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Purpose: To develop an intratumoral and peritumoral radiomics model using

Automated Breast Volume Scanner (ABVS) for noninvasive preoperative

prediction of Human Epidermal Growth Factor Receptor 2 (HER2) status.

Methods: This retrospective study analyzed 384 lesions from 379 patients with

pathologically confirmed breast cancer across four hospitals. Two tasks were

defined: Task 1 to distinguish HER2-negative from HER2-positive cases and Task

2 to differentiate HER2-zero from HER2-low status. For each classification task,

three models were built: Model 1 included radiomics features from the tumor

region alone; Model 2 included features from both the tumor region and a 5mm

peritumoral region; and Model 3 incorporated features from the tumor region,

the 5mm peritumoral region, and the 5-10mm peritumoral region. The

performance of the model was evaluated using receiver operating

characteristic (ROC) curves, with key metrics including the area under the

curve (AUC), sensitivity, specificity, and accuracy.

Results: In the classification tasks, Model 2 demonstrated superior predictive

performance across multiple datasets. For Task 1, it achieved the highest AUC

(0.844), exceptional sensitivity (0.955), and satisfactory accuracy (0.787) in the

validation set, and outperformed other models in the test set with an AUC of

0.749 and sensitivity of 0.885, highlighting its robustness and clinical applicability.

For Task 2, Model 2 exhibited the highest AUC (0.801), sensitivity (0.862), and

accuracy (0.808) in the test set, with consistent performance across the training

(AUC 0.850) and validation sets (AUC 0.801). Model 3, which combines

intratumoral and peritumoral features, did not demonstrate significant

improvements over the intratumoral-only model in the two classification tasks.

These results underscore the value of incorporating peritumoral radiomics

features, particularly within a 5mm margin, to enhance predictive performance

compared to intratumoral-only models.
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Conclusion: The radiomics model integrating intratumoral and appropriate

peritumoral features significantly outperformed the model based on

intratumoral features alone. This integrated approach holds strong potential for

noninvasive, preoperative prediction of HER2 status.
KEYWORDS

automated breast volume scanner, radiomics, peritumoral, human epidermal growth
factor receptor 2, breast cancer
1 Introduction

Breast cancer remains the most prevalent malignancy in women,

accounting for 32% of new cancer diagnoses and 15% of cancer-

related mortality among women (1, 2). Its molecular heterogeneity

necessitates precise subtyping based on immunohistochemical (IHC)

markers, including estrogen receptor (ER), progesterone receptor

(PR), HER2, Ki-67, and Fluorescence In Situ Hybridization (FISH),

with HER2 positivity (15%-20% cases) correlating with aggressive

phenotypes and poor prognosis (3–6). Emerging evidence redefines

HER2-low expression (IHC 1+ or 2+/FISH-) as a distinct entity,

showing differential responses to novel antibody-drug conjugates

(ADCs) like trastuzumab deruxtecan (T-DXd). Compared to

HER2-zero tumors, HER2-low subtypes exhibit distinct mutation

profiles (higher PIK3CA, lower TP53) and improved survival with

ADCs therapies (7–10). This paradigm shift underscores the urgent

need for noninvasive methods to accurately stratify HER2 status,

particularly the critical differentiation between HER2-low and HER2-

zero within traditionally “HER2-negative” cohorts.

Radiomics is a cutting-edge approach in medical imaging,

employs high-throughput feature extraction to decode lesion

pathophysiology (11, 12). It overcomes traditional visual

assessment limitations by quantifying tumor heterogeneity across

morphological, textural, and functional metabolic dimensions. Unlike

the localized sampling of needle biopsies, radiomics noninvasively

analyzes spatial heterogeneity across entire lesions and their

microenvironments (13). Current radiomics approaches using

magnetic resonance imaging (MRI) have demonstrated success in

HER2 evaluation through quantitative analysis of tumor

heterogeneity (14, 15). Despite ultrasound radiomics identified a

correlation between regional entropy in radiomics features and the

presence of calcifications in HER2-positive breast cancer ultrasound
anner; HER2, human

perating characteristic;
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images (16), faces standardization challenges due to operator-

dependent variability in image acquisition. ABVS addresses this

limitation through standardized 3D imaging and unique coronal

plane visualization (17, 18), its applications remain confined to

HER2-positive and negative classification, axillary lymph node

metastasis (ALNM), and KI67 expression levels (19–21). Notably,

existing HER2-low investigations exclusively rely onMRI (14, 22, 23),

ignoring the potential of ultrasound-based radiomics. Furthermore,

conventional radiomics models focus predominantly on intratumoral

features, neglecting the biological significance of peritumoral regions

where immune microenvironment alterations and tumor-stroma

interactions occur (24–26).

To bridge these gaps, we propose a dual-region ABVS radiomics

strategy integrating both intratumoral and peritumoral signatures.

Our approach leverages three key innovations: First, ABVS’s

operator-independent acquisition standardizes radiomics feature

extraction, overcoming conventional ultrasound’s reproducibility

limitations. Second, the coronal plane visualization enables 3D

characterization of tumor-microenvironment interactions,

capturing spatial heterogeneity patterns potentially linked to

HER2 expression biology. Third, by incorporating peritumoral

features reflecting immune landscape changes and stromal

activation, our model extends beyond traditional tumor-centric

analyses. We hypothesize that this multimodal integration will

improve HER2-low detection accuracy compared to MRI-based

or intratumoral only models.

This study aims to develop and validate the first ABVS radiomics

model for preoperative HER2 status prediction, with specific

emphasis on distinguishing HER2-low from HER2-zero expression.

By establishing a noninvasive imaging biomarker system that

combines tumor intrinsic features with microenvironmental

signatures, our work enables early identification of HER2-low

patients who may benefit from emerging ADCs therapies.
2 Materials and methods

2.1 Patient population

This retrospective multicenter study was approved by the

institutional review boards of all participating institutions, with a
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waiver of written informed consent from the patients. The study

enrolled breast cancer patients from several institutions, including

Hospital 1 (between November 2019 and December 2023), Hospital

2 (from November 2021 to March 2023), Hospital 3 (from June

2020 to August 2023), and Hospital 4 (from August 2017 to March

2023). All patients underwent preoperative ABVS and received

pathological confirmation of cancer following surgery. The original

ABVS images were stored on the workstation, and images in

DICOM format were imported into specialized software to ensure

the integrity and quality of the initial imaging data.

