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Purpose: We present an updated study evaluating the performance of large

language models (LLMs) in answering radiation oncology physics questions,

focusing on the recently released models.

Methods: A set of 100 multiple-choice radiation oncology physics questions,

previously created by a well-experienced physicist, was used for this study. The

answer options of the questions were randomly shuffled to create “new” exam

sets. Five LLMs –OpenAI o1-preview, GPT-4o, LLaMA 3.1 (405B), Gemini 1.5 Pro,

and Claude 3.5 Sonnet – with the versions released before September 30, 2024,

were queried using these new exam sets. To evaluate their deductive reasoning

ability, the correct answer options in the questions were replaced with “None of

the above.” Then, the explain-first and step-by-step instruction prompts were

used to test if this strategy improved their reasoning ability. The performance of

the LLMs was compared with the answers from medical physicists.

Results: All models demonstrated expert-level performance on these questions,

with o1-preview even surpassing medical physicists with a majority vote. When

replacing the correct answer options with ‘None of the above’, all models

exhibited a considerable decline in performance, suggesting room for

improvement. The explain-first and step-by-step instruction prompts helped

enhance the reasoning ability of the LLaMA 3.1 (405B), Gemini 1.5 Pro, and

Claude 3.5 Sonnet models.

Conclusion: These recently released LLMs demonstrated expert-level

performance in answering radiation oncology physics questions.
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1 Introduction

Large language models (LLMs) have advanced rapidly. On the

one hand, the size of the data used for pre-training and the number

of model parameters have grown a lot. For example, GPT-2 had 1.5

billion parameters (1), GPT-3 scaled up to 175 billion (2), and GPT-

4 is estimated to have even more (3). On the other hand, the fine-

tuning methods and prompt engineering strategies have advanced

substantially (4, 5). Furthermore, agents and Retrieval-Augmented

Generation (RAG) systems built on LLMs have seen considerable

progress (6, 7). Notable recent developments as of September 2024

include OpenAI o1-preview (8), GPT-4o (9), LLaMA 3.1 (405B

parameters) (10), Gemini 1.5 Pro (11), and Claude 3.5 Sonnet (12),

demonstrating state-of-art performance in overall language

processing, reasoning, and diverse downstream applications.

The rapid evolution of LLMs also renders prior performance

evaluations outdated. As some LLMs cease providing services, new

models are introduced, and existing versions are updated, studies

published before may no longer accurately reflect the current state

of LLM capabilities. A fresh evaluation is needed to address the

dynamic landscape of LLM advancements.

In healthcare, LLMs have been explored for numerous potential

applications (13–18). For their direct use in radiation oncology,

unique challenges related to evaluation and validation arise due to

the complexity and precision of treatment, which involves both

clinical factors and physics considerations. Therefore, assessing the

performance of LLMs in addressing questions related to radiation

oncology physics is crucial. Such evaluations not only tell us how

efficiently they process and reason about radiation oncology physics

but also help us understand their limitations. In the past, several

LLMs were evaluated on the 2021 American College of Radiology

(ACR) Radiation Oncology In-Training Examination (TXIT),

revealing that GPT-4-turbo achieved the highest score of 68.0%,

outperforming some resident physicians (19). GPT-3.5 and GPT-4

were also assessed on Japan’s medical physicist board examinations

from 2018 to 2022, where GPT-4 demonstrated superior

performance with an average accuracy of 72.7% (20). To offer

insights into the recently released state-of-art LLMs and build on

our prior work (21), we present here an updated study with refined

methods eva lua t ing the i r per formance in rad ia t ion

oncology physics.

