA activity in the blood, these mRNA molecules

are subject to fregmentation, causing significant challenges in

identifying biomarkers that have clinical utility. As a result, no

reliable mRNA biomarkers have been found to date (121). On the

other hand, noncoding RNA (ncRNA) has caused significant

excitement in biomarker development. This includes transfer

RNA(tRNA), ribosomal RNA(rRNA), micro RNA(miRNA), small

interfering RNA(siRNA), piwi-interacting RNA(piRNA), small

nuclear RNA(snRNA), small nucleolar RNA(snoRNA), YRNA,

circular RNA, pseudogene RNA, and telomerase RNA (122).

These ncRNAs vary based on size and function. The size ranges

between 18-200 nucleotides long. tRNA and rRNA constitute the

housekeeping non-coding RNA (ncRNA). On the other hand,

regulatory ncRNA includes miRNA, snRNA and piRNA. The

small ncRNA is involved in gene regulation, RNA interference,

and spliceosome modification (123). Among these short ncRNA,

miRNA have been the most extensively studied for biomarker

development for different diseases. These miRNAs are around 20-

25 nucleotide long oligonucleotides and have notably been

associated with post-transcriptional silencing and expression of

genes associated with mRNA (122). They also play an important

role in cross-communication between cancer and dendritic cells

(124). Besides these functions, they are vital in cell growth,

maturation, prognosis, and proliferation, and their dysregulation

can cause increased expression of oncogenes present downstream

and facilitate cancer development (125). Multiple miRNA targets

have also been found to predict the prognosis of malignancy (126).

Another extensively studied RNA includes long noncoding

RNA (lnc RNA), which includes circular RNA, pseudogene RNA,

and telomerase RNA, ranging from size 400 bp to 4kbp in length.

These lncRNA are derived from exosomes and play an important

role in metastasis, therapy resistance, angiogenesis, and tumor

growth. They have also been known to modify tumor

microenvironment, which facilitates cancer development and

progression (127). An extensively studied field in lncRNAs

include circular RNAs (circRNA). The circRNAs are produced by

back splicing, unlike the usual linear RNA slicing process (128).

They are considered as co-transcriptional products. Earlier, it was

thought that the circRNAs have no role in eukaryotic gene

expression. In the last couple of years, the role of circRNAs has

been explained in greater detail. Major circRNA biogenesis is

mediated by epithelial-mesenchymal transition (EMT) (129). It

has also been found to act as miRNA and as latent competitive

endogenous RNA molecules that compete with miRNA binding

sites (130). circRNAs also consist of both intronic and exonic

circRNA. Intronic circRNA can affect inheritance and epigenetics

in the cytoplasm. Exonic circRNA can interact with miRNA and

mediate miRNA function (129).
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The most commonly employed methods for detecting

circulating miRNA include quantitative Real-Time PCR (qRT-

PCR), hybridization-based technology (Microarray), and high-

throughput sequencing (NGS). Out of these three, qRT-PCR is

the most widely adopted, largely related to its simple nature,

allowing easy use and cost-efficient nature (131). Microarray and

NGS, on the other hand, allow a large number of parallel analyses

and are useful for genome-wide circulating miRNA profiling and

high-throughput detection of circulating miRNA in body fluids.

Microarrays are also quite flexible and can be tailored according to

needs with a relatively straightforward concept and cheaper cost

than NGS (132). The limitations with microarray are the large

number of RNA samples needed and the technical variations in

additional experimental steps that can affect external validity. As

such, it tends to have a lower specificity than qRT-PCR and NGS.

NGS is the most promising tool for high-throughput analysis.

While qRT-PCR and microarray can only profile known miRNA,

NGS quantifies a variety of small RNAs (including unknown ones)

with a wide array (133). Deep sequencing facilitates the

identification of mutations in miRNA. The high cost and the

need for extensive computat ional infrastructure and

bioinformatics support limit its universal adoption (134).

Most of the study surrounding RNA biomarkers in PDAC has

been focused on miRNA and lnc RNA. Table 4 below highlights all

the developments in the field of RNA biomarkers in the past few

years. One of the largest studies attempted to study the diagnostic

value of circulating miRNA in PDAC. It looked at 409 patients with

PDAC, 25 patients with chronic pancreatitis and 312 healthy

participants. A diagnostic index was developed based on miR–

145, 150, 223, and 636. The sensitivity and specificity of the

diagnostic miRNA panel combined with CA 19–9 was compared

with CA 19–9 alone and found to have significantly increased AUC

when compared to CA 19–9 alone (AUC 0.93 vs 0.89) (135). Since

then, numerous studies have been conducted over the last decade to

find out more potential RNA diagnostic and prognostic biomarkers

in PDAC. Kim et al. (136) studied 55 patient samples and analyzed

genome-wide expression of serum miRNA in PDAC and biliary

tract cancer to identify novel biomarker candidates using

sequencing techniques. Three of the highest performing miRNA

(miR-744-5p, 409–3p, 128–3p) could distinguish cancer patients

from controls with a diagnostic accuracy of 92.7%. An earlier study

using miRNA and PDAC was done by Abue et al. (137), who

checked the expression of miR-483-3p, and 21 in PDAC. They

found that the mean plasma miR-483-3p and 21 were significantly

higher in PDAC compared to IPMN and healthy controls. They also

found that the presence of miR-21 was associated with lymph node

and liver metastasis, suggesting advanced disease. This paved the

way for future studies using miRNA biomarkers in PDAC

clinical investigations.

