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2Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States 
Introduction: Breast cancer is the most frequently diagnosed cancer in women 
worldwide. Alcohol consumption is a significant and modifiable risk factor, yet 
the mechanisms linking alcohol to breast cancer progression remain unclear. 
Recent evidence suggests that the gut microbiome—a complex ecosystem that 
modulates metabolism, immunity, and inflammation—may act as a mediator of 
alcohol-induced tumor promotion. We hypothesized that binge-like alcohol 
exposure induces gut dysbiosis, which in turn drives systemic inflammation and 
carcinogenic processes. 

Methods: We utilized MMTV-Wnt1 transgenic mice, a well-established model for 
mammary tumor development, along with wild-type FVB mice. Adolescent and 
adult female mice were administered binge-like doses of ethanol via 
intraperitoneal injection. Fecal samples were collected and analyzed by 16S 
rRNA gene sequencing to assess microbial diversity, composition, and 
taxonomic changes in response to alcohol exposure. 

Results: Binge-like alcohol exposure significantly reduced gut microbial richness 
in adult Wnt1 and FVB mice. In both adolescent and adult mice, alcohol markedly 
altered the composition of the gut microbiota across both strains. Differential 
abundance analysis identified specific microbial taxa significantly impacted by 
ethanol  treatment,  suggesting  targeted  perturbations  of  the  gut  
microbial community. 

Conclusion: Our findings demonstrate that intraperitoneal binge-like alcohol 
exposure induces gut dysbiosis in both tumor-prone and wild-type mice. These 
alterations in the gut microbiome may contribute to the pro-inflammatory and 
tumor-promoting effects of alcohol in breast tissue. This study provides insights 
into the potential role of gut dysbiosis in alcohol-induced mammary tumor 
promotion and offers avenues for future research. 
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Introduction 

Alcohol consumption has emerged as a critical risk factor for 
breast cancer as many epidemiological and experimental studies have 
demonstrated a positive correlation between alcohol consumption 
and increased breast cancer risk (1–6). However, the cellular and 
molecular mechanisms underlying alcohol’s tumor promotion 
remain unclear. There are several proposed mechanisms. For 
example, alcohol consumption can elevate the estrogen levels in 
both premenopausal and postmenopausal women, which may 
contribute to the effect of alcohol on increased breast cancer risk 
(7–10). Alcohol and its metabolite, acetaldehyde, are both known to 
damage DNA and induce gene mutations (11, 12). Alcohol exposure 
can also promote the accumulation of excessive reactive oxygen 
species (ROS) and oxidative stress, which may promote mammary 
carcinogenesis and aggressiveness (5, 11). Recently, studies have 
shown that alcohol consumption may also affect the gut 
microbiome, an essential regulator of systemic inflammation, 
estrogen metabolism, and immune responses, suggesting a novel 
pathway through which alcohol may impact breast cancer risk and 
progression (13–15). 

The gut microbiome is the complex community of microbes 
such as bacteria, viruses and fungi that reside in the gastrointestinal 
system and modulate the functions of local and distant organs 
through metabolic, immunologic and hormonal pathways (16–18). 
For instance, short-chain fatty acids produced by microbial 
fermentation of dietary fiber regulate immune responses and gut 
barrier function (19–21). Certain gut bacteria can influence the 
production of neurotransmitters such as serotonin and dopamine, 
thereby impacting brain function and behavior (22, 23). A 
disruption in the composition of the gut microbiome, known as 
gut dysbiosis, is characterized by reduced microbial diversity, loss of 
beneficial bacteria or overgrowth of harmful bacteria. Gut dysbiosis 
has been linked to a wide range of diseases including breast cancer 
(24, 25). Recent studies have suggested that gut dysbiosis plays a 
role in various aspects of breast cancer, including tumorigenesis, 
disease progression, metastasis and treatment outcome (26–29). For 
example, a gut microbiome profiling study conducted in the 
Midwestern United States revealed gut dysbiosis in breast cancer 
patients, characterized by the depletion of short-chain fatty acid­
producing gut bacteria (30). Additionally, a pilot study reported 
associations between gut microbiome composition and breast 
tumor characteristics, such as receptor status, stage, and grade, as 
well as established breast cancer risk factors (31). 

Emerging evidence has demonstrated that alcohol consumption 
can disrupt the gut microbiome and alcohol-induced gut dysbiosis 
is considered an early factor in alcohol-related disorders such as 
alcohol use disorders (AUD) and alcoholic-liver disease (ALD) (13– 
15, 32). The role of gut dysbiosis in alcohol-related breast cancer, 
however, has not yet been studied. Using a mammary tumorigenesis 
model of MMTV-Wnt1 transgenic mice, we have previously shown 
that alcohol exposure enhanced tumorigenesis and aggressiveness, 
with adolescent mice showing greater sensitivity to the effects of 
alcohol than adults (33). In this study, we aimed to determine 
whether alcohol exposure alters the gut microbiome in MMTV-
Frontiers in Oncology 02 
Wnt1 mice prior to the onset of mammary tumorigenesis by 
analyzing changes in gut bacterial composition following 
alcohol exposure. 
Materials and methods 