Inclusion Criteria (1): Patients who underwent surgical excision

of the target tumor, with only lesions having corresponding

pathological analysis included in cases of multiple lesions. (2)

Pathologically confirmed primary breast cancer, with available

IHC markers for ER, PR, Ki67, and HER2 status. (3) Preoperative

ABVS performed within two weeks prior to surgery. (4) Patients

who had not received neoadjuvant chemotherapy or other

treatments before the ABVS examination.

Exclusion Criteria: (1) Any preoperative interventions or

treatments (e.g., radiotherapy, chemotherapy, radiofrequency

ablation, biopsy) prior to ABVS. (2) Target lesions that are

unclear on ABVS images or lack a visible region of interest (ROI)

due to artifacts. (3) Cases where pathological and IHC data were

insufficient for molecular subtype classification.

The in-house data was designated as Dataset 1, while the data

from the three external hospitals were categorized as Dataset 2. A

total of 384 lesions from 379 patients were collected, including 202
Frontiers in Oncology 03
lesions from 200 patients at Hospital 1, 40 lesions from 40 patients

at Hospital 2, 24 lesions from 24 patients at Hospital 3, and 118

lesions from 115 patients at Hospital 4. We designed two

classification tasks: Task 1 aimed to differentiate HER2-positive

from HER2-negative breast cancer, and Task 2 aimed to distinguish

HER2-zero from HER2-low expression. Even for multifocal

patients, each breast lesion was analyzed independently. In the

test set, the three multifocal breast cancer patients each had one

lesion per breast, and all six lesions were HER2-low expressing. The

patient flowchart is shown in Figure 1.
2.2 Clinicopathological data

Clinical, ultrasound, and histopathological data were obtained

from electronic medical record systems and pathology databases. The

dataset included continuous variables: patient age, ultrasound lesion

size, pathological lesion size, shear wave velocity (SWV) means, SWV

maximum, and SWV minimum. Categorical variables included

lymph node (LN) metastasis status on ultrasound, Breast Imaging

Reporting and Data System (BIRADS) classification, pathological LN

metastasis, and the status of ER, PR, HER2, Ki67, as well as molecular

subtypes. Notably, pathological lesion size, SWV mean, SWV

maximum, and SWV minimum were only available in Dataset 1,

as these variables were not recorded in the other hospitals.

Lesions were classified according to the fifth edition of the

American College of Radiology’s BIRADS guidelines. Ultrasound
FIGURE 1

Flowchart of patients and study design. ABVS, Automated Breast Volume scanner; Task 1, the distinction of HER2-positive from HER2-negative
breast cancers. Task 2, the distinction of HER2-low from HER2-zero breast cancers.
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assessment of benign LN requires meeting the following three

criteria simultaneously: (1) oval shape with a long-axis/short-axis

ratio ≥ 1.5; (2) normal hilum structure, with the cortex presenting as

a uniform hypoechoic ring or “C” shape; and (3) sparse and

regularly distributed blood flow signals. LN that does not meet

these criteria are classified as potentially malignant. The status of

ER, PR, and HER2 was determined according to the American

Society of Clinical Oncology/College of American Pathologists 2018

guidelines using IHC and FISH. The cutoff value for Ki-67 remains

controversial (27, 28). Some studies suggest that a threshold of 20%

for Ki-67 more accurately reflects the proliferative status of tumor

cells (29). Therefore, this study adopted a Ki-67 threshold of 20%.
2.3 ABVS examination and image
acquisition

All patients underwent ABVS examinations performed by

ultrasound specialists with over five years of experience in breast

imaging. The patients were positioned supine with both arms

raised, fully exposing the breasts and axillae. A linear array

transducer was used to initially locate the lesions, assess and

document lesion size, and evaluate LN status. Prior to performing

the ABVS scan, the mechanical arm was adjusted to ensure that

appropriate pressure was applied by the probe to the breast without

causing discomfort. The most suitable scanning mode was selected

based on breast size. A 5-14 MHz linear array transducer,

approximately 15 cm in width, was then used to apply gentle

pressure to the patient’s chest wall, ensuring complete image

display. Three volumetric scans were performed from the lower

part of the breast to the upper part, covering the anterior, lateral,

and medial regions. After the scan, the nipple position was marked,

and the collected data were transferred to the ABVS workstation.

Three views of the lesion were obtained through 3D reconstruction,

allowing simultaneous observation of its morphology in the

transverse, sagittal, and coronal planes.

Hospital 4 used the Invenia ABVS system (GE Healthcare,

Sunnyvale, CA, USA) for ABVS examinations, while the other three

hospitals utilized the Acuson S2000 ultrasound system (Siemens

Medical Solutions, Mountain View, CA, USA). Patients in Dataset 1

also underwent Virtual Touch Imaging mode during their

examinations to acquire Virtual Touch Imaging data. The breast

lesions were scored on a scale from 1 to 5, reflecting the degree of

stiffness from soft to hard. Additionally, in Virtual Touch

Quantification mode, at least five SWV measurements were taken

at the lesion site, and the average SWV value was calculated.
2.4 Image segmentation and feature
extraction

ABVS images were reviewed by an ultrasound physician with

over five years of experience in breast imaging. The ROI was

manually segmented, focusing on lesions with corresponding

pathological results for patients with multiple breast lesions. The
Frontiers in Oncology 04
physician was blinded to clinical and pathological data during the

segmentation process. In contrast to the majority of prior studies that

focused on segmenting the ROI within the largest cross-sectional or

longitudinal plane, our research employed the 3D Slicer software

(version 5.0.3) for the entire-lesion ROI segmentation of the ABVS

volumetric images. our 3D whole-lesion radiomics analysis enables

the capture of volumetric heterogeneity that 2D methods may

overlook. This is crucial, as breast cancer exhibits spatial variability

in texture and morphology, which may correlate with HER2

expression patterns. A total of 1,316 radiomics features were

extracted from each ROI, compared to approximately 500 features

in 2D ultrasound-based studies (30), demonstrating an enhanced

diversity of features. This approach facilitated a more thorough and

comprehensive extraction of radiomics features. Using the “Hollow”

mode in 3D Slicer, we reconstructed the ROI for the peritumoral

region at 5mm and 5-10mm distances around the tumor (Figure 2).

This method yielded three separate ROI datasets for each lesion: the

tumor itself and two peritumoral regions. To evaluate the

reproducibility of feature extraction from the ROIs, 50 randomly

selected lesions were re-segmented. Intra-observer data were

generated by the same physician re-segmenting the same 50 lesions

after a two-week interval. Inter-observer data were obtained by a

second ultrasound physician, also with over five years of experience in

breast imaging, who performed the segmentation while blinded to

clinical and pathological outcomes.