Another study conducted by Kim et al. (138) captured

extracellular vesicles using magnetic beads and identified 5

miRNAs, including miR–10b, 16, 155, 429, and 1290 markedly

elevated in PDAC. When combined with CA 19–9, the diagnostic
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panel reported a sensitivity of 100%, specificity of 80% and an AUC

of 0.964. The biggest challenge in PDAC has been the ability to

differentiate chronic pancreatitis from PDAC. Lai et al. (139) used

miRNA signature and exosomal glypican to find a panel which can

distinguish chronic pancreatitis from PDAC. They found that

exosomal miRNA (high exosomal miR-10b, -21, -30c, -181a, low

miR-let7a) was superior to exosomal glypican and CA19-9 in

differentiating PDAC from chronic pancreatitis. Jin et al. (140)

described another interesting study in which they did small RNA

sequencing of 30 patients with PDAC and 30 healthy controls and

found that more variations were detected among tRNA-derived

small RNA (tsRNA) than miRNA. They used this finding to validate

findings in 24 separated PDAC patients and healthy controls using

the most significantly variable tsRNA and found two potential

candidate tsRNA(tRF-Pro-AGG-004, tRF-Leu-CAG-002) with an

AUC=0.88 in differentiating PDAC from healthy controls.

A substantial effort has also been made to explore the role of

lncRNA in PDAC. Zhang et al. (141) studied the expression levels of

six lncRNA in serum and tissues of patients with PDAC

(LINC00346, LINC00578, LINC00673, LINC00671, LINC00261,

and SNHG9). LINC00346, LINC00578, and LINC00673 were

highly expressed, whereas LINC00671, LINC00261, and SNHG9

were expressed at lower levels when compared with healthy

controls. Their expression levels also correlated with the clinical

stage of the disease. Besides, those with higher and lower expression

levels of the corresponding lncRNA also had a significantly lower

OS. Yu et al. (142) explored another avenue when they conducted a

case-control study with 501 participants (284 with PDAC, 100 with

chronic pancreatitis (CP), and 117 healthy subjects). They

performed an EV long RNA sequencing (evLR) and utilized a

machine learning algorithm to develop a diagnostic signature of

eight unique evLR(FGA, KRT19, HIST1H2BK, ITIH2, MARCH2,

CLDN1, MAL2 and TIMP1). This panel of evLR showed a high

diagnostic accuracy of distinguishing PDAC from healthy controls

with an AUC of 0.960, 0.950 and 0.936 in the training, internal

validation and external validation cohort, respectively. The

signature also performed well in distinguishing early (stage 1 and

2) PDAC with an AUC of 0.949. When compared with CA19-9 in

distinguishing PDAC from CP, the signature was significantly

superior (AUC= 0.931 vs 0.873, p=0.028).

Research in this area needs to focus more on utilizing RNA

biomarkers for treatment response prediction. Chen et al. (143)

utilized serum miR-451 as a tool for treatment response. They

found that miR-451 decreased to nearly undetectable levels after

resection and treatment. After treatment, miR-451 also proved

valuable as a surveillance tool to detect recurrence. A rebound

increase in miR-451 during the surveillance period highly correlated

with recurrence, while levels of patients in remission did not change

considerably. miR-451 could also be used as a diagnostic biomarker

and showed an AUC of 0.896 and 0.855 in distinguishing PDAC

from healthy controls and benign pancreatic diseases, respectively.

RNA biomarkers can be a game-changer in the management of

PDAC. The challenges hindering the translation of miRNA and
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TABLE 4 Table showing the latest developments in diagnosis, prognosis, and treatment response prediction of PDAC using RNA biomarkers.

Authors Year Target Method used Results

Diagnostic biomarkers

Abue et al. (137) 2014 miR-483-3p,-21 RT-PCR Mean plasma miR-483-3p significantly higher in PDAC patients
compared to IPMN and HC.(AUC=0.754). Mean plasma miR-21
significantly higher compared to IPMN and HC. Plasma miR-21
was also higher in IPMN compared to HC.(AUC=0.790)

Lai et al. (139) 2017 GPC-1, miR-10b,-21,
-30c,-106b,-181a,
-483,-20,-let7a, and
-122a

RT-qPCR High exosomal miR-10b, -21, -30c, -181a,and low-let7a
differentiated PDAC from HC and CP.

Jin et al. (140) 2021 tRF-Pro-AGG-004,
-tRF-Leu-CAG-002

qRT-PCR AUC using the two tsRNA showed an AUC of 0.88 in
differentiating PDAC compared to HC

Zhang et al. (141) 2018 LINC00346,00673,
00671,00261,00578,
SNHG9

qRT-PCR LINC00346, 00578, 00673 were highly expressed while
LINC00671, 00261, SNHG9 were lowly expressed in serum with
AUC0.7073, 0.7837,0.6093, 0.6057, 0.5712, 0.5983 respectively.