Animals and experimental groups 

FVB MMTV-Wnt1 [FVB.Cg-Tg (Wnt1)1Hev/J] transgenic and 
FVB wild type (WT) mice were obtained from The  Jackson
Laboratories (Bar Harbor, ME), bred, and housed in a climate­

controlled animal facility. All procedures were reviewed and 
approved by the Institutional Animal Care and Use Committee 
(IACUC) of the University of Iowa. In this study, only female mice 
were used. Adolescent mice (5-week-old) or adult mice (10-week­
old) from either FVB wt or MMTV-Wnt1 (Wnt1) transgenic strain 
were assigned into control and alcohol exposure groups. Two ages 
were selected because we previously demonstrated that adolescent 
Wnt1 mice were more susceptible to alcohol-induced mammary 
tumor promotion than adult mice (33). For alcohol exposure, the 
animals received a daily intraperitoneal (IP) injection of either PBS 
(control) or ethanol solution (2.5 g/kg, 25% w/v) for 15 days. The IP 
route was selected over oral gavage to model binge-like alcohol 
exposure while minimizing stress and gastrointestinal irritation, 
thereby allowing for more direct assessment of systemic ethanol 
effects on mammary tissue (33). All mice were monitored daily by 
palpation to ensure none developed mammary tumors. 

The experimental groups were assigned based on age, strain, and 
treatment (Figure 1). The adolescent mice started at 5 weeks old (5W) 
and became 7 weeks old (7W) after 15 days of treatment. The adult 
mice started at 10 weeks old (10W) and became 12 weeks old (12W) 
after a 15-day treatment period. There were four experimental groups 
of animals used in this study: 1) Adolescent FVB which included the 
control group before (Control_5W, n = 7) or after PBS treatment 
(Control_7W, n = 7) and the ethanol group before (Ethanol_5W, n = 
5) or after ethanol treatment (Ethanol_7W, n = 5); 2) Adult FVB 
which included the control group before (Control_10W, n = 8) or 
after PBS treatment (Control_12W, n = 8) and the ethanol group 
before (Ethanol_10W, n = 8) or after ethanol treatment 
(Ethanol_12W, n = 8); 3) Adolescent Wnt1 which included the 
control group before (Control_5W, n = 5) or after PBS treatment 
(Control_7W, n = 5) and the ethanol group before (Ethanol_5W, n = 
7) or after ethanol treatment (Ethanol_7W, n = 7); 4) Adult Wnt1 
which included the control group before (Control_10W, n = 6) or 
after PBS treatment (Control_12W, n = 6) and the ethanol group 
before (Ethanol_10W, n = 7) or after ethanol treatment 
(Ethanol_12W, n = 7). 
Fecal sample collection, extraction of DNA 
and 16s RNA sequencing 

Fecal samples from each animal were collected either one day 
before or after the exposure and stored at -80°C freezer until further 
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processing for DNA extraction. Microbial DNA extraction, 16S 
rRNA amplicon, and sequencing were performed according to a 
previously published protocol (34). Briefly, DNA was isolated using 
DNeasy PowerLyzer PowerSoil Kit (Qiagen, Germantown, MD) as 
per the manufacturer’s instructions, including the recommended 
bead-beating step. The sequencing library was prepared using a 2­
step amplification, where the V3-V4 region of the bacterial 16S 
rRNA gene was amplified in step 1, and barcodes were added using 
the Nextera XT Index Kit (Illumina MiSeq) in step 2. PCR products 
were purified and sequenced using the Illumina MiSeq platform. 
The R based platform Divisive Amplicon Denoising Algorithm 2 
(DADA2) (35) was used to trim, merge, and filter reads and 
generate an amplicon sequence variant (ASV) table. The ASVs 
were taxonomically classified from kingdom to species levels using 
the Silva database (version 138.1), with a median read count of 
49,839 (ranging from 1,667 to 78,455 reads). 
Microbiome analyses and visualization 

Microbial communities were analyzed using previously 
described methods for each experimental group (30, 34, 36). 
Briefly, custom R (Version 4.3.1) scripts were utilized, integrating 
packages such as phyloseq (37), vegan (38), ggpubr (39), dplyr (40), 
microbiome (41), tidyr (42), sigminer (43), and ggplot2 (44). Except 
Frontiers in Oncology 03 
for alpha diversity, reads underwent normalization using constant­
sum scaling and log10 transformation at the bacterial level to their 
median sequencing depth. Alpha diversity analysis was conducted 
on unfiltered data using the Chao1 index. Beta diversity was 
assessed via Principal Component Analysis (PCA) based on 
weighted UniFrac distances, with significance tested through 
PERMANOVA. A heatmap of the most abundant genera was 
generated using the phyloseq (37) and  ggplot2 (44) packages,

visualizing top bacterial genera based on weighted UniFrac 
distances (45). Multidimensional Scaling (MDS) was employed 
for ordination, with sample groups arranged along the x-axis to 
represent relative abundance. To visualize enrichment, the LEfSe 
plot was produced using the microbiomeMarker (46) package’s 
“run_lefse” function, highlighting the genera enriched in the 
different groups within each experimental group using the 
Kruskal-Wallis test. 
Statistical analyses 