Radiomics features related to tumor texture and morphological

structure were extracted from the manually delineated ROIs using

the Pyradiomics package (version 3.0; https://pypi.org/project/

pyradiomics/3.0/) within Python (version 3.7). Prior to feature

extraction, to mitigate scanning variability between different

hospital ultrasound systems (GE Inventio ABVS and Siemens

Accustom S2000), images were resampled to a uniform voxel size

of 1 mm³. This step aimed to eliminate the impact of spatial

resolution differences caused by varying ABVS slice thickness

across institutions on texture features. For intensity

normalization, the Z-score method was employed due to its

robustness to outliers compared to the Min-Max method, making

it more suitable for the gray-scale distribution of medical images

(30). Furthermore, features with an Intraclass Correlation

Coefficient (ICC) of less than 0.80 were excluded to ensure

excellent reproducibility of the remaining features, thereby

minimizing variability introduced by segmentation discrepancies.

A total of 1,316 radiomics features related to tumor texture and

morphology were extracted from each ROI using Python (version

3.7). After excluding features with intra-group and ICC below 0.80,

the following features were retained: 1,157 from the tumor ROI,

1,260 from the 5mm peritumoral ROI, and 1,214 from the 5-10-mm

peritumoral ROI.
2.5 Radiomics feature selection and model
construction

For model construction, Dataset 1 was randomly split into a

training set and a validation set in a 7:3 ratio. For Task 1, the dataset
frontiersin.org
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was divided into a training set (99 HER2-negative and 42 HER2-

positive cases), a validation set (43 HER2-negative and 18 HER2-

positive cases), and a test set (130 HER2-negative and 52 HER2-

positive cases). For Task 2, the dataset comprised a training set (20

HER2-zero and 79 HER2-low cases), a validation set (9 HER2-zero

and 34 HER2-low cases), and a test set (36 HER2-zero and 94

HER2-low cases). This stratification ensured a robust evaluation of

the models across distinct HER2 expression categories. The

comparison between the training and validation sets for two

classification tasks is shown in Supplementary Tables 1 and 2.

We employed the Synthetic Minority Over-sampling Technique

(SMOTE) to address class imbalance in the training set. Specifically,

HER2-positive and HER2-zero samples were oversampled

exclusively within the training set to generate synthetic samples,

thereby balancing the class ratio (adjusted negative-to-positive ratio

= 1:1). This approach reduced bias in the feature coefficients. The

validation and test sets retained their original data distributions to

prevent the introduction of bias from oversampling, ensuring the

clinical validity of model evaluation.

During the feature selection process, the correlation between

features and the target variable was initially assessed using the t-test.

Given the sensitivity of the t-test to data variance, homogeneity of

variance was first verified: if the p-value > 0.05, indicating equal

variance between groups, a standard independent samples t-test was

applied; otherwise, Welch’s t-test was used. Features significantly

associated with the target variable (p-value < 0.05) were retained.

Subsequently, collinearity analysis was performed: if the data met

the normality assumption, Pearson’s correlation coefficient was
Frontiers in Oncology 05
utilized; otherwise, Spearman’s correlation coefficient was

employed. Features with an absolute correlation coefficient > 0.9

relative to other features were excluded to mitigate multicollinearity

and prevent model overfitting. The Max-Relevance and Min-

Redundancy method was then applied to retain 10 features by

maximizing their relevance to the target variable while minimizing

redundancy among features, achieving a balance between

computational efficiency and model performance. Further feature

refinement was conducted using Least absolute shrinkage and

selection operator regression, with the regularization parameter

(l) optimized through 10-fold cross-validation to minimize

binomial deviation, thereby selecting parsimonious yet predictive

non-zero coefficient features and constructing a radiomics score.

Lasso feature filtering is shown in Supplementary Figure 1. Finally, a

logistic regression model with L2 regularization (C = 1.0) was

trained based on the radiomics score, and the optimal

classification threshold was determined by maximizing Youden’s

index. The validation set was used to fine-tune the model

parameters for optimal performance. For each classification task,

three models were built: Model 1 included radiomics features from

the tumor region alone; Model 2 included features from both the

tumor region and a 5mm peritumoral region; and Model 3

incorporated features from the tumor region, the 5mm

peritumoral region, and the 5-10mm peritumoral region.

The feature selection pipeline employed in this study follows a

conventional radiomics workflow (31, 32), which has been widely

adopted for effectively screening high-dimensional data. This

approach ensures a systematic and rigorous reduction of feature
FIGURE 2

Intratumoral and Peritumoral ROI segmentation workflow.
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dimensionality while retaining biologically and clinically

relevant information.
2.6 Model validation

The predictive performance of the test set was used to evaluate

the comprehensive performance of the three models constructed for

different tasks. We implemented a comprehensive validation

strategy to evaluate the performance of the three models across

multiple dimensions, ensuring a rigorous assessment of the

robustness and generalizability of the radiomics models through

various validation steps. Model performance was assessed using the

AUC, sensitivity, specificity, and accuracy. The DeLong method was

employed to compare AUC values between models and to evaluate

statistical significance. Additionally, calibration curves were plotted

to assess the agreement between predicted probabilities and

observed outcomes.

For clinical utility evaluation, Decision Curve Analysis (DCA)

was conducted to quantify the net benefit of using the radiomics

model across a range of threshold probabilities, compared to default

strategies such as “treat all” or “treat none.” This approach provides

a practical assessment of the model’s potential impact on clinical

decision-making. Together, these methods ensure a rigorous

evaluation of the model ’s performance, reliability, and

applicability in real-world clinical settings.
2.7 Data analysis

Statistical analyses were conducted using R software (version

4.3.2). The ‘CBCgrps’ package was used to assess differences in both

categorical and continuous variables between the two groups. The

function automatically assessed the distribution of continuous

variables, employing independent samples t-tests for normally

distributed data, reported as x±s, and Wilcoxon rank-sum tests

for non-normally distributed data, reported as M(IQR). Categorical

variables were compared using Fisher’s exact test or Chi-squared

tests, presented as n (%). Detailed differences in clinical and

pathological characteristics between HER2-negative and HER2-

positive patients, as well as between HER2-zero and HER2-low

expression patients, were analyzed. ICC was calculated using

Python (version 3.7) to assess inter-rater and intra-rater reliability

and consistency. Univariate and multivariate logistic regression

analyses were conducted using the ‘glm’ package, starting with

univariate analysis to identify statistically significant predictive

factors, which were then included in the multivariate model. ROC

curves were plotted, and DeLong’s test was applied to compare the

AUC among the various models, utilizing the ‘pROC’ package.