We utilized the 100-question radiation oncology physics exam

we developed based on the American Board of Radiology exam style

(22), and randomly shuffled the answer options to create “new”

exam sets. We then queried the LLMs with these new exam sets and

checked their ability to answer questions accurately. We also

evaluated their deductive reasoning ability and tested whether the

explain-first and step-by-step instruction prompts would improve

their performance in reasoning tasks.
1 The temperature was set to 0.1 rather than 0 due to the different meanings

of a temperature of 0 across different LLMs. To avoid potential unexpected

behaviors from models, we set the lower bound to 0.1 rather than 0.
2 Methods

The 100-question multiple-choice examination on radiation

oncology physics was created by our experienced medical
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physicist, following the official study guide of the American Board

of Radiology. That exam includes 12 questions on basic physics, 10

questions on radiation measurements, 20 questions on treatment

planning, 17 questions on imaging modalities and applications in

radiotherapy, 13 questions on brachytherapy, 16 questions on

advanced treatment planning and special procedures, and 12

questions on safety, quality assurance (QA), and radiation

protection. 17 out of the 100 questions are math-based and

require numerical calculation.

All the evaluated LLMs were queried with the exam questions

through Application Programming Interface (API) services

provided by their respective hosts, except LLaMA 3.1 (405B), an

open-source LLM, which was hosted by us locally at our institution.

All the LLMs used were the recently released version before

September 30, 2024. The temperature was set to 0.1 for all LLMs

to minimize variability in their responses1, with the exception of the

OpenAI o1-preview, whose temperature was fixed at 1 and could

not be changed by the user.
2.1 Randomly shuffling the answer options

Since it was difficult to know whether any LLM had been pre-

trained using our previously published 100-question multiple-

choice exam, we wrote Python code to randomly shuffle the

answer options for the 100 multiple-choice questions five times.

For each shuffle, we obtained a “new” 100-question multiple-choice

exam set. We then queried all the LLMs five times (Trial 1 - Trial 5),

each with a new exam set. Each question of the new exam set was

queried individually. We checked the distribution of the correct

answers’ locations for the five new exams where the options were

shuffled and confirmed that the distribution of the correct options is

fairly random among A, B, C, D, or E (only 2 questions offered

option E), as shown in the Supplementary Material. The prompt we

used for all the queries was as follows:
“Please solve this radiation oncology physics problem:

[radiation oncology physics problem]. ”
This allowed the LLMs to reason and answer freely. Table 1

illustrates an example of the trials and how we queried the LLMs

with the questions. For the responses generated by the LLMs, we

utilized the LLaMA 3.1 (405B) model hosted locally to further

extract the chosen answer options (letters A, B, C, D, or E) from

free-form responses, thereby reducing some of the manual effort

required to read and record them individually. We then conducted

manual verification of the extracted options and obtained the final

answer option sheet for all LLMs to compare with the ground truth

answers. The accuracy of each LLM was reported as the mean score
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2 Since each question was queried through the API individually, it is

assumed that LLMs would not notice this pattern.
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across the five trials, and the measurement uncertainty was reported

as the standard deviation of the five trials, as shown in the following

equations:

Mean(�x) =
1
No

N

i=1
xi,

s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N − 1o
N

i=1
(xi − �x)2

s
,

where xi represents each measurement.

The results of the LLMs’ test scores were compared with the

majority vote results from a group of medical physicists conducted

in our previous study. The medical physicist group consisted of four

experienced board-certified medical physicists, three medical

physics residents, and two medical physics research fellows. For

each question, the most common answer choice was selected as the

group’s answer. In case of a tie, one of the most common answer

choices was chosen randomly.
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2.2 Evaluating deductive reasoning ability

Deductive reasoning ability refers to the cognitive process of logically

analyzing information to draw specific conclusions from general

premises. The multiple-choice question with the answer option “None

of the above” can effectively evaluate the test-taker’s deductive reasoning

ability, as it involves evaluating each option based on the information

provided and ruling out incorrect choices contradicting known facts or

logical outcomes to reach the correct answer. We therefore replaced the

correct option in the exam with “None of the above.” Since transformer-

based LLMs predict the next word based on prior contexts, changing the

correct option to “None of the above” removes a straightforward cue that

might guide the model toward a known or patterned solution, thus

forcing the LLMs to rely more on reasoning about the specific question

and its options, rather than using surface-level lexical or statistical

patterns that it may have learned.