A two-way analysis of variance (ANOVA) was conducted with 
age and treatment as independent variables to analyze the relative 
abundance of selected microbial taxa across experimental groups. 
Post hoc comparisons were performed using Tukey’s correction for 
multiple comparisons, utilizing GraphPad Prism Version 10.3.1 
FIGURE 1 

Design of experimental groups. Both adolescent (5-week-old) and adult (10-week-old) FVB and Wnt1 mice were treated with either PBS or ethanol 
for 15 days and one day after the treatment, their feces were collected and sent for DNA purification and 16s rRNA sequencing for gut microbiome 
composition. The number of each experimental groups are as follows: Adolescent FVB which includes control group before (FVB control_5W, n = 7) 
or after PBS treatment (FVB control_7W, n = 7) and ethanol group before (FVB Ethanol_5W, n = 5) or after ethanol treatment (FVB Ethanol_7W, n = 
5); 2) Adult FVB including control group before (FVB control_10W, n = 8) or after PBS treatment (FVB control_12W, n = 8) and ethanol group before 
(FVB Ethanol_10W, n = 8) or after ethanol treatment (FVB Ethanol_12W, n = 8); 3) Adolescent Wnt1 which includes control group before (Wnt1 
control_5W, n = 5) or after PBS treatment (Wnt1 control_7W, n = 5) and ethanol group before (Wnt1 Ethanol_5W, n = 7) or after ethanol treatment 
(Wnt1 Ethanol_7W, n = 7); 4) Adult Wnt1 including control group before (Wnt1 control_10W, n = 6) or after PBS treatment (Wnt1 control_12W, n = 6) 
and ethanol group before (Wnt1 Ethanol_10W, n = 7) or after ethanol treatment (Wnt1 Ethanol_12W, n = 7). 
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(GraphPad Software, Inc., www.graphpad.com). Additionally, the 
Wilcoxon matched-pairs signed rank test was applied to assess the 
effects of alcohol on the abundance of microbial taxa in selected 
treatment groups. A significance threshold of p < 0.05 was set for 
all analyses. 
Results 

Microbiome analysis of alpha diversity of 
alcohol-exposed mice 

Alpha diversity refers to within-sample diversity. When examining 
alpha diversity, we are able to evaluate the distribution of microbes 
within a sample or metadata category. The Chao1 index, a statistical 
estimator that measures species richness, is widely used to assess alpha 
diversity in microbiome research including gut microbiome (47). We 
used Chao1 index to determine the effect of alcohol exposure on alpha 
diversity (Figure 2). In FVB mice, there was no significant difference in 
the Chao1 index between control groups in either adolescents 
(p control_7W vs. control_5W = 0.16)  or  adults  (pcontrol_12W vs. control_10W = 
0.14). Alcohol exposure did not significantly change the Chao1 index in 
adolescent mice (pEthanol_7W vs. Ethanol_5W = 0.2),  but significantly 
Frontiers in Oncology 04
reduced the number of microbial species in adults (pEthanol_12W vs. 

Ethanol_10W = 0.0013). In Wnt1 mice, the Chao1 index similarly showed 
no significant differences between control groups either in adolescents 
(pcontrol_7W vs. control_5W = 1) or adults (pcontrol_12W vs. control_10W = 1).  
Alcohol exposure did not significantly alter the Chao1 index in 
adolescents (pEthanol_7W vs. Ethanol_5W = 0.28), but significantly 
reduced microbial richness in adults (pEthanol_12W vs. Ethanol_10W = 
0.0023). These findings demonstrate that alcohol exposure 
significantly reduced alpha diversity in adults in both mouse strains, 
whereas the impact on the adolescents was not significant. 
Microbiome analysis of beta diversity of 
alcohol-exposed mice 

Beta diversity is the diversity between samples and a common 
statistical method to assess the similarity or differences in microbial 
compositions between samples (47). To examine the impact of 
alcohol exposure on microbial diversity across experimental groups, 
we employed weighted UniFrac, a quantitative measure of beta 
diversity (Figure 3). In FVB mice, treatment significantly affected 
gut microbial composition in both adolescents (p = 0.001) and 
adults (p = 0.001). Further analysis by treatment revealed significant 
FIGURE 2 

Effects of alcohol on microbial species richness. The effect of alcohol on alpha diversity was measured by Chao1 index in all experimental groups: 
Overall group differences were analyzed using the Kruskal–Wallis test, followed by pairwise comparisons with Wilcoxon rank-sum tests. Alcohol 
exposure significantly reduced alpha diversity in adult mice. *p < 0.05. 
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differences in the microbial community in controls across age 
groups for both adolescents (pcontrol_7W vs. control_5W = 0.01) and 
adults (pcontrol_12W vs. control_10W = 0.025), and an even more marked 
differences in alcohol groups in both adolescents (pEthanol_7W vs. 