Yu et al. (142) 2020 FGA,KRT19,
HIST1H2BK,
JTIH2,MARCH2,
CLDN1,MAL2,TIMP1

RNA sequencing The d-signature showed high accuracy with AUC 0.950 and
0.936 in the internal and external validation cohort compared
to HC and CP. It was superior compared to CA19-9 in comparing
PDAC vs CP (AUC=0.931 vs 0.873)

Reese et al. (144) 2020 miR-200b,-200c qRT-PCR Combining miR-200b, -200c with CA19-9 from serum exosome
and EpCAM-positive exosome increased the accuracy to 97%
with a sensitivity of 0.92 and specificity of 1.

Kim et al. (138) 2021 miR-10b,-16,-155,
-429,-1290

qRT-PCR A combination panel of miR-10b,-155,-429,-1290 along with
CA19-9 had the highest sensitivity for diagnosis (AUC-0.964,
sens-100, specificity-80%)

Guo et al. (145) 2021 miR-95-3p,-26b-5p RNA sequencing Ratio of miR-95-3p divided by miR-26b-5p in combination with
CA19-9 had a sensitivity of 96. 5% and specificity of 96.4%.

Liu et al. (146) 2012 miR-16,-196a real-time PCR A combination of CA 19-9 with miR-16,-196ahad an AUC of
0.979 for discriminating PDAC from non-PDAC with a sensitivity
of 92% and specificity of 95.6%.

Li et al. (147) 2013 miR-1290 real-time PCR miR-1290 yielded an AUC of 0.96 for PDAC compared to HC
with a sensitivity of 88% and specificity of 84%

Wei et al. (148) 2020 miR-1290,-1246 qRT-PCR Combining miR-1290,-1246 with CA 19-9 had an AUC of 0.99
with sensitivity 96.7%and specificity of 97.5% against HC.

Qu et al. (149) 2017 miR-21-5p qRT-PCR Circulating miR-21-5p showed an AUC 0.78 compared to HC
with sensitivity of 0.77 and specificity of 0.80.

Wang et al. (150) 2020 miR-133a qRT-PCR miR-133a demonstrated an AUC of 0.893 with a sensitivity of
90.6% and specificity of 87.2%.

Nakamura et al. (151) 2022 13 marker(5
circulating and 8
exosomoal microRNA)

qRT-PCR The 13 marker microRNA panel showed an AUC=0.93 in the
validation cohort for distinguishing PDAC from HC. The AUC was
same for early-stage PDAC. In combination with CA19-9, the
AUC increased to 0.99.

Yu et al. (152) 2020 miR-25 qRT-PCR miR-25 with CA19-9 had an AUC=0.985 for distinguishing PDAC
from HC with a sensitivity of 97.5% and specificity of 90.11%.

Chen et al. (143) 2022 miR-451a qRT-PCR Exosomal miR-451a showed an AUC of 0.896 and 0.855 for
distinguishing HC and benign pancreatic disease respectively.

Liu et al. (153) 2024 miR-200 qRT-PCR Combined expression of the miR-200 family showed an AUC of 0.823. In an
independent validation cohort, application of this model showed a
sensitivity, specificity and AUC of 100%, 88%, and 0.97 respectively, for
diagnosing PDAC.

He et al. (154) 2024 LINC01268, LINC02802,
AC124854.1,
and AL132657.1

Whole-
transcriptome
sequencing,
qRT-PCR

Exosomal LINC01268, LINC02802, AC124854.1, and AL132657.1 had an
AUC of 0.8421, 0.6544, 0.7190, and 0.6321 respectively and the AUC of the
four exosomal lncRNAs increased to 0.8476, with a sensitivity of 0.72 and
specificity of 0.89.

(Continued)
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lncRNA into clinical practice include primarily the associated cost

and technical expertise. Future research needs to focus on more

biomarkers to guide treatment decisions and find ways to

implement them in day-to-day clinical practice and lowering the

associated cost.
Protein biomarkers

Proteins dynamically interact with each other having numerous

intermolecular interactions and undergoing numerous

posttranslational modifications. Their roles in modulation of

molecular processes and pathways makes protein biomarkers

relevant in tumorigenesis and progression (155). Liquid biopsy

for proteins involves numerous technologies: Mass spectrometry

(MS), antibody/antigen arrays, aptamer-based assays, proximity

extension assays (PEA) and reverse phase protein arrays (RPPA)

(156). This is in addition to traditional techniques such as ELISA,

chemiluminescence and radioimmunoassay, which are cheaper and

usually have a single target (157). MS-based proteomics is widely

used these days in conjugation with liquid chromatography (LC) for

liquid biopsy screening (158).MS technology allows large-scale

untargeted proteomic and targeted analysis rapidly. Several

studies have focused on protein profiling using the matrix-

assisted laser desorption/ionisation time-of-flight (MALDI-TOF)

and surface-enhanced laser desorption/ionisation time-of-flight

(SELDI-TOF) (159, 160). MS, however, requires significant
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optimization and expertise and is often time-consuming. They