2.2.1 Replacing the correct option with “None of
the above”

We developed Python code to replace the correct option with

“None of the above” for all questions in the five new exam sets

derived by random shuffling. For each trial (Trial 1 - Trial 5), we

queried the LLMs with a set of exams in which both the correct

option was “None of the above,” and its location was randomly

shuffled. We used the same prompt as in Sec. 2.1 across all queries,

and each question in an exam set was queried individually. This setup

challenges the LLMs to avoid pattern-based answering and not rely

on any single choice, but to process each answer option by reasoning.

As before, we utilized the previously described processes for

answer-option extraction and manual verification, as outlined in Sec.

2.1. The performance accuracy and uncertainty of each LLM were

reported as the average score and standard deviation across all five

trials. Due to this setup, these exams were not used to test humans, as

this pattern can be easily recognized by human test-takers
2.
2.2.2 Explain-first and step-by-step instruction
To further check if explicitly asking the LLMs to explain first

and then develop answers step-by-step (chain-of-thought) would

improve their deductive reasoning ability (23), we engineered the

following prompt and queried the LLMs again with it:
“Please solve this radiation oncology physics problem:

[radiation oncology physics problem]

Please first explain your reasoning, then solve the problem step

by step, and lastly provide the correct answer (letter choice).”
We used the five exam sets and conducted the querying process

both as described in Sec. 2.2.1. All five LLMs were evaluated using

this prompting strategy. Accuracy and uncertainty were reported.

The results from this strategy were compared with the test results
TABLE 1 Illustration of the prompts and questions of randomly shuffled
options to evaluate LLMs’ performance on answering radiation oncology
physics questions.

Trail Prompt Question

Trail 1

Please solve this radiation
oncology physics problem:

Which of the following particles
cannot be accelerated by an
electric field?
(a) Neutrons
(b) Protons
(c) Electrons
(d) Positrons

Trail 2

Which of the following particles
cannot be accelerated by an
electric field?
(a) Proton
(b) Neutrons
(c) Electrons
(d) Positrons

Trail 3

Which of the following particles
cannot be accelerated by an
electric field?
(a) Positrons
(b) Protons
(c) Electrons
(d) Neutrons

Trail 4

Which of the following particles
cannot be accelerated by an
electric field?
(a) Electrons
(b) Neutrons
(c) Protons
(d) Positrons

Trail 5

Which of the following particles
cannot be accelerated by an
electric field?
(a) Electrons
(b) Positrons
(c) Neutrons
(d) Protons
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from original prompts, where no explanation or step-by-step

answering was required, as described in Sec. 2.2.1.
3 Results

3.1 Results of exam sets with randomly
shuffled options

The evaluation results of the exam sets with options

randomly shuffled are presented in Figure 1, where the height of
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each bar represents the mean test score, and the error bars indicate

the standard deviations across five trials. All five LLMs exhibited

strong performance, achieving mean test scores above 80%,

which suggests their performance on these exams is comparable

to that of human experts. When compared to the majority

vote results from the medical physics group, the OpenAI o1-

preview model outperformed the medical physicists with a

majority vote. For math-based questions, both the o1-preview and

GPT-4o models surpassed the medical physicists with a

majority vote.
FIGURE 1

Evaluation results using five exam sets where the answer options of the questions were randomly shuffled. Panel (a) illustrates the evaluation results
for all questions and math-based questions, while Panel (b) presents the evaluation results broken down by different topics.
FIGURE 2