Ethanol_5W = 0.002) and adults (pEthanol_12W vs. Ethanol_10W = 0.002). A 
similar trend was observed in Wnt1 mice, with a near-significant 
treatment effect on gut microbial composition in adolescents (p = 
0.076), and a significant effect in adults (p = 0.013). When separated 
by treatment, the control groups showed a nearly significant 
difference in adolescents (pcontrol_7W vs. control_5W = 0.055) and 
adults (pcontrol_12W vs. control_10W = 0.088), while significant 
differences were observed in alcohol-exposed adolescents 
(pEthanol_7W vs. Ethanol_5W = 0.013) and adults (pEthanol_12W vs. 

Ethanol_10W = 0.014). These results suggested that alcohol exposure 
has a more pronounced impact on the beta diversity, compared to 
the effects with natural age-related development in controls 
regardless of strains and ages. 
 

The abundance of microbial populations of 
alcohol-exposed mice 

To highlight the most abundant microbial taxa in each 
experimental group, we used heatmap visualization to display the 
top 20 most prevalent microbial populations (Figure 4). The 
heatmap analysis revealed a similar pattern of microbial 
abundance across the experimental groups. In both adolescent 
and adult FVB experimental groups, the commonly identified 
taxa included the species Akkermansia muciniphila; the genera 
Turicibacter, Lachnoclostridium, Lactobacillus, Lachnospiraceae_ 
NK4A136_group, and  Alistipes; the  families  Muribaculaceae, 
Frontiers in Oncology 05 
Oscil lospiraceae , and  Ruminococcaceae ; and  the order

Clostridia_vadinBB60_group. In the adolescent and adult Wnt1 
experimental groups, the taxa commonly identified were the 
species A. muciniphila and Lactobacillus intestinalis; the genera 
Bacteroides, Lachnospiraceae_NK4A136_group, Lactobacillus, 
Prevotellaceae_UCG-001, Alistipes, Rikenellaceae_RC9_gut_group, 
and  Ruminococcus ; the  famil ies  Lachnospiraceae  and  
Ruminococcaceae. The analysis showed distinct yet overlapping 
microbial profiles across experimental groups, with certain taxa 
appearing as key microbial populations such as A. muciniphila, and 
members of Lachnospiraceae and Ruminococcaceae families, 
present in both FVB and Wnt1 groups. This combination of both 
shared and distinct microbial populations between the FVB and 
Wnt1 groups may relate to their age and genetic backgrounds. 
The differential microbial populations of 
alcohol-exposed mice 

We then performed Linear Discriminant Analysis Effect Size 
(LEfSe) analysis to identify the microbial populations that are most 
affected by alcohol exposure in each experimental group (Figure 5). 
LEfSe is a biomarker discovery tool that identifies statistically 
significant differences between multiple groups. In the adolescent 
FVB experimental group, LEfSe analysis revealed that the species A. 
muciniphila and the genus Colidextribacter were the most enriched 
taxa in alcohol-exposed mice. In the adult FVB experimental group, 
alcohol exposure was associated with an enrichment of the species 
A. muciniphila, Lactobacillus reuteri, and  Parabacteroides 
goldsteinii, as  well as the  genera  Bacteroides, Dubosiella, 
Rikenellaceae_RC9_gut_group, and  Parasutterella. In the
FIGURE 3 

Effects of alcohol on microbial compositions. The effect of alcohol on beta diversity was determined by weighted UniFrac analysis in all experimental 
groups. PERMANOVA (adonis2) was applied to test for differences between groups. Alcohol exposure significantly changed the microbial 
compositions in adolescents and adults in both strains. The percentages shown on Axis.1 and Axis.2 represent the proportion of total variation in the 
microbial community composition that is captured by each principal coordinate. For instance, a label of “42.5%” on Axis.1 indicates that this axis 
explains 42.5% of the variation in the pairwise Weighted UniFrac distances among samples. Similarly, “31.7%” on Axis.2 represents an additional 31.7% 
of variation explained. 
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adolescent Wnt1 experimental group, alcohol exposure led to a 
higher abundance of the genera Faecalibaculum, Bacteroides, and 
Turicibacter. In the adult Wnt1 experimental group, alcohol 
exposure was associated with an enrichment of the species P. 
goldsteinii and L. reuteri, along with the genera Bacteroides and 
Rikenella. These results indicate that age and genetic background 
significantly affect the microbiome’s response to alcohol, with both 
overlapping and unique taxa affected across experimental groups. 
Comparisons of taxonomic abundance of 
selective microbial population 

We conducted a two-way analysis of variance (ANOVA) for 
each microbial taxon that was identified in the LEfSe analysis to 
validate the findings in each experimental group (Supplementary 
Figures 4-7). We further analyzed microbial taxa that were 
significantly altered by alcohol exposure in adolescent Wnt1 mice, 
because they were more sensitive to alcohol’s tumor promotion 
compared to adults (33). We also compared the relative abundance 
of specific taxa across other experimental groups. 