may also be affected by abundant proteins, and many strategies

have been implemented to deplete them, including ultrafiltration,

solid phase and organic solvent extraction, and serum or plasma

fractionation (161). While traditional ELISA is a singleplex assay,

many contemporary multiplex methods have been developed that

measure many target proteins over a wide range without the need

for any depletion. These assays are dependent on specific antibodies

or modified aptamers (162). Affinity-based protein profiling assays

depend on antibodies or aptamers that recognize specific epitopes,

without cross-reactivity to other proteins (162). There have been

relatively few studies examining the performance of these assays,

and it remains critical for proteomics-related liquid biopsy. While

excellent as an exploratory tool, the scalability, inter-assay variation

and costs of antibody/antigen arrays are often the rate-limiting steps

in designing a study pipeline. Aptamers are short single-stranded

DNA, RNA, or peptides that, upon folding into specific tertiary

structures, bind to cognate protein targets in native states with high

affinity and specificity (163). Aptamers have a higher affinity and

specificity than antibodies, and can be readily synthesized and

selected in vitro with low variation, allowing a cost-efficient way

to make it scalable (163). It is a topic of great scope although

aptamers available to the research communities are still limited

compared to antibodies. In PEA multiple antibody pairs for

proteins of interest are pooled and labelled with complementary

DNA oligo sequences to allow high-fidelity hybridization (164).

This happens only when true antibody pairs are in proximity to
TABLE 4 Continued

Authors Year Target Method used Results

Prognostic biomarkers

Abue et al. (137) 2014 miR-483-3p,-21 RT-PCR miR-21 expression associated with advanced stage and
metastases to lymph node and liver. OS in high vs low
expression(3 months vs 13.8 months)

Zhang et al. (141) 2018 LINC00346,00673,
00671,
00261,00578,
SNHG9

qRT-PCR High expression of LINC00346, 00578, 00673 or low expression
of LINC00671, 00261, SNHG9 had significantly lower survival
percent.

Reese et al. (144) 2020 miR-200b,-200c qRT-PCR Multivariate analysis showed miR-200b in EpCAM-positive
serum exosomes as an independent prognostic factor (OS 9
months(high) vs 18 months(low))

Guo et al. (145) 2021 miR-335-5p,-340-5p RNA sequencing Ratio of miR-335-5p divided by -340-5p greater than 0.15 had a
worse OS (median OS-205 vs 413 days)

Treatment response prediction

Chen et al. (143) 2022 miR-451a qRT-PCR miR-451a levels decreased in PDAC patients following treatment.
Serum levels were remarkably increased in those who had
recurrence while it was unchanged in those in remission.
RT-PCR, Real-time polymerase chain reaction; IPMN, Intraductal papillary mucinous neoplasm; HC, Healthy controls; miR-Micro-RNA; CP, Chronic pancreatitis; tsRNA- tRNA-derived small
RNAs; AUC-Area under curve; lncRNA-Long noncoding RNA; OS-Overall survival.
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target proteins. The dsDNA is then PCR-amplified, allowing

measurement of relative concentration of target proteins. PEA has

outperformed LC-MS methods, presenting wider dynamic ranges

with high accuracy and reproducibility (164, 165). The limitation is

the tedious library preparation and NGS requirement which can

contribute to biases and intra-inter-experimental variations when

high sample size throughput is in place (164). Another technique

that has captured attention is RPPA. In RPPA, fully denatured

protein lysates are immobilized onto solid substrates, and this

process can be repeated to allow any number of targets to be

interrogated (166–168). RPPA allows robust parallel large sample

profiling ranging from hundreds to a few thousand samples. RPPA

is especially useful in blood cancer and other liquid biopsies due to

its ability to track intra-cellular proteins (166). Limitations with

RPPA involve sophisticated experimental workflow, prolonged

experimental process (with more proteomics), slow turnaround

time, and the validation of RPPA-usable antibodies

The quantitative measurement of proteome poses a greater

challenge than assessing the genome. Around one million

different proteins are present in the human body, through various

combinations of epigenetic regulations, differential RNA splicing

and post-translational modifications. In contrast, there are only

22,000-25,000 coding genes within the human genome (169).

Proteins are in a constant state of flux, with rapid changes in

abundance and dynamically modifying as a response to all kinds of

environmental stimuli. The genome, in contrast, is relatively stable

with slow rate of change.

Historically, there has been a great deal of emphasis on the

utility of protein biomarkers for diagnosing and treating PDAC.

Table 5 below highlights all the major developments in the field of

protein biomarkers in the past few years.The most well-known

serological biomarker in PDAC is carbohydrate antigen 19-9

(CA19-9). CA19-9 has only been reported to be elevated in 80%

of all patients with PDAC. It has also traditionally been utilized to

monitor disease progress or treatment responsiveness. There can

also be false positives with benign conditions such as chronic

pancreatitis, biliary obstruction and cholangitis (170, 171). A

meta-analysis conducted in 2018 to assess the diagnostic value of

CA19-9 in PDAC had concluded the sensitivity of CA19-9 as 0.80

in the diagnosis of PDAC and a specificity of 0.75 with an area

under the curve (AUC) of 0.84 (172). Another important biomarker

discovered in the last decade is CA242. A meta-analysis comprising

21 studies and 3497 participants was conducted in 2015 to check the

utility of cancer-antigen 242(CA242) in conjunction with CA19-9

and CEA in diagnosing PDAC. A sensitivity as high as 90% was

achieved by combining CA19-9 with CA242 (173). Another study

utilized a biomarker panel of CA19-9, serum periostin and CA242,

which was able to distinguish early stage PDAC from controls with

an AUC of 0.98 and benign conditions with an AUC of 0.90 (174).