Distribution of incorrectly selected answer options by each LLM across five exam sets. All answer options in the five exam sets were randomly
shuffled. Questions that were correctly answered by all LLMs in all five trials are not shown in this figure. Questions 14, 27, 42, 67, 87, 95, and 96,
which were commonly answered incorrectly by all LLMs at least once, are underlined in the figure.
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The raw counts of incorrect responses by the LLMs are shown

in Figure 2, where each color represents the incorrect answers by an

LLM across trials. As observed, each LLM exhibited variability in

answering questions across trials. Notably, the models also showed

similarities in incorrectly answering certain questions. We analyzed

the questions that were commonly answered incorrectly by all

LLMs at least once across all five trials – question numbers: 14,

27, 42, 67, 87, 95, and 96. Interestingly, only one of these questions

was math-based, while the remaining seven were closely related to

clinical medical physics knowledge, such as American Association

of Physicists in Medicine (AAPM) Task Group (TG) reports and

clinical experience. This observation suggests that current LLMs

may still struggle with answering clinically focused radiation

oncology physics questions. For example, question number 42

does not involve any calculations but instead focuses primarily on

clinical hands-on experience.
3.2 Results of LLMs’ deductive reasoning
ability

Figure 3 shows the results of the deductive reasoning ability

tests, where the correct answer options were replaced with “None of

the above” in all questions. Overall, all LLMs performed much more

poorly compared to the results in Sec. 3.1. Given that transformer-

based LLMs (24) were designed to predict the next word in a

sequence, replacing the correct answers with “None of the above”

would likely disrupt their pattern recognition abilities, thereby

reducing their overall scores performed on the exam sets.
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Nonetheless, the OpenAI o1-preview and GPT-4o still

outperformed the others, especially on math-based questions,

indicating the strong reasoning ability of these two models.

Figure 4 compares the performance of LLaMA 3.1 (405B),

Gemini 1.5 Pro, and Claude 3.5 Sonnet models with the original

simple prompts and with the explain-first, step-by-step instruction

prompts. Overall, all three models demonstrated improved

reasoning ability with the latter prompting strategy. Notably,

Gemini 1.5 Pro showed significant gains on math-based

questions, increasing its score from 24% to 68%. The o1-preview

and GPT-4o showed only about a 1% overall difference, which was

too small to be represented in this figure.
4 Discussion

4.1 Improvement of performance on
answering radiation oncology physics
questions of the state-of-art LLMs over the
past two years

Over the past two years, our studies have observed a notable

improvement in the performance of state-of-the-art LLMs on this

highly specialized task – answering radiation oncology physics

questions, as shown in Figure 5. Early versions of ChatGPT, like

GPT-3.5 in late 2022 (25), scored around 54%, showing clear gaps

in domain-specific knowledge. With the introduction of GPT-4 in

early 2023, performance jumped to around 76%, reflecting

improvements in accuracy and understanding. Subsequent
FIGURE 3

Deductive reasoning ability evaluation results for every LLM. The correct answer options were replaced with “None of the above” in all questions.
Panel (a) illustrates the evaluation results for all questions and math-based questions, while Panel (b) presents the evaluation results broken down by
different topics.
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releases of the GPT-4o model and more recently the o1-preview

(both in 2024), pushed scores even higher to 90% and 94%

respectively, indicating increasing capabilities in radiation

oncology physics. This steady improvement can be attributed to

more extensive domain pre-training, increase of number of

parameters, refined architectural updates, and enhanced fine-

tuning techniques (26, 27), all of which have led to improved

understanding, stronger reasoning skills, and better alignment

with expert-level knowledge. The evolution of these models over

the last two years underscores the rapid growth of LLMs, suggesting
Frontiers in Oncology 06
their potential as useful tools in areas such as radiation oncology

physics education and training.
4.2 Potential applications of LLMs in
radiation oncology physics

Recent advancements in exploring potential applications of

LLMs in radiation oncology physics have focused on auto-

contouring, dose prediction and treatment planning. For auto-
FIGURE 5

Growth of the state-of-art LLMs’ performance in radiation oncology physics over the past two years. Two dotted lines mark the average score and
the majority vote score of the medical physicists.
FIGURE 4