Alcohol exposure increased the abundance of several microbial 
taxa in the adolescent Wnt1 experimental group, including P. 
Frontiers in Oncology 06
goldsteinii and the genera Bacteroides, Faecalibaculum, and

Turicibacter. The abundance of these taxa was analyzed across 
various experimental groups using two-way ANOVA followed by 
Tukey’s post hoc test (Figure 6). Levels of P. goldsteinii showed a 
nearly significant increase in alcohol-exposed adolescent Wnt1 
mice (p = 0.062) and were significantly enriched in adult Wnt1 
and adult FVB mice. Although Bacteroides levels showed a non­
significant increase in the adolescent Wnt1 experimental group by 
two-way ANOVA followed by Tukey’s post hoc test (p = 0.1590), 
the Wilcoxon test revealed a significant effect (p = 0.0469, 
Supplementary Figure 1). Both adult Wnt1 and FVB experimental 
groups exhibited a significant increase in Bacteroides following 
alcohol exposure. Faecalibaculum levels were significantly elevated 
in alcohol-exposed adolescent Wnt1 mice but were notably 
decreased in the control group of adult FVB mice. Levels of 
Turicibacter were significantly increased in the adolescent Wnt1 
experimental group than that in the control group, with a near­
significant increase also observed in the adult FVB experimental 
group (p = 0.0801). 

Although A. muciniphila did not show a significant increase in 
alcohol-exposed adolescent Wnt1 mice, it is one of the most 
abundant bacterial species in the gut microbiome and was 
identified in both the heatmap and LEfSe analysis across multiple 
FIGURE 4 

Effects of alcohol on microbial taxa. Heat maps show the top 20 most prevalent microbial taxa within each experimental group. Genus names have 
been used to represent taxa, including Lachnospiraceae_NK4A136_group (for bacterium), Dubosiella (for newyorkensis), Bacteroides (for 
acidifaciens), Akkermansia (for muciniphila), Lactobacillus (for intestinalis), and Lachnospiraceae (for A2). Full taxonomic classifications can be 
accessed in the 16S rRNA gene sequencing data deposited in the Sequence Read Archive (SRA) under BioProject ID: PRJNA1248563. 
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experimental groups (Supplementary Figure 2). A detailed 
examination revealed that A. muciniphila was significantly 
elevated by alcohol exposure only in the adolescent FVB group, 
with no significant changes observed in other groups. 

In contrast, the abundance of certain microbial taxa, including 
the species L. intestinalis and the genera Anaeroplasma, Herbinix, 
and Candidatus_Saccharimonas, was decreased following alcohol 
exposure in the adolescent Wnt1 experimental group, with further 
analysis across all experimental groups (Figure 7). L. intestinalis was 
significantly reduced in the alcohol-exposed adolescent Wnt1 
experimental group, with no similar effects observed in other 
experimental groups. In the same experimental group, the 
Anaeroplasma level was significantly higher in control mice but 
lower in the alcohol-exposed mice, although this reduction was not 
statistically significant (p = 0.4502). The Wilcoxon test, however, 
showed a significant effect of alcohol on Anaeroplasma (p = 0.0312, 
Supplementary Figure 1). In addition, Anaeroplasma was 
significantly reduced following alcohol exposure in the adolescent 
FVB experimental group. Herbinix exhibited a consistent decrease 
following alcohol exposure across the adolescent Wnt1, adult Wnt1, 
and adolescent FVB experimental groups, with a nearly significant 
reduction in the adult FVB experimental group (p = 0.0715). 
Finally, Candidatus_Saccharimonas level was decreased in 
response to alcohol exposure in both the adolescent Wnt1 and 
adult FVB experimental groups. 
Frontiers in Oncology 07 
Discussion 

The Wnt1 transgene, driven by the mouse mammary tumor 
virus (MMTV) promoter, is a well-established approach for 
development of a mouse model to study mammary tumor 
development, as the Wnt1 signaling pathway is crucial for 
regulating cell proliferation, differentiation and development (48, 
49). We previously employed this model to investigate alcohol­
induced tumor promotion and found that daily intraperitoneal (IP) 
injections of ethanol (2.5 g/kg, 25% w/v) for 15 days significantly 
shortened tumor onset, increased lung metastasis, and elevated 
circulating levels of estradiol and progesterone, with adolescent 
mice showing greater sensitivity to the effects of alcohol than adults 
(33). This 15-day ethanol exposure paradigm was designed to 
mimic early-stage, heavy episodic alcohol consumption — a 
pattern prevalent among adolescents and young adults in the U.S. 
and Europe (50–53) and is more common among females in the 
U.S. (54). In this study, we further utilized this model to examine 
the impact of alcohol on the gut microbiome. Our results 
demonstrated that alcohol exposure significantly reduced 
microbial species richness as indicated by decreased Chao1 index 
in adult mice, while it had little effects on this index in adolescent 
mice. Alcohol also altered microbial compositions as indicated by 
the analysis of Beta diversity in both adolescents and adults in both 
strains. Comparative profiling identified a number of taxa 
FIGURE 5 

Effects of alcohol on specific microbial taxa. Linear Discriminant Analysis Effect Size (LEfSe) analysis was performed to identify the microbial taxa that 
were mostly affected by alcohol exposure. 
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consistently affected by alcohol across groups. Further LEfSe and 
two-way ANOVA analyses confirmed that specific taxa were targets 
of alcohol exposure. 