Velstra et al. (175) performed one of the earliest biomarker

analyses utilizing mass spectrometry when they utilized mass
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spectrometry peaks to identify a unique biomarker signature that

could be utilized in PDAC. The discriminating profile demonstrated

a sensitivity of 74% and a specificity of 91%in distinguishing PDAC

from controls with an AUC of 0.90. Another exciting study utilizing

mass spectrometry was done by Park et al. (176)when they

identified a unique panel of protein biomarkers comprising

leucine-rich alpha-2 glycoprotein (LRG1), transthyretin (TTR),

and CA19-9 from a potential 1000 biomarkers from 134 clinical

samples using mass spectrometry. The triple biomarker panel

outperformed CA19-9 with an AUC of 0.931 compared to 0.826

for CA19-9 in diagnosing PDAC compared to controls. The

superiority was even more prominent in differentiating PDAC

from benign pancreatic disease and other cancers. Nie et al. (177)

studied a combination of alpha-1-anti chymotrypsin,

thrombospondin-1, and haptoglobin, which outperformed CA19-

9 in distinguishing PDAC from normal controls, diabetes, cyst, and

chronic pancreatitis. A combination of these markers was capable of

distinguishing PDAC from other conditions with (AUC=0.92) or

without obstructive jaundice (AUC=0.95). Dickkopf-1 (DKK1) was

studied by Han et al. (178) as an alternative to CA 19-9 when they

obtained serological levels of both the markers using ELISA and

followed up the patient for two years to find that DKK1 was

significantly better in distinguishing patients with PDAC from

controls (AUC=0.919 vs 0.853). The study also found DKK1 as a

useful prognostic biomarker, with the OS being 9 months for

samples with higher DKK1 levels compared to 15 months for

patients with lower DKK1 levels. Xiao et al. (179) have also

explored the use of flow cytometry and immunoassay in the

diagnosis of PDAC using a combined panel comprising glypican-

1, CD82, and serum CA19-9. The combined panel effectively

distinguished PDAC from healthy population (AUC-0.942). Ren

et al. (180) have also explored the use of interleukin-11 as both a

potential diagnostic and prognostic biomarker. On comparing the

serum levels of IL-11 in 44 patients with PDAC with healthy

controls, median baseline levels of IL-11 levels of patients with

PDAC were significantly higher than those of healthy controls

(p<0.001). IL-11 as a biomarker showed a sensitivity and

specificity of 97.7% and 70.0% respectively with an AUC of 0.901

in distinguishing PDAC from healthy controls. Patients with distant

metastases were found to have lower median levels of IL-11 and

demonstrated a correlation with overall survival (lower than

median IL-11 had 4 months compared to 10 months for those

with higher median IL-11 levels). Another prognostic biomarker

which has been studied in the past includes complement factor B

(CFB). Stratifying patients on the cutoff value for CFB, Kim et al.

(181) found that there was a significant difference in the DFS and

OS for patients with low versus high CFB(DFS- 36.9 vs 13.9 months,

p:0.007; OS-49.7 vs 29.0 months, p:0.048).

Numerous studies have also explored the use of protein

biomarkers as a treatment response and prediction tool. One of

the earliest studies to explore this was by Tsutsumi et al. (182), who
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TABLE 5 Table showing the latest developments in diagnosis, prognosis, and treatment response prediction of PDAC using protein biomarkers.

Authors Year Target Method used Results

Diagnostic biomarkers

Cheng et al. (185) 2020 FR+CTC, CA 19-9
LT-
PCR,
chemiluminescence

The combination of FR+CTC with CA19-9 showed high sensitivity
97.8% and specificity 83.3%.

Velstra et al. (175) 2015
m/z peak values 2084, 2178,
2770, 2899, 3096,
8760, 8939

Mass spectrometry
The discriminating profile had a sensitivity of 74% and specificity of 91%
for pancreatic cancer with an AUC=0.90.

Park et al. (176) 2017 LRG-1, TTR, CA 19-9
Multiple reaction
monitoring,
mass spectrometry

AUC=0.931 for the panel in discriminating PDAC from HC. It
differentiated PDAC from benign pancreatic diseases (AUC=0.892).

Nie et al. (177) 2014

a-1-antichymotrypsin
(AACT), thrombospondin-1
(THBS1), and
haptoglobin(HPT)

Mass spectrometry
The panel showed high diagnostic accuracy in distinguishing PDAC with
OJ(AUC=0.92) or without OJ (AUC=0.95).

Aronsson et al. (186) 2018
CA 19-9, IL-17E, B7.1,
and DR6

Glycosylation
antibody array

The combined panel gave an AUC of 0.988 for discriminating stage 1
PDAC and healthy controls with 100% sensitivity and 90% specificity.

Jenkinson et al. (187) 2016 Thrombospondin LC-MS
A combination of TSP-1 and CA19-9 demonstrated an AUC of 0.85 for
PDAC compared to CP and HC.

Han et al. (178) 2015 Dickkopf-1 ELISA
ROC curve showed that DKK-1 was significantly better than CA19-9 in
differentiating PDAC from controls.

Ren et al. (180) 2014 Interleukin-11 ELISA
IL-11p showed the highest diagnostic accuracy for PDAC (AUC-0.901,
sensitivity-97.7%, specificity-70%).

Wang et al. (183) 2014 MIC-1/GDF15 ELISA
MIC-1 performed better than CA19-9 in distinguishing early-stage
PDAC with a higher sensitivity (62.5% vs 25%).