Other metrics, including sensitivity, specificity, and accuracy, were

also calculated. Calibration curves were constructed using the ‘rms’

package to evaluate discrepancies between predicted and actual
Frontiers in Oncology 06
data. The ‘rmda’ package was employed to quantify net benefits at

various threshold probabilities, evaluating the clinical value of each

model. All statistical tests were two-tailed, with a significance level

set at p < 0.05.
3 Results

3.1 Patient characteristics

According to the inclusion and exclusion criteria, a total of 384

lesions from 379 patients were selected for the study, with an overall

average age of 56.03 ± 11.22 years. The average lesion diameter was

2.2(1.6,2.8) cm. Among these patients, 112 exhibited high HER2

expression (29.2%), 207 had HER2-low expression (53.9%), and 65

showed HER2-zero expression (16.9%). In terms of molecular

subtypes, 288 cases (75%) were classified as luminal types,

including 78 cases of luminal A (20%), 68 cases of luminal B-

HER2-positive (18%), and 142 cases of luminal B-HER2-negative

(37%). Additionally, 44 cases (11%) were HER2-positive, and 52

cases (14%) were triple-negative breast cancer.

Preoperative ultrasound differences between Datasets 1 and 2

were observed in ultrasound mass size and BIRADS scores

(Table 1). These differences can be attributed to the higher

number of cases from Cancer Hospital in Dataset 2, where

patients presented with a greater degree of malignancy, larger

lesion diameters, and more ultrasound-detected metastatic LN,

leading to higher BIRADS scores.
3.2 Construction of radiomics models

For the classification task distinguishing between HER2-

negative and HER2-positive expression, the final Model 1 selected

4 features from the tumor region. Model 2 included a total of 10

features, comprising 4 from the tumor region and 6 from the 5mm

peri-tumoral region. Model 3 also comprised 10 features, with 2

from the tumor region, 4 from the 5mm peri-tumoral region, and 4

from the 5-10mm peri-tumoral region.

For the classification task differentiating between HER2-zero

and low expression, the final Model 1 selected 5 features from the

tumor region. Model 2 included 8 features, consisting of 3 from the

tumor region and 5 from the 5mm peri-tumoral region. Model 3

selected a total of 10 features, comprising 1 from the tumor region, 5

from the 5mm peri-tumoral region, and 4 from the 5-10mm peri-

tumoral region

For classification Task 1, the model that combines tumor and 5-

mm peri-tumoral regions also performed the best. In the radiomics

score formula, features are prefixed with “0” and “5,” where “0”

denotes the tumor region and “5” represents the 5 mm peritumoral

region. The radiomics model was calculated using the following

formula:
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TABLE 1 Analysis of clinical factors differences between dataset 1 and dataset 2 patients.

Variables Total (n=384) Dataset 1 (n=202) Dataset 2 (n=182) P

Age (years), Mean ± SD 55.38 ± 11.15 56.42 ± 10.85 54.21 ± 11.39 0.053

US size (cm), Median (Q1,Q3) 2.2 (1.6,2.8) 2.1 (1.5,2.6) 2.3 (1.7,2.9) 0.016

USLN,n (%) 0.058

Negative 272 (71) 152 (75) 120 (66)

Positive 112 (29) 50 (25) 62 (34)

PatLN,n (%) 1

Negative 239 (62) 126 (62) 113 (62)

Positive 145 (38) 76 (38) 69 (38)

BIRADS,n (%) 0.037

3 1 (0) 0 (0) 1 (1)

4A 34 (9) 18 (9) 16 (9)

4B 99 (26) 49 (24) 50 (27)

4C 162 (42) 98 (49) 64 (35)

5 88 (23) 37 (18) 51 (28)

Convergence,n (%) 0.637

Negative 222 (58) 114 (56) 108 (59)

Positive 162 (42) 88 (44) 74 (41)

ER,n (%) 0.045

Negative 101 (26) 44 (22) 57 (31)

Positive 283 (74) 158 (78) 125 (69)

PR,n (%) 0.379

Negative 140 (36) 69 (34) 71 (39)

Positive 244 (64) 133 (66) 111 (61)

HER2,n (%) 0.362

Zero 65 (17) 29 (14) 36 (20)

Low 207 (54) 113 (56) 94 (52)

Positive 112 (29) 60 (30) 52 (29)

KI67 (20),n (%) <0.001

Low 105 (27) 33 (16) 72 (40)

High 279 (73) 169 (84) 110 (60)

Molecular subtype,n (%)

HER-2+ 44 (11) 16 (8) 28 (15)

LA 78 (20) 24 (12) 54 (30)

LB- 142 (37) 92 (46) 50 (27)

LB+ 68 (18) 44 (22) 24 (13)

TN 52 (14) 26 (13) 26 (14)
F
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SD, standard deviation; USsize, ultrasound image lesion size; USLN, ultrasound-reported lymph node status; PatLN, pathologically confirmed lymph node metastasis; BIRADS, Breast Imaging
Reporting and Data System; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor-2.
Bold represents statistically significant difference.
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Rad score = −1:10728445

+0 _wavelet −HLL _ glcm _Correlation ∗( − 0:02471191)

+0 _ wavelet − LHH_ glcm _ Imc2 ∗ 0:20903593

+5 _ square _ glrlm _ ShortRunLowGrayLevelEmphasis ∗( − 0:01451517)

+5 _ wavelet −HHH_ gldm_DependenceEntropy ∗ 0:09835993

+5 _wavelet − LLL _ f irstorder _ Skewness ∗( − 0:20506020)

+5 _ wavelet −HLL _ glcm _ Imc2 ∗ 0:11135310

+5 _wavelet −HLL _ f irstorder _ Kurtosis ∗( − 0:20027030)

+0 _ original _ shape _ Elongation ∗ 0:23623459
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+0 _wavelet −HLL _ glszm_ SmallAreaHighGrayLevelEmphasis ∗ 0:30223322

+5 _ wavelet −HLL _ f irstorder _ Skewness ∗ 0:26365304

For classification Task 2, the model that combines tumor and 5-

mm peri-tumoral regions also performed the best. In the radiomics

score formula, features are prefixed with “0” and “5,”where “0” denotes

the tumor region and “5” represents the 5 mm peritumoral region. The

radiomics model was calculated using the following formula:

Rad score = 1:609161316

+ 5 _ wavelet −HLH_ firstorder _ Skewness ∗ 0:009526300

5 _wavelet −HHH_ glrlm _ RunLengthNonUniformityNormalized

∗ 0:014674600

+ 5 _wavelet −HLH_ glcm _ InverseVariance ∗( − 0:034904310)
TABLE 2 Comparison of radiomics models for two classification tasks.