We first examined the impact of alcohol exposure on alpha 
diversity by assessing species richness with the Chao1 index 
(Figure 2) and species diversity with the Shannon index 
(Supplementary Figure 3). While alcohol exposure did not 
significantly alter the Shannon index, it had a notable impact on 
the Chao1 index. A reduced Chao1 index indicating a lower alpha 
diversity in the gut microbiome, has been reported in patients with 
breast cancer when compared to healthy controls in multiple 
studies (55–59). However, there are studies showing that breast 
cancer patients have different microbial compositions without any 
difference in alpha diversity (30, 60, 61). An intriguing finding from 
our study is that the Chao1 index in adolescent mice appeared more 
resilient to the adverse effects of alcohol exposure compared to 
adults (Figure 2), suggesting greater plasticity of the adolescent gut 
microbiome. The microbiome plasticity, or the ability of the gut 
microbiome to adapt to environmental changes, is known to be 
highest early in life and decline with age (62–64). Alternatively, this 
differential response may reflect age-related differences in hepatic 
alcohol metabolism, where adolescent mice exhibit higher alcohol 
Frontiers in Oncology 08
dehydrogenase and lower aldehyde dehydrogenase activity, 
potentially limiting acetaldehyde accumulation and associated 
microbial disruption (65). Together, these findings suggest that 
while adolescents may be more vulnerable to alcohol’s systemic 
effects in the context of breast cancer, their gut microbiota may 
retain greater adaptive capacity, resulting in a more nuanced and 
multifactorial response to alcohol exposure. 

Our beta diversity analysis using weighted UniFrac showed that 
changes in microbial communities over time were more pronounced in  
Wnt1 mice compared to FVB mice, with significant alterations 
observed in the alcohol-exposed groups relative to controls. These 
results suggest that alcohol exposure significantly disrupts the beta 
diversity of the gut microbiome over time, beyond the natural 
developmental changes observed in controls, and Wnt1 mice were 
more sensitive to alcohol-induced alterations. The increased sensitivity 
of gut microbiota in Wnt1 mice, may be attributed to the role of Wnt1 
signaling in regulating cell proliferation and differentiation, which 
could interact with the gut microbiome, rendering it more 
susceptible to environmental factors such as alcohol. Notably, altered 
beta diversity in the gut microbiome has been linked to various stages 
of breast cancer, including its subtypes and the presence of metastatic 
disease (28, 55, 66, 67). These variations in microbial diversity might 
FIGURE 6 

Analysis of alcohol-enriched microbial taxa. Alcohol-enriched microbial taxa were analyzed by two-way ANOVA followed by Tukey’s post hoc test. 
Selective microbial taxa including the species P. goldsteinii; the genera Faecalibaculum, Turicibacter and Bacteroides were increased by alcohol 
exposure. FVB: n = 7 for control (Con) 5W and 7W; n = 5 for ethanol (EtOH) 5W and 7W; n = 8 for control (Con) 10W and 12W; n = 8 for ethanol 
(EtOH) 10W and 12W; Wnt1: n = 5 for control (Con) 5W and 7W; n = 7 for ethanol (EtOH) 5W and 7W; n = 6 for control (Con) 10W and 12W; n = 7 
for ethanol (EtOH) 10W and 12W. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ns = not significant (p > 0.05). 
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correlate with systemic inflammation or immune markers, potentially 
influencing tumor progression and responses to therapies such as 
chemotherapy or hormone therapy (68, 69). 

Comparative analysis of microbial profiles, visualized as 
heatmaps, revealed distinct yet overlapping responses to alcohol 
exposure across experimental groups in both FVB and Wnt1 mice. 
The commonly identified taxa in all experimental groups included 
the species A. muciniphila; the  genera  Lachnospiraceae_ 
NK4A136_group, Lactobacillus and Alistipes; and  the family

Ruminococcaceae. A. muciniphila is a mucus-degrading bacterium 
that resides in the gut’s mucus layer and is often associated with gut 
barrier integrity and metabolic health (70, 71). The genus 
Lachnospiraceae_NK4A136_group , part of the  family  of
Lachnospiraceae, is known for producing short-chain fatty acids 
(SCFAs) such as butyrate, which supports gut health (19, 20). The 
genus Lactobacillus comprises numerous probiotic species known 
for their ability to produce lactic acid and promote gut health (72). 
Additionally, Alistipes, from the Bacteroidetes phylum, is often 
linked with protein fermentation and bile acid metabolism (73). 
The Ruminococcaceae family plays a role in fiber degradation and 
SCFA production, including butyrate, which supports gut barrier 
function (74). Although Wnt1 signaling can affect the gut 
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microbiome through its effects on the gut environment and 
epithelial cell turnover (75, 76), the similar microbial profiles 
observed in both FVB and Wnt1 mice suggest that alcohol 
exposure exerts a universal impact on the gut microbiome 
composition. The combination of shared and unique microbial 
populations across FVB and Wnt1 groups may reflect variations in 
age and genetic backgrounds. 