Mellby et al. (188) 2018 29 biomarker signature Microarray
Samples derived from patients with stage 1 and 2 PDAC showed an
AUC of 0.96 compared to control.

Kaur et al. (189) 2017 MU5AC, CA 19-9 ELISA, RIA
Combining MU5AC with CA19-9 improved the sensitivity and
specificity to 83% with an AUC of 0.91 to distinguish benign and
CP controls.

Lee et al. (190) 2014
Human complement
factor B

Immunoprecipitation
coupled to MS

The combination of CFB and CA19-9 improved the sensitivity and
specificity to 90.1 and 97.2%, respectively.

Guo et al. (191) 2016 Dysbindin Mass spectrometry
At the optimal cutoff, dysbindin had an AUC=0.849 with a sensitivity of
81.9% and a specificity of 84.7%.

Wu et al. (192) 2019 PROZ, TNFRSF6B LC-MS
The combination of two markers with CA 19-9 demonstrated an AUC
of 0.919 with a sensitivity of 75.6% and specificity of 95%.

Papapanagiotou
et al. (193)

2018 Osteonectin ELISA
Osteonectin showed an AUC of 0.856 with a sensitivity of 84.6% and a
specificity of 87.5%.

Balasenthil et al. (194) 2017 TFPI, TNC-FN-IIIC ELISA
The panel showed an AUC of 0.86 in discriminating PDAC from HC
with a sensitivity of 0.81 and specificity of 0.8

Honda et al. (195) 2012 apoAII-ATQ/AT ELISA
A combination of CA19-9 and apoAII-ATQ/AT showed an AUC of
0.879 for PDAC of 0.879 for PDAC compared to HC.

Hogendorf et al. (196) 2018 GDF-15, IL-17, IL-23 ELISA GDF-15 had a sensitivity of 73.8% and a specificity of 76.19%

Mohamed et al. (197) 2014 ADH, MIC-1 ELISA
A combination of two markers with CA19-9 showed an AUC of 0.89 for
stage 1 and 2 PDAC from HC and 0.92 for stage 3 and 4 PDAC
from HC.

Wei et al. (198) 2020 Exo-Epha2 ELISA

A combination of Exo-Epha2 with CA19-9 CA242 showed an AUC of
0.97 for distinguishing PDAC from HC with a sensitivity of 90% and a
specificity of 97.6%, and an AUC of 0.93 with a sensitivity and specificity
of 88.5 and 96.6% for benign diseases.

Song et al. (199) 2019
OPN, MIA, CECAM-1,
MIC-1, SPON1, HSP27

Multiplex immunoassay
The four best biomarkers to separate PDAC from HC were MIC-1(0.97),
CA 19-9(0.93), CECAM-1(0.91), and OPN (0.90)

(Continued)
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explored the utility of tumor markers such as CEA, CA19-9, duke

pancreatic mono-clonal antigen type 2(DUPAN-2) and s-pancreas

antigen-1 (Span-1) to determine if it can assist in earlier

confirmation of treatment failure. Their study yielded that a

combination of CA 19-9 and Span-1 could facilitate a more

accurate determination of treatment failure than CA 19-9, finding

a failure in 72% of patients (p=0.004). Wang et al. (183) utilized

macrophage inhibitory cytokine 1(MIC-1) as a treatment response
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monitoring tool and found that MIC-1 levels significantly decreased

a month after curative resection in PDAC, and the levels rebounded

whenever there was a tumour relapse that had occurred. As a

diagnostic biomarker as well, MIC-1 performed better than CA19-9

showing a higher sensitivity (65.8% vs 53.3%). It was also more

effective in distinguishing early-stage PDAC from normal serum

compared to CA19-9(62.5% vs 25%). Peng et al. (184) utilized MS

to identify a unique biomarker panel of PDAC patients with good
TABLE 5 Continued

Authors Year Target Method used Results

Diagnostic biomarkers

Melo et al. (200) 2015 Glypican-1 Immunogold TEM
GPC1 circulating exosomes showed a perfect AUC with a sensitivity and
specificity of 100%.

Lewis et al. (201) 2014 Glypican-1, CD-63 Immunoassay
PDAC patients could be identified from HC with a sensitivity and
specificity of 99% and 82%, respectively.

Xiao et al. (179) 2020 GPC1, CD82, CA 19-9
Immunoassay,
flow cytometry

The combined panel showed an AUC of 0.942 to distinguish HC
from PDAC

Byeon et al. (202) 2024

Polymeric Immunoglobulin
Receptor(PIGR), von
Wilebrand Factor(vWF),
fibrinogen, SAA1,
THBS1, CRP

High resolution-
mass spectrometry

PIGR and vWF showed a high ability to diagnose early-stage (Stage 1
and 2) PDAC patients(AUC=0.8926), which improved after the
introduction of CA19-9 to the panel(AUC=0.9798).

Yablecovitch et al. (203) 2024 MMP-7, SDC1 ELISA
The AUC for MMP-7 and SDC-1 in PDAC versus controls was 0.90 and
0.78, respectively. A combination of the two and CA19-9 showed an
AUC of 1.0(p<0.001).

Prognostic biomarkers

Han et al. (178) 2015 Dickkopf-1 ELISA
The overall median survival was 9 months for a group with higher
DKK1 compared to 15 months for a group with lower DKK1.