Comparison of accuracy between the short prompt and the explain-first, step-by-step instruction prompt (chain-of-thought) for LLaMA 3.1 (405B),
Gemini 1.5 Pro, and Claude 3.5 Sonnet. Panel (a) shows the comparison between the short prompt and the explain-first, step-by-step instruction
prompt for all questions and math-based questions, while Panel (b) breaks down the comparison by topic. (o1-preview and GPT-4o showed only
about a 1% overall difference, which was too small to be represented in this figure.).
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contouring, LLMs have been utilized to extract electronic medical

records (EMR) text data and align them with the image embeddings

of the mixture-of-experts model to improve the performance of the

target volume contouring for radiation therapy (28). In addition,

LLMs have also been used to extract text-based features and

incorporated them into vision transformer to help improve the

target delineation results (29). In dose prediction, LLM have been

explored to encode knowledge from prescriptions and interactive

instructions from clinicians into neural networks to enhace the

prediction of dose-volume histograms (DVH) from medical images

(30). Regarding treatment planning, GPT-4V has been investigated

for evaluating dose distribution and DVH and assisting with the

optimization of the treatment planning (18). Furthermore, an LLM-

based multi-agent system has also been developed to mimick the

workflow of dosimetrists and medical physicists to generate text-

based treatment plans (31). Collectively, these advancements

highlight the transformative potential of LLMs in radiation

oncology physics, offering potential improvements in efficiency

and outcomes.
4.3 Possible further improvement of LLMs
in radiation oncology physics

The performance of LLMs on radiation oncology physics,

although encouraging, still requires further improvement due to

two primary factors. First, radiation oncology physics represents a

very specialized domain characterized by both the complexity of

physics concepts and specific clinical contexts, neither of which was

extensively represented in the general datasets used during the initial

pre-training of these models. Second, existing LLMs still encounter

difficulties with reasoning tasks specific to radiation oncology physics,

indicating a need for enhanced general reasoning capabilities. To

address these limitations, further studies could explore strategies of

fine-tuning existing LLMs using specialized medical physics domain

datasets with clinical contexts. Such fine-tuning would likely enable

the models to better capture the complexities and contextual details of

the domain, enhancing their accuracy and practical clinical utility in

medical physics tasks. Additionally, to improve reasoning capabilities,

techniques such as chain-of-thought, which encourages models to

articulate intermediate reasoning steps explicitly, and reinforcement

learning, which optimizes model responses in desired patterns, could

be investigated (32).
4.4 Limitations

Although the LLMs evaluated in this study exhibit expert-level

performance on radiation oncology physics questions, such results

do not directly translate to effectiveness in practical clinical tasks

like treatment planning and delivery. This limitation arises from

differences between theoretical examinations and practical clinical

applications. Clinical scenarios encountered in radiation oncology

are inherently more complex, context-dependent, and require

integrating multiple sources of clinical and patient-specific data,
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whereas theoretical examinations often have clearly defined

questions and objective answers. Consequently, strong

performance in controlled question-answering tasks may not

effectively transfer to real-world contexts, which frequently

involve ambiguity, uncertainty, and nuanced clinical judgment.

Additionally, clinical decision-making encompasses not only

physics-based calculat ions but also mult idiscipl inary

collaboration, patient safety considerations, regulatory

compliance, and human factors in clinical workflows. Therefore,

although the evaluated models demonstrate promise in

foundational physics knowledge, caution must be exercised when

inferring their direct clinical utility.
5 Conclusion

We evaluated recently released LLMs using a method that

randomly shuffled the answer options of radiation oncology physics

questions. Our results demonstrated that these models achieved

expertlevel performance on these questions, with some even

surpassing human experts with a majority vote. However, when the

correct answer options were replaced with “None of the above,” all

models exhibited a steep decline in performance, suggesting room for

improvement. Employing the technique of explain-first and step-by-

step instruction prompt enhanced the reasoning abilities of LLaMA

3.1 (405B), Gemini 1.5 Pro, and Claude 3.5 Sonnet.
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