To identify specific microbial taxa that were significantly 
impacted by alcohol exposure, we performed LEfSe and two-way 
ANOVA analysis. These analyses revealed that a number of 
selective microbial taxa were increased following alcohol 
exposure; they include the genera Bacteroides, Faecalibaculum 
and Turicibacter, the species P. goldsteinii and A. muciniphila. 
The genus Bacteroides is among the most abundant genera in the 
gut, including species that play diverse roles ranging from beneficial 
to pathogenic (77). For example, Bacteroides fragilis, often isolated 
from extra-intestinal infections, can cause inflammation when it 
translocates from the gut to other organs due to a compromised 
intestinal barrier (78–80). Bacteroides fragilis and other Bacteroides 
species such as Bacteroides uniformis and Bacteroides vulgatus are 
known to produce beta-glucuronidase, an enzyme involved in the 
metabolism of estrogens and may influence estrogen-sensitive 
FIGURE 7 

Analysis of alcohol-depleted microbial taxa. Alcohol-depleted microbial taxa were analyzed by two-way ANOVA followed by Tukey’s post hoc test. 
Selective microbial taxa such as the species L. intestinalis and the genera Candidatus_Saccharimonas, Herbinix and Anaeroplasma were reduced by 
alcohol exposure. FVB: n = 7 for control (Con) 5W and 7W; n = 5 for ethanol (EtOH) 5W and 7W; n = 8 for control (Con) 10W and 12W; n = 8 for 
ethanol (EtOH) 10W and 12W; Wnt1: n = 5 for control (Con) 5W and 7W; n = 7 for ethanol (EtOH) 5W and 7W; n = 6 for control (Con) 10W and 12W; 
n = 7 for ethanol (EtOH) 10W and 12W. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ns, not significant (p > 0.05). 
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breast cancer (81, 82). Interestingly, Bacteroides fragilis has also 
been shown to exert anti-cancer and anti-proliferative effects in 
mouse breast cancer models (83). The genus Faecalibaculum, from 
the Erysipelotrichaceae family, plays a critical role in the anti-tumor 
effects of combined therapies using anti-PD-1 antibody and dietary 
supplement fucoidan in a breast cancer mouse model (84). One of 
the Faecalibaculum species, Faecalibaculum rodentium, originally 
identified as anti-tumorigenic in a mouse model for colorectal 
cancer (85), was shown to counteract the antibiotic-induced 
tumor growth acceleration in multiple breast cancer mouse 
models (86). Meanwhile, Turicibacter, typically present at low or 
moderate levels in the gut, is involved in the metabolism of lipids 
and bile acids (87). However, higher levels of Turicibacter have been 
detected in the intra-tumoral microbiome of patients with triple­
negative breast cancer (TNBC) (88) and in the gut microbiota of 
premenopausal breast cancer patients (89). P. goldsteinii is a low­
abundant probiotic in the gut microbiome that supports intestinal 
integrity and reduces inflammation in conditions such as obesity 
(90) and pulmonary diseases (91). Finally, A. muciniphila, a mucin­

degrading bacterium with anti-inflammatory properties, has been 
associated with improved outcomes in metabolic disorders, 
intestinal inflammation and several cancers (92). 

The LEfSe and two-way ANOVA analyses also revealed that 
alcohol exposure led to the reduction of several key microbial taxa: 
the species L. intestinalis, the genera Candidatus Saccharimonas, 
Herbinix and Anaeroplasma. L. intestinalis is a known probiotic 
that has been shown to support gut health and immune regulation in 
a variety of disease models (93–95). Candidatus Saccharimonas, a

genus within the family Candidatus Saccharimonadaceae, has been 
identified primarily through genetic analysis but remains uncultured, 
therefore further research is needed to elucidate its functional role. 
Herbinix, though less studied than other genera in the 
Lachnospiraceae family, is part of a group known for SCFA 
production, which plays a crucial role in maintaining gut health. 
This genus is frequently identified in microbiome studies through 
sequencing data and contributes to the overall microbial composition 
of the gut (96, 97). Anaeroplasma has been shown to exhibit anti­
inflammatory effects in lung diseases (98) and improve bile acid 
metabolism and enhance gut barrier function in metabolic disorders 
(99, 100). Nonetheless, Anaeroplasma has been negatively correlated 
with the efficacy of naringenin, a flavonoid compound in citrus fruits, 
in the treatment of non‐alcoholic fatty liver disease (101). 

In summary, our findings reveal that even short-term alcohol 
exposure significantly reduces gut microbiome diversity and 
disrupts specific microbial communities (Supplementary 
Table 1). These alterations are biologically meaningful and may 
persist beyond the exposure period. For instance, Llopis et al. 
(102) showed that two weeks of alcohol feeding altered the gut 
microbiota, triggering systemic inflammation and increased 
intestinal permeability—effects that were reversed by microbiota 
transplantation, establishing a causal link between alcohol­
induced dysbiosis and disease (102). Interestingly, we observed a 
more pronounced reduction in alpha diversity in adult mice 
compared to adolescents, a finding that contrasts with our 
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previous work showing that adolescent mice are more 
susceptible to alcohol-induced mammary tumorigenesis (33). 
This seeming discrepancy highlights the complex and context­
dependent role of the microbiota in cancer susceptibility, which 
may vary with developmental stage, immune status, and intrinsic 
tumor risk. 