Ren et al. (180) 2014 Interleukin-11 ELISA
IL-11p correlated with OS (high vs low IL-11p OS-10 months vs
4 months).

Kim et al. (181) 2019
human complement
factor B

Immunoprecipitation
There was a significant difference in DFS between the two groups (36.9
vs 13.9 months, respectively).

Uemara et al. (204) 2024
Amaranthus caudatus
agglutinin(ACA)
positive EV

Liquid chromatography

The OS and RFS of patients with higher ACA-positive EVs were
significantly higher than those with lower ACA-positive EVs (26.1
months vs not reached and 11.9 vs 38.6 months respectively). ACA-
positive EV elevation in postoperative serum was an independent
prognostic factor for poor OS(HR=3.891, p=0.023) and RFS
(HR=2.650, p=0.024).

Treatment response prediction

Tsutsumi et al. (182) 2012
CA 19-9, DUPAN-2, Span-
1, CEA

ECLIA, EIA, IRMA
A combination of CA19-9 and Span-1 could predict treatment failure in
72%(35/49) during gemcitabine therapy.

Wang et al. (183) 2014 MIC-1/GDF15 ELISA
One month after potentially curative resection, MIC1 levels decreased to
levels similar to benign tumors, and levels increased again after
tumor recurrence.

Peng et al. (184) 2019 PZ, SHBG, vWF, AZGP-1 LC-MS
A combination of these four biomarkers demonstrated the best response
in distinguishing good responders from limited responders
LT-PCR, Ligand targeted polymerase chain reaction; FT+CTC, Folate receptor positive circulating tumor cells; m/z, Mass-to-charge ratio; AUC, Area under curve; TSP, Thrombospondin; DKK-
1-Dickkopf-1, LC-MS, Liquid chromatography-mass spectrometry; ELISA, Enzyme-linked immunosorbent assay; IL, Interleukin; RIA, Radioimmunoassay; CFB, Complement factor B.
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response versus poor responders and found that a composite

biomarker panel of PZ, SHBG, vWF, and CA 19-9 could

segregate good responders from limited responders effectively.

While protein biomarkers still remain one of the most widely

studied topics in PDAC, the approach suffers from a few

shortcomings. Irrelevant clinical questions and underpowered

designs falling short of statistical significance are major issues

hindering protein biomarkers’ development. Other important

factors that prevent the implementation of protein biomarkers

involve the technology standards expected and needed for

biomarker discovery and the lack of reproducibility in real-world

settings. Despite all the above challenges, proteins represent an

interesting avenue with vast potential that can be tapped into.

CA19-9 represents a great success story in terms of PDAC, and it is

hoped that more such biomarkers can be developed that find

implementation and use in daily practice.
Blood-based multiomic biomarkers

The shortcomings in each set of biomarkers have spurred an

interest in utilizing a combination of DNA, RNA and protein

biomarkers to determine the diagnosis, prognosis and treatment

response in PDAC. An interesting study was conducted by Cohen

et al. (205)utilizing a combination of ctDNA (KRAS mutation), CEA,

CA19-9, hepatocyte growth factor (HGF), osteopontin (OPN) through

polymerase chain reaction and immunoassay and found that the

combination biomarker panel increased the sensitivity to 64% and

the specificity to 99.5%. Another groundbreaking study exploring the

use of miRNA and protein biomarker panel was conducted by

Madhavan et al. (206), who utilized a combination of flow cytometry

and qRT-PCR to optimise a panel of miRNA and protein biomarkers

that could detect PDAC with a sensitivity of 100% and specificity of

80%. One of the latest studies in this approach was conducted by Chen

et al. (207) when they used PCR and chemiluminescence to use a

combination of circulating tumour cells and CA19-9 as a diagnostic

panel for PDAC and found that the combination demonstrated high

sensitivity and specificity of 97.8% and 83.3% respectively.

Utilizing a combination approach while improving the

detection rates and sensitivity sometimes adds the shortcomings
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of technical expertise and overhead expenses which come along