Radiomics
Signatures

Cohorts AUC ACC SPE SEN P_2 P_3

Task 1

model1 Training 0.777 0.766 0.763 0.773 0.302 0.395

Validation 0.754 0.738 0.711 0.813 0.297 0.445

Test 0.652 0.637 0.631 0.654 0.016 0.060

model2 Training 0.836 0.773 0.757 0.816 0.633

Validation 0.844 0.787 0.692 0.955 0.564

Test 0.749 0.632 0.531 0.885 0.742

model3 Training 0.825 0.766 0.767 0.763

Validation 0.823 0.754 0.692 0.864

Test 0.741 0.599 0.469 0.923

Task 2

model1 Training 0.801 0.828 0.650 0.873 0.513 0.021

Validation 0.647 0.674 0.778 0.647 0.248 0.605

Test 0.752 0.769 0.611 0.830 0.250 0.192

model2 Training 0.850 0.737 0.941 0.695 0.081

Validation 0.801 0.744 0.917 0.677 0.408

Test 0.802 0.808 0.667 0.862 0.038

model3 Training 0.939 0.859 0.850 0.861

Validation 0.696 0.721 0.667 0.735

Test 0.696 0.692 0.611 0.723
Task 1, HER2-negative and HER2-positive classification; Task 2, HER2-zero and HER2- low classification.
Model 1 included radiomics features from the tumor region alone; Model 2 included features from both the tumor region and a 5mm peritumoral region; Model 3 incorporated features from the
tumor, 5mm peritumoral region, and 5-10mm peritumoral region.
AUC, area under the receiver operating characteristic curve; ACC, accuracy; SPE, specificity; SEN, sensitivity.
P_2: DeLong Test with Model 2; P_3: DeLong Test with Model 3.
Bold represents statistically significant difference.
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+ 0 _ wavelet − LLH_ glcm _Correlation ∗ 0:051930824

+ 0 _ squareroot _ f irstorder _ Skewness ∗( − 0:006017558)

+5 _wavelet

−HHH_ glszm _ LowGrayLevelZoneEmphasis ∗ 0:110547153

+ 0 _ wavelet −HHL _ f irstorder _ Skewness ∗ 0:212455284

+5 _wavelet

−HLH_ glszm _ SmallAreaHighGrayLevelEmphasis ∗ 0:189145205
3.3 Model validation

Table 2 summarizes the performance metrics of the models

developed for the two classification tasks, while the ROC curves for

the three models in both tasks are depicted in Figure 3.

For classification task 1, Model 2 demonstrated superior

predictive performance across multiple datasets. In the validation

set, it achieved the highest AUC (0.844) (Figure 3B), exceptional

sensitivity (0.955), and satisfactory accuracy (0.787), underscoring

its robustness in identifying true positive cases. Notably, in the test
Frontiers in Oncology 09
set, it outperformed the other models with an AUC of 0.749

(Figure 3C) and a sensitivity of 0.885, highlighting its potential

for reliable clinical application.

For classification task 2, Model 2 exhibited superior

performance across multiple datasets, particularly in the test set,

where it achieved the highest AUC (0.802) (Figure 3F), sensitivity

(0.862), and accuracy (0.808) compared to the other models.

Additionally, (Figures 3D, E) showed consistent performance in

both the training set (AUC 0.850) and validation set (AUC 0.801),

indicating its generalizability. Model 2 successfully predicted all six

lesions from the three multifocal breast cancer patients in the test

set as HER2-low expressing. These findings underscore the added

value of incorporating peritumoral radiomics features within a

5mm margin, which enhances predictive performance over the

intratumoral only model.

In Task 1, although no statistically significant differences were

observed between Models 1 and 3 or between Models 2 and 3 in the

test set, a notable distinction was identified between Models 1 and 2.

This finding suggests that Model 2 outperformed bothModels 1 and 3.

In Task 2, the DeLong test showed no significant differences

between Models 1 and 2 or between Models 2 and 3 in the training

set. However, a significant difference was observed between Models 1

and 3, suggesting that Model 3, which extracted a greater number of

features from both the tumor and its surrounding tissues,

demonstrated superior performance during training. Conversely, in
FIGURE 3

ROC curves and area under the curve for classification tasks. (A) Task 1 (Training Set); (B) Task 1 (Validation Set); (C) Task 1 (Test Set); (D) Task 2
(Training Set); (E) Task 2 (Validation Set); (F) Task 2 (Test Set).
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the test set, a significant difference was found between Models 2 and

3, with Model 3 performing markedly worse than Model 2. These

findings indicate that Model 3 may have overfitted to the training

data. It is suspected that the features selected for Model 3 were highly

correlated with the training set, with a substantial proportion derived

from the peritumoral regions. Including an extensive peritumoral

area may introduce extraneous tissue, negatively affecting

performance during external validation, particularly when images

are acquired from different imaging systems.
Frontiers in Oncology 10
3.4 Calibration and decision curves for two
classification tasks

Figure 4 presents the calibration curves and DCA for the two

classification tasks using Dataset 2. The calibration curves and DCA

of all models are shown in Supplementary Figures 2–4.

The calibration curves indicate strong agreement between the

predicted and actual classification results across the training,

testing, and validation sets for both tasks.
FIGURE 4

DCA performance of three models in two classification tasks and calibration curve of model 2. (A) Decision curve for Task 1 test set; (B) Calibration
curve for Model 2 in Task 1 test set; (C) Decision curve for Task 2 test set; (D) Calibration curve for Model 2 in Task 2 test set. The x-axis and y-axis
show the threshold probability and the net benefit, respectively. The light black line shows the assumption that all breast cancer patients were
HER2-negative or HER2-zero (the strategy of “treat all”). The bold black line shows the assumption that all breast cancer patients were HER2-
negative or HER2-zero (the strategy of “treat none”).
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The DCA curve for Task 1 (Figures 4A, B) shows that Model 1

provides a net benefit across a wide probability threshold range

(0.19–0.45; 0.53–0.63), Model 2 offers a net benefit across a broader

probability range (0.05–0.54; 0.69–0.94), and Model 3 demonstrates

a net benefit across a wide threshold range (0.05–0.53; 0.76–0.93).

All three models deliver higher net benefits than the “treat none” or

“treat all” strategies.