The specific microbial taxa altered in this study such as 
Turicibacter, Faecalibaculum, P. goldsteinii, L. intestinalis, and  A. 
muciniphila (Supplementary Table 1), are known to regulate 
inflammation, a critical factor in carcinogenesis. Moreover, 
Bacteroides fragilis and other species, including Bacteroides uniformis 
and Bacteroides vulgatus, are implicated in estrogen metabolism, 
potentially influencing hormone-driven breast cancer pathways. 
While it remains to be determined whether these observed microbial 
shifts are causative or merely correlative, functional validation 
experiments such as fecal microbiota transplantation could clarify 
their mechanistic role. It is also currently unclear whether the 
alcohol-induced alterations in microbiome are reversible or not. A 
future study examining the effects of alcohol after a prolonged 
abstinence may be necessary. Regardless it is reversible or persistent, 
our results reveal that alcohol can impact microbiome in a preclinical 
model of breast cancer development. 

We acknowledge there are some limitations in this study. First, 
microbial abundance was not independently validated; 
complementary methods such as qPCR or targeted bacterial 
cultures  would  strengthen  these  findings.  Second,  we  
administered alcohol via intraperitoneal (IP) injection to model 
binge-like exposure with controlled dosing and to minimize stress 
and gastrointestinal irritation associated with oral gavage. While 
this approach is justified for this study, it does not fully replicate the 
physiological process of alcohol consumption through the 
gastrointestinal tract, which may differentially impact gut 
microbiome  composi t ion .  Studies  using  ora l  gavage  
administration and appropriate control groups (e.g., handling or 
gavage controls) may provide additional insight into the effects of 
alcohol consumption on the gut microbiome. 

Together, our results underscore the relevance of alcohol­
induced gut dysbiosis in shaping the tumor microenvironment 
and lay a foundation for future research into microbiota-targeted 
strategies for breast cancer prevention and therapy. 
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SUPPLEMENTARY FIGURE 1 

Wilcoxon matched-pairs signed rank test was applied to assess the effects of 
alcohol exposure on Bacteroides in adolescent Wnt1 mice (left), 
Anaeroplasma in adolescent Wnt1 mice (right). ∗p < 0.05. 

SUPPLEMENTARY FIGURE 2 

The effects of alcohol exposure on the species A. muciniphila. Two-way 
ANOVA followed by Tukey’s post hoc test was applied to analyze A. 
muciniphila in both adolescents (left) and adults (right) in FVB (left panel) 
and Wnt1 mice (right panel). FVB: n = 7 for control (Con) 5W and 7W; n = 5 for 
ethanol (EtOH) 5W and 7W; n = 8 for control (Con) 10W and 12W; n = 8 for 
ethanol (EtOH) 10W and 12W; Wnt1: n = 5 for control (Con) 5W and 7W; n = 7 
for ethanol (EtOH) 5W and 7W; n = 6 for control (Con) 10W and 12W; n = 7 for 
ethanol (EtOH) 10W and 12W. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p <  
0.0001, ns = not significant (p > 0.05) 

SUPPLEMENTARY FIGURE 3 

Effects of alcohol on microbial species richness. The effect of alcohol on 
a lpha  divers i ty  was  a lso  measured  by  Shannon  index  in  a l l  
experimental groups. 

SUPPLEMENTARY FIGURE 4 

Two-way ANOVA followed by Tukey’s post hoc test for each microbial taxon 
identified in the LEfSe analysis of adolescent FVB mice. ∗p < 0.05, ∗∗p < 0.01, 
∗∗∗p < 0.001, ns = not significant (p > 0.05). 

SUPPLEMENTARY FIGURE 5 

Two-way ANOVA followed by Tukey’s post hoc test for each microbial taxon 
identified in the LEfSe analysis of adult FVB mice (A, B). ∗p < 0.05, ∗∗p < 0.01, 
∗∗∗p < 0.001, ns = not significant (p > 0.05). 

SUPPLEMENTARY FIGURE 6 

Two-way ANOVA followed by Tukey’s post hoc test for each microbial taxon 
identified in the LEfSe analysis of adolescent Wnt1 mice. ∗p < 0.05, ∗∗p < 0.01, 
∗∗∗p < 0.001, ns = not significant (p > 0.05). 

SUPPLEMENTARY FIGURE 7 

Two-way ANOVA followed by Tukey’s post hoc test for each microbial taxon 
identified in the LEfSe analysis of adult Wnt1 mice. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p 
< 0.001, ns = not significant (p > 0.05). 

SUPPLEMENTARY TABLE 1 

Select differentially abundant microbial taxa affected by ethanol (EtOH) 
treatment in MMTV-Wnt1 and FVB wild-type mice at adolescent and adult 
stages. Taxa are listed at the genus or species level. Relative abundance 
changes are indicated for each treatment group. NS: Not significant. E*, E**, 
E***: Significantly different in post-EtOH-treated samples compared to pre-
EtOH treatment, with * indicating significance level (*p < 0.05, **p < 0.01, 
***p < 0.001).  ↑: Increased by ethanol treatment. ↓: Decreased by 
ethanol treatment. 
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