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Background: Personalized medicine has transformed disease management by

focusing on individual characteristics, driven by advancements in genome

mapping and biomarker discoveries.

Objectives:: This study aims to develop a predictive model for the early detection

of treatment-related cardiac side effects in breast cancer patients by integrating

clinical data, high-sensitivity Troponin-T (hs-TropT), radiomics, and dosiomics.

The ultimate goal is to identify subclinical cardiotoxicity before clinical symptoms

manifest, enabling personalized surveillance strategies. It is the first study to

utilize heart-segmented dosiomics in breast cancer patients.

Methods and Materials: This retrospective study included clinical, dosimetric,

radiomic, and dosiomic data from 42 women with localized breast cancer.

Heart-specific Troponin T levels were measured 2–3 weeks post-radiotherapy,

with 14 ng/L as the cutoff. Patients were grouped on this threshold to identify

potential treatment-related cardiac events. Radiomics and dosiomics were

extracted using PyRadiomics. Machine learning models were optimized using

the Tree-based Pipeline Optimization Tool (TPOT), identifying the gradient-

boosted classification as the best-performing algorithm. Feature selection was

conducted using gradient-boosted recursive feature elimination. Model

performance is assessed by the area under the curve (AUC).

Results: A total of 111 dosiomic and 119 radiomic features were extracted per

patient. The highest predictive accuracy was achieved using clinical, dosiomic,

and radiomic parameters (validation cohort-AUC = 0.96), outperforming the

clinical + dosimetric model (validation cohort-AUC = 0.67). Permutation tests

confirmed the non-randomness of these two models results (p <0.05). Cross-

validation indicated that the clinical + dosiomic + radiomic model had a fair-to-

good generalizable performance (mean AUC = 80.33 ± 21%).
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Discussion: This study may demonstrate that radiomics and dosiomics provide

superior predictive capabilities for cardiac events in breast cancer patients

compared to traditional parameters.
KEYWORDS

dosiomics, oncologic treatment-related cardiotoxicity, machine learning, radiomics,
oncology cardiology
Introduction

Cardiovascular complications following cancer treatment

represent a significant cause of mortality among cancer patients,

mainly when therapies such as chemotherapy and radiotherapy

induce structural and functional damage to the heart. This concern

is particularly substantial for breast cancer patients, where treatments

like anthracyclines, trastuzumab, pertuzumab, immune checkpoint

inhibitors (ICIs), and radiotherapy can lead to cancer therapy-related

cardiac dysfunction (CTRCD) (1–6). Consequently, regularly

monitoring the cardiovascular status in breast cancer survivors is

imperative, using diagnostic tools such as left ventricular ejection

fraction (LVEF) and cardiac biomarkers like troponin and

echocardiography (7–11).

Echocardiography is currently the preferred non-invasive imaging

modality for diagnosing CTRCD (7, 12). Furthermore, this method

often detects cardiac dysfunction only at advanced stages, leading to

irreversible damage in 58% of cases (13, 14). A meta-analysis

highlights that hs-cTnT measured at the 3-6th month of treatment

provides superior early diagnostic value to echocardiography,

emphasizing the need for its use in predicting cardiac events (15).

The European Society of Cardiology recommends evaluating

serum cardiac biomarkers, such as Trop-T and NT-pro-BNP,

before, during, and after treatment to detect subclinical CTRCD and

tailor oncologic therapies to individual risk profiles (16). Elevated

levels of these biomarkers in cancer patients without coronary artery

disease are indicative of subclinical cardiac damage and are linked to

reduced left ventricular function (17).

In the last decade, non-invasive imaging biomarkers have been

developed to assist in personalized oncology decision support systems.

Radiomics and dosiomics are just two of these methods. These

techniques have shown promising results in predicting various

clinical outcomes, including overall survival and recurrence in

cancers such as brain, head and neck, and lung (18–22). However,

the scientific field still lacks sufficient dosiomic-radiomic studies,

particularly those focused on side effects rather than disease prognosis.