For Task 2 (Figures 4C, D), the DCA curve shows that Model 1

provides a net benefit across a wide threshold probability range

(0.49–0.94), Model 2 offers a net benefit within a broader

probability range (0.11–0.89), and Model 3 shows a net benefit

across two distinct probability ranges (0.32–0.40; 0.63–0.94).

Similar to Task 1, all models outperformed the “treat none” and

“treat all” strategies, providing valuable insights for clinical

decision-making.
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In both Task 1 and Task 2, the DCA graphs show that Model 2

exhibits a wider range of positive net benefit values compared to

Models 1 and 3. This suggests that Model 2 is better equipped to

account for a broader spectrum of clinical scenarios, ultimately

enabling patients to derive maximum benefit from the

predictive modeling.
3.5 Univariate and multivariate analysis of
clinical and ultrasound variables

Table 3 presents a comparative analysis of the clinical and

pathological characteristics between patients with different HER2

statuses in Dataset 1. We aim to identify independent predictive

factors for HER2 expression levels through the analysis of clinical
TABLE 3 Univariate analysis of clinical factors distinguishing HER2 status in dataset 1.

Variables HER2-Negative VS. Positive P HER2-Zero VS. Low P

HER2-Negative
(n=142)

HER2-Positive
(n=60)

HER2-
Zero (n=29)

HER2-
Low (n=113)

Age (years),Mean ± SD 56.69 ± 11.36 55.78 ± 9.61 0.563 56.62 ± 14.73 56.71 ± 10.4 0.976

USsize (cm),Median (Q1,Q3) 2 (1.4,2.58) 2.35 (1.7,2.8) 0.008 2.1 (1.4,2.7) 2 (1.5,2.5) 0.548

Patsize (cm),Median (Q1,Q3) 2 (1.42,2.6) 2.5 (2,3) 0.002 2 (1.3,2.7) 2 (1.5,2.6) 0.911

USLN,n (%) 0.097 0.407

Negative 112 (79) 40 (67) 25 (86) 87 (77)

Positive 30 (21) 20 (33) 4 (14) 26 (23)

PatLN,n (%) 1 0.471

Negative 89 (63) 37 (62) 16 (55) 73 (65)

Positive 53 (37) 23 (38) 13 (45) 40 (35)

BIRADS,n (%) 0.318 0.605

4A 13 (9) 5 (8) 2 (7) 11 (10)

4B 37 (26) 12 (20) 10 (34) 27 (24)

4C 63 (44) 35 (58) 13 (45) 50 (44)

5 29 (20) 8 (13) 4 (14) 25 (22)

SE,n (%) 0.65 0.435

2 3 (2) 1 (2) 0 (0) 3 (3)

3 19 (13) 8 (13) 2 (7) 17 (15)

4 31 (22) 18 (30) 5 (17) 26 (23)

5 89 (63) 33 (55) 22 (76) 67 (59)

SWVmean (m/s),Mean ± SD 5.07 ± 1.67 5.21 ± 1.63 0.578 5.27 ± 1.74 5.02 ± 1.65 0.489

SWVmax (m/s),Median
(Q1,Q3)

6.33 (4.86,8.27) 6.28 (4.86,8.01) 0.957 7.14 (5.24,8.65) 6.31 (4.72,8.26) 0.387

SWVmin (m/s),Median
(Q1,Q3)

3.82 (3.03,4.59) 4.03 (3.11,4.77) 0.52 3.97 ± 1.18 3.85 ± 1.25 0.64

(Continued)
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and ultrasound variables, and subsequently integrate these factors

with the radiomics model. This combined approach seeks to

enhance the predictive accuracy and clinical utility of the model,

providing a more comprehensive tool for assessing HER2 status in

breast cancer.

The analysis comparing HER2-negative and HER2-positive

breast cancer patients revealed statistically significant differences

in several parameters, including tumor diameter, convergence sign,

PR status, and Ki-67 expression status (p < 0.05). For preoperative

predictions, ultrasound assessment of tumor diameter and

convergence sign under ABVS showed significant relevance.

However, no significant differences were found for age, LN

metastasis, BIRADS score, elasticity score, SWV mean, SWV

maximum, SWV minimum, and ER status (p > 0.05).

The analysis of HER2-low expression breast cancer patients and

those with HER2-zero revealed no statistically significant

differences in the following variables: age, lesion diameter, LN

metastasis, BIRADS score, elasticity score, SWV minimum, SWV

mean, SWV maximum, presence of convergence sign, PR status,

and Ki-67 status (p > 0.05). A significant difference was found only
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in ER status (p < 0.05); however, it cannot be used for

preoperative prediction.

Table 4 presents a multivariate analysis of key preoperative

factors, including ultrasound-assessed tumor diameter,

convergence sign, and radiomics scores associated with clinical

pathological characteristics. The findings show that, among these

variables, only the radiomics score demonstrates a statistically

significant ability to differentiate between HER2-negative and

HER2-positive expression. We believe that the radiomics features
TABLE 3 Continued

Variables HER2-Negative VS. Positive P HER2-Zero VS. Low P

HER2-Negative
(n=142)

HER2-Positive
(n=60)

HER2-
Zero (n=29)

HER2-
Low (n=113)

Convergence,n (%) 0.039 0.28

Negative 73 (51) 41 (68) 18 (62) 55 (49)

Positive 69 (49) 19 (32) 11 (38) 58 (51)

ER,n (%) 0.201 0.008

Negative 27 (19) 17 (28) 11 (38) 16 (14)

Positive 115 (81) 43 (72) 18 (62) 97 (86)

PR,n (%) <0.001 0.105

Negative 35 (25) 34 (57) 11 (38) 24 (21)

Positive 107 (75) 26 (43) 18 (62) 89 (79)

KI67 (20),n (%) 0.027 0.211

Low 29 (20) 4 (7) 3 (10) 26 (23)

High 113 (80) 56 (93) 26 (90) 87 (77)

Molecular subtype,n (%)

HER2+ 0 (0) 16 (27) 3 (10) 21 (19)

LA 24 (17) 0 (0) 16 (55) 76 (67)

LB- 92 (65) 0 (0) 10 (34) 16 (14)

LB+ 0 (0) 44 (73) (n=29) (n=113)

TN 26 (18) 0 (0) 56.62 ± 14.73 56.71 ± 10.4
front
SD, standard deviation; USsize, ultrasound image lesion size; Patsize, lesion size of pathological specimens; USLN, ultrasound-reported lymph node status; PatLN, pathologically confirmed
lymph node metastasis; BIRADS, Breast Imaging Reporting and Data System; SE, strain elastography score; SWV, shear wave elastography; ER, estrogen receptor; PR, progesterone receptor;
HER2, human epidermal growth factor receptor-2
Bold represents statistically significant difference.
TABLE 4 Multivariate logistic regression analysis for distinguishing
HER2-negative and HER2-psositive expression in Dataset 1.