with the addition of techniques. This can at present be only

practiced in higher centers which are equipped with facilities and

money to bear these expenses. Table 6 shows a summary of

combination strategies utilizing DNA, RNA, protein biomarker

studied in the management of PDAC.
Therapeutic applications and targeted
therapy

Advanced technologies such as NGS have also facilitated the

development of many targeted therapies based on a specific cell

receptor/target/mutation. PDAC, based on the mutation status

detected in NGS, can be divided into four subgroups: stable,

locally rearranged, scattered, and unstable (208). Combining

genomic and transcriptomic data with the relevant proteomic

status allows a much more pragmatic classification of PDAC with

therapeutic targets. Numerous oncogenes have been explored and

evaluated for potential targets. The most commonly mutated

oncogene in PDAC is KRAS. Ongoing phase 1 and 2 clinical

trials are assessing the utility of MRTX849, a small molecule that

selectively modifies mutant cysteine in KRAS G12C (209). First-

generation EGFR inhibitors tried for this purpose, such as erlotinib

and gefitinib, failed to show any substantial benefit (median

HR=0.94, 95% confidence interval 0.76-1.15, p=0.26) (210). The

lack of response was thought to be secondary to the resistance

caused by the non-EGFR members of the ERBB family. To

overcome this issue, irreversible tyrosine kinase inhibitors such as

afatinib and neratinib were developed. Ongoing clinical trials

(NCT02451553) assess afatinib’s efficacy in PDAC (211). Another

EGFR inhibitor, nimotuzumab, was evaluated in locally advanced

or metastatic PDAC in a phase 2 trial where the median OS was

significantly improved with its use (OS=8.6 vs 6.0 months,

HR=0.69, p=0.03) (212). Efforts have also been made to combine

EGFR inhibitors with other pharmaceuticals to bypass the equivocal

benefit seen with the use of a single agent. A phase 2 trial

(NCT01222689) utilizing the combination of erlotinib plus

selumetinib in metastatic PDAC showed modest antitumor

activity with a median OS of 7.3 months (213).
TABLE 6 Table showing strategies utilizing a combination of DNA, RNA, protein biomarker.

Authors Year Target Method used Results

Diagnostic biomarkers

Cohen et al. (205) 2017 ctDNA(KRAS)+CEA+CA 19-
9+OPN+HGF

PCR and immunoassay The combination of KRAS with protein panel increased the sensitivity
to 64% and specificity to 99.5%

Madhavan et al. (206) 2015 miRNA(-1246. 4644, 3976,-
4306), anti CD9,
CD63, CD151

qRT-PCR,
flow cytometry

Concomitant evaluation of protein and exosome marker improved
sensitivity to 100% and specificity to 80% for PDAC with all
other groups

Chen et al. (207) 2022 CTC+ CA199 FISH,
chemiluminescence

Integrating CA199 and CTC showed an AUC of 0.95 in distinguishing
PDAC from control
ctDNA, Circulating tumor DNA; CEA, Carcinoembryonic antigen; qRT-PCR, Quantitative real-time PCR; CTC, Circulating tumor cells; FISH, Fluorescent in-situ hybridization.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1555963
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Juthani and Manne 10.3389/fonc.2025.1555963
Proteins downstream of KRAS, including RAF/PI3K/AKT/

mTOR, have also been studied as potential targets of interest.

MEK inhibitors, including selumetinib and trametinib, were tried

in advanced PDAC but failed to yield significant results

(selumetinib HR=1.03,p=0.92; trametinib HR=0.98, p=0.453)

(214, 215). BKM120, a PI3K inhibitor combined with

selumetinib, has shown promising results in murine models but is

still nascent and requires further investigations (216).

The results have been slightly better when looking at targets

beyond KRAS. A subsection of patients with KRAS harbour other

mutations, such as NTRK and NRG1 (125). TRK inhibitors have

recently entered the foray and include drugs including larocectinib

and entrectinib found to have efficacy in PDAC harbouring these

mutations (larocectinib response rate was 79%, and the entrectinib

response rate was 57%) (217, 218).

TP53 is one of the most commonly inactivated tumor

suppressors in PDAC, with the incidence found to be around

70% in individuals with PDAC (127). COTI-2, a TP53 reactivator

drug, is currently being studied (NCT02433626) to evaluate its

efficacy and utility in improving the prognosis of patients with TP53

mutant PDAC (219). Another potential target currently being

studied involves CDK4/6. Inspired by the success of ribociclib

and palbociclib in metastatic breast cancer and liposarcoma, they

were tested in murine models of PDAC, where they demonstrated

great promise, and they are currently also being evaluated in clinical

trials (NCT02501902) (220). Another success story that derives its
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roots from breast cancer includes PARP inhibitors such as olaparib.

A recent prospective phase 3 trial (NCT02184195) performed to

evaluate the efficacy of olaparib in patients with mutant BRCA

metastatic PDAC found that the PFS was increased significantly in

the olaparib group (PFS 7.4 months versus 3.8 months, HR=0.53,

p=0.004) (221).

Targeted therapy adds to the arsenal of options available at our

disposal for treatment of PDAC. The success in targeted therapy

especially in lung cancers and the rapid progression in techniques of

liquid biopsy creates optimism with respect to improved treatment

outcomes with targeted therapy in PDAC.
Future directions and conclusion

While numerous advances have been made in terms of

biomarkers facilitating the diagnosis and prognosis of PDAC, few

biomarkers have been explored which allow treatment response

prediction. More effort needs to be focused on this area since they fit

much more seamlessly into clinical practice and allow a greater

understanding and clarity about the natural course of the disease. It

also allows the oncologist to be prepared for failure and think about

other options for treatment and allows patients to be better

prepared about the consequences of the cancer. Utilizing a

combination of genomics, transcriptomics and proteomics allows

a greater sensitivity and certainty and gives greater discriminatory
FIGURE 1

Illustration summarizing latest developments in serum DNA, RNA, CTC, DNA methylation, and protein biomarkers.
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power to distinguish benign pancreatic diseases from PDAC. Efforts

should be made to decrease the expenses associated with it so that

the economic costs can be accommodated within the total treatment

cost that is entailed with the diagnosis of PDAC. Biomarker

discovery in PDAC holds great promise and utilizing it with

imaging evidence and clinical suspicion may hold the solution to

the conundrum of early diagnosis of PDAC allowing complete

curative treatment of the disease. Figure 1 demonstrates an

illustration highlighting the latest developments in DNA, RNA,

and protein biomarkers.
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