Variables B SE Wald OR(CI) P

Convergence -0.646 0.391 2.729 0.524(0.239~1.116) 0.0986

USsize 0.221 0.159 1.915 1.247(0.919~1.733) 0.1664

Radscore 2.327 0.4 33.909 10.25
(4.964~23.956)

<0.001
ie
OR, odds ratio; CI, confidence interval; USsize, ultrasound image lesion size.
Bold represents statistically significant difference.
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effectively capture information such as ultrasound tumor size and

the convergence sign around the tumor.
4 Discussion

An increasing body of research shows that radiomics models

constructed using both intratumoral and peritumoral features

outperform those relying solely on intratumoral characteristics.

Moreover, the optimal peritumoral region varies depending on

the cancer location and the specific predictive objectives (33–35). A

study aimed at predicting Ki-67 expression levels in breast cancer

demonstrated that combining intratumoral features with a 10mm

peritumoral region provided the best predictive capability (19).

Additionally, radiomics based on Contrast-Enhanced Spectral

Mammography, incorporating the intratumoral region plus a

5mm peritumoral area, has shown promising results, achieving a

maximum AUC of 0.85 for predicting neoadjuvant chemotherapy

response in breast cancer (36).

This study focused on improving the non-invasive preoperative

prediction of HER2 expression levels by extracting radiomics

features from the tumor region as well as the 5mm and 10mm

peritumoral zones to construct various radiomics models.

Ultimately, our findings revealed that the integration of

intratumoral regions with 5mm peritumoral areas provided the

highest performance for both classification tasks. This moderate

extension into the peritumoral space facilitates the acquisition of

relevant microenvironmental data, including factors such as

peritumoral edema (37), tumor-stroma interactions (38), and

immune cell infiltration. Furthermore, peritumoral radiomics

features can provide insights into the biological characteristics

and pathological responses of HER2-positive breast cancer to

preoperative targeted therapy by detecting biological information

related to lymphocytic spatial structure, vascular invasion, and the

immune response of surrounding breast tissue (39). This study also

confirms that peritumoral characteristics are not only capable of

distinguishing HER2-negative from HER2-positive expressions but

also of effectively differentiating between HER2-zero and HER2-low

expression cases.

In both classification tasks, a common issue observed was a

slight decrease in AUC for the test set compared to the training set.

We hypothesize that this decline may be due to the fact that the

majority of the test set images were obtained using the Invenia

ABVS ultrasound system at Hospital 4, which produces imaging

results that differ slightly from those of the Acuson S2000

ultrasound systems used in the other hospitals. Additionally, the

relatively small training sample size could also be a contributing

factor. However, the comparable AUC levels between the training

and test sets suggest that the tumor and peritumoral combination

model developed in this study maintains good generalizability, even

in the presence of imaging discrepancies. This conclusion is further

supported by the decision curves and calibration plots, which also

demonstrate the model’s robustness.

In radiomics research, SMOTE has been widely utilized to

handle small sample sizes and imbalanced data (30). Compared
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to simple oversampling methods, such as random duplication,

SMOTE generates new samples through interpolation, better

preserving the biological significance of tumor heterogeneity

features, such as texture and morphology. Although this

algorithm was employed in the model development, we observed

a phenomenon of high sensitivity and low specificity in the test set

in this study, which is also commonly seen in the evaluation metrics

of other models. We provide the following analysis for this

observation: First, the imbalance in the training set data, which

was addressed through oversampling, may have prioritized overall

model performance at the expense of specificity. Second, Due to the

limited sample size of the overall dataset, the training set was

relatively small and exclusively comprised images from a single

ultrasound device. whereas approximately two-thirds of the test set

cases were acquired using a different ultrasound device. This limited

the model’s exposure to diverse data sources, contributing to the

observed lower specificity.

In breast cancer treatment, HER2-positive patients require

targeted therapies (e.g., trastuzumab), making the cost of missed

diagnoses (low sensitivity) far greater than that of false positives

(low specificity). Therefore, high sensitivity (88.5%) holds greater

clinical value. The disparity in imaging devices between the training

and test sets underscores the importance of incorporating

heterogeneous data sources to enhance model generalizability and

performance. In future studies, we aim to collect more data from

this imaging device to incorporate into the training set, which may

resolve the current issues and further improve model performance.

The integrated model proposed in this study shows promise as a

non-invasive approach for facilitating personalized clinical

diagnosis and treatment strategies. In the HER2-negative versus

HER2-positive classification task, the test set AUC reached 0.749,

surpassing the performance of an earlier radiomics model

developed using dynamic contrast-enhanced MRI, which reported

an AUC of 0.713 (35). For the HER2-low expression classification

task, our model exhibited moderate predictive capability, achieving

an AUC of 0.850 in the training dataset, 0.802 in the validation

dataset, and 0.801 in the testing dataset. In contrast, a previous

study using a radiomics model based on T1-weighted imaging and

apparent diffusion coefficient sequences achieved AUC values of

0.820 in the training dataset, 0.776 in the validation dataset, and

0.711 in the testing dataset (40). Our model’s predictive

performance not only surpasses that of earlier studies but also

benefits from a larger test set (130 cases in our study versus 43 cases

in the previous study). Additionally, this study integrated imaging

data from different equipment across multiple hospitals, which

provides more robust and convincing results.

The prediction results for the three multifocal breast cancer

patients in the test set were analyzed. All three patients had bilateral

breast lesions, and all six lesions were identified as HER2-low

expressing. Model 2 successfully predicted these six lesions

correctly, which holds significant clinical implications for

treatment guidance. Although literature suggests that

approximately 5-10% of multifocal breast cancer patients exhibit

HER2 heterogeneity across different lesions (41–43), the multifocal

cases in this study were limited and demonstrated consistent HER2
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expression. Further in-depth analysis of HER2 expression

heterogeneity in multifocal patients will require an expanded

cohort of multifocal cases. Around 50% of breast cancer patients

classified as HER2-negative display low HER2 expression, thereby

restricting their available treatment options. A common

characteristic of biomarkers is that their assessment primarily

guides treatment decisions rather than defining new biological

subtypes. Research has confirmed substantial differences between

HER2-low and HER2-zero breast cancers regarding Ki-67

expression levels, hormone receptor status, and mutation rates in

the PI3K-Akt signaling pathway (8), disease-free survival, overall

survival (44), and response to neoadjuvant chemotherapy (7). Novel

ADCs have provided novel targeted treatment strategies for patients

with HER2-low breast cancer (45–47). T-DXd has demonstrated

manageable safety (46) and superior efficacy in terms of tumor

shrinkage and prolonged survival in HER2-low expressing breast

cancers (47), providing significant therapeutic benefits. Defining the

HER2-low expressing subgroup of breast tumors enables both

triple-negative breast cancers and hormone receptor-positive to

benefit from T-DXd, signaling potential major advances in future

treatment algorithms.

In current clinical practice, invasive procedures such as core

needle biopsy are essential for diagnosing breast cancer and

determining HER2 status through IHC. Due to the intrinsic

heterogeneity of HER2 expression, the diagnosis of HER2-low

breast cancer based on core needle biopsy results is prone to

errors. Approximately 15.3% of cases are incorrectly categorized

as HER2-negative, while 7.3% are misclassified as HER2-positive

(48). A recent study revealed that in patients with HER2-negative

primary breast cancer, residual disease was observed following

neoadjuvant chemotherapy, the overall rate of HER2 status

change was 32.4%, including 1.1% shifting from HER2-negative

to HER2-positive, transition rates included 15.4% shifting from

HER2-low to HER2-zero and 15.9% moving from HER2-zero to

HER2-low (49). These findings underscore the importance of

closely monitoring HER2 expression changes during the

management of HER2-negative breast cancer. Besides providing a

non-invasive method for predicting preoperative HER2 expression

levels, our model can assist in improving the accuracy of HER2

assessment in core needle biopsy specimens. This enhances the

reliability of biopsy pathology results, providing more precise

guidance for clinical treatment decisions tailored to each

patient’s specific condition, thereby ensuring appropriate

therapeutic interventions.

The excellent reproducibility of ABVS minimizes dependence

on the clinical expertise of radiologists for procedures such as

scanning, equipment adjustments, and image archiving, thereby

improving both the standardization and precision of examinations

(50). Previous research has shown that ABVS is comparable to MRI

in its effectiveness for measuring tumor size (17, 51). These studies

have shown that ABVS offers distinct advantages for observing

breast lesions, providing strong justification for the implementation

of 3D target delineation in the present study.

In this study, when predicting HER2-negative and HER2-

positive status, tumor size and the retraction phenomenon
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assessed by ABVS were significant in both univariate and

multivariate clinical-pathological analyses in the training set (p <

0.05). The retraction phenomenon, a typical feature of ABVS in the

coronal plane, is particularly effective in visualizing the infiltrative

growth of breast cancer. Previous research has shown that ABVS

significantly enhances the accuracy of early detection and

complicates the diagnosis of breast cancer in dense breast tissue

due to the occurrence of this retraction phenomenon (52). The

growth of fibrous tissue surrounding the breast tumor, combined

with tumor tissue infiltration and traction, leading to the

surrounding tissue being drawn toward the tumor, resulting in a

radial high-echo band surrounding the tumor on ABVS images.

The retraction phenomenon can limit the rapid invasion and

distant metastasis of breast cancer cells, allowing the immune

system more time to respond to the tumor (53). Tumor size on

ABVS has been shown to be significantly linked to ALNM in

patients with clinical T1-T2 breast cancer (54). This study also

revealed the importance of these two indicators in predicting HER2

levels in breast cancer. However, when these two risk factors were

incorporated into the multivariate logistic regression analysis

alongside the developed radiomics score, their p-values were >

0.05. This phenomenon has been observed in other studies, such as

in predicting the benign or malignant nature of breast tumors and

predicting whether breast cancer has ALNM (21, 55). We believe

that the radiomics data extracted from the raw ultrasound images

can fully capture the tumor and peritumoral information.

In this study, the radiomics features primarily derived from

texture characteristics, such as the Gray-Level Co-occurrence

Matrix and first-order statistical metrics, with most of the texture

features obtained through wavelet transformations. Wavelet-based

texture features have been shown in previous studies to hold

significant value in the diagnosis of tumor lesions (56). The key

benefit of wavelet transformation in image analysis lies in its ability

to perform multi-scale analysis, enabling the extraction of texture

details across different levels of granularity. Additionally, it

demonstrates sensitivity to direction, which facilitates the precise

identification of texture changes across various directions.

Moreover, its time-frequency localization characteristics enable

the accurate detection of localized variations within the image.

Furthermore, wavelet transformation improves image contrast,

demonstrates a notable degree of noise resistance, and efficiently

compresses image information, thereby enhancing the robustness

and effectiveness of feature extraction (57). Through the

quantification of texture variations in breast lesions, we effectively

identified subtle heterogeneity within the lesions, enabling effective

differentiation of HER2 expression levels in the tumors.

This study has several strengths. It includes a multi-center

external validation cohort with data from multiple hospitals

using different ABVS machines and settings, demonstrating

the generalizability of the radiomics models developed and

confirming their clinical applicability. Moreover, unlike the

traditional 2D segmentation of ultrasound images, we conducted

segmentation of ABVS images and obtained three-dimensional

lesion features for analysis, providing a more comprehensive

representation of the tumor’s characteristics. Additionally, the
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consistency of the extracted features was assessed using the ICC

before feature selection, further enhancing the reliability of the

radiomics models.

This study has several limitations: (1) Being a retrospective

study, it is inherently prone to potential selection bias that may be

unavoidable. (2) Although patients were recruited from four

centers, the sample size remains relatively small, particularly for

subgroups such as multifocal cases or HER2-low expressing lesions.

This limitation may affect the generalizability of our findings. While

the current model demonstrated acceptable predictive performance

(AUC: 0.76–0.79), we acknowledge that the lack of harmonization

algorithms, such as ComBat, may introduce variability. This is

particularly relevant given that two-thirds of the test set images

were acquired using a different scanner than the training set. In

subsequent studies, we plan to expand the dataset to include more

cases from diverse imaging devices, integrate ComBat

harmonization to reduce inter-scanner variability, and

incorporate multi-scanner data into the training set to improve

model generalizability. (3) Currently, the delineation of target

regions is performed manually, which can be time-consuming for

three-dimensional images. Future efforts will consider adopting

semi-automated or fully automated contouring methods to

minimize the complexity of model application and improve

prediction speed. (4) Although significant differences in clinical

and ultrasound features were observed in univariate analyses, a high

correlation and collinearity with omics scores were noted. Future

analyses will incorporate additional clinical pathological factors,

such as serological markers, to refine the model further.
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