Accordingly, all this literature predicting treatment-related cardiac

events before cancer therapy begins would be highly significant. This

study aims to bridge this gap by developing a machine learning-based

predictionmodel for early detection of treatment-related cardiac events

in breast cancer patients. The model incorporates radiomics,

dosiomics, and clinical parameters to identify subclinical
02
cardiotoxicity. To our knowledge, this is the first study to utilize

heart-segmented dosiomic data in adult breast cancer patients. To

our knowledge, this is the first study to utilize heart-segmented

dosiomic data in adult breast cancer patients, and it has the potential

to serve as a precursor for future research in this area.
Materials and methods

Patients

In this retrospective study, data from patients treated for localized

breast cancer at our institution between January 2020 and February

2024 were analyzed. Of the 235 patients initially screened, those who

had hs-TropT levels measured in the blood 2–3 weeks after the

completion of radiotherapy were considered eligible. Only patients

who received radiotherapy as part of their treatment were included;

those treated exclusively with systemic therapies such as chemotherapy

(e.g., anthracyclines, trastuzumab) were not considered. Patients with a

prior history of cardiac events resulting in elevated hs-TropT levels

were not eligible. Additionally, cases involving breath-controlled

radiotherapy or significant metal artifacts on planning CT scans (n =

3) were omitted due to potential data quality concerns. Ultimately, 42

patients met all inclusion criteria and were retained for final analysis.

As frequently recommended in the literature, the ratio between the

training and validation cohort groups was set at %80/20 (33 patients in

the training group and 9 patients in the validation group). The patient

selection process is summarized in Figure 1. Clinical data included age,

comorbidities, smoking status, use of cardioprotective medications,

chemotherapy regimens, surgical procedures, and laterality of breast

cancer. Dosimetric data included the dose of radiotherapy delivered to

the heart, the presence of a boost dose, the fractionation scheme, the

radiotherapy technique used, and the mean and maximum radiation

doses received by the heart, as well as the heart volumes receiving 5 Gy

and 25 Gy (V5-V25). Radiomic features were extracted from pre-

contoured heart regions in the planning CT scans using advanced

statistical methods, and dosiomic features were derived from the

radiotherapy plan dose distributions through similar statistical

processing. The dosiomic data were derived from the originally

planned dose distribution, with the fractionation value

(hypofractionation vs. normofractionation) included as a separate

variable in the model. The left-right breast distinction was not
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defined as an independent variable but incorporated as a separate

parameter in the clinical and clinical+radiomic models (Table 1). The

Gazi University Ethics Committee approved the study on April 16,

2024 (Research Code No: 2024-619).
Study design

Figure 2 illustrates the overall workflow of this study. Our study

set the threshold value for high-sensitivity Troponin T (hs-TropT)

at greater than 14 ng/L (23, 24). The dependent variable (target),

hs-TropT, was classified into two groups: those above the threshold

of 14 ng/L and those equal to or below 14 ng/L. Troponin-T levels

exceeding 14 ng/dL were associated with treatment-related cardiac

events. This proportion is consistent with the literature when

considering our study data; hs-TropT values exceeding 14 ng/L

comprised 16.66% of the patients (reported ranges in the literature

vary between 10% and 47%) (15, 23). Sixteen dual (categorical) and

five numerical variables were incorporated into the model, derived

from dosimetric and clinical parameters. Clinical data were

obtained from the electronic hospital record system, while

dosimetric data were extracted from the dose-volume histograms

(DVHs) of the 3D planned dose distributions. 119 radiomic and 111

dosiomic numerical features were individually extracted for each

patient. Gradient-boosted recursive feature elimination, a hybrid

method, was used to select important features for prediction.
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Clinical and dosimetric variables

The clinical data included patients’ age, comorbidities, smoking

status, use of cardioprotective medications, administered

chemotherapeutic agents, performed surgical procedures, and

laterality (right or left breast). The dosimetric data encompassed the

dose of radiotherapy delivered to the heart, the presence of a boost

dose, fractionation scheme, radiotherapy technique employed, mean

and maximum radiation doses received by the heart, and the heart

volumes receiving 5 Gy and 25 Gy of radiation (V5 and V25) (2).

Chemotherapy-related variables, including the administration of

potentially cardiotoxic agents such as anthracyclines, trastuzumab,

and taxanes, were incorporated into the model as binary categorical

inputs (administered vs. not administered). Due to limitations in the

available clinical data, cumulative dose information could not be

retrieved and was therefore not used in the analysis.
Medical image preprocessing and
segmentation

3D dose distributions, radiotherapy planning CT scans, and organ

contours were obtained from the Treatment Planning System (TPS).

Before feature extraction, DICOM files from the TPS were converted

to NRRD format using the plastimatch library (25). To address

variations in slice thickness ranging from 2 mm to 5 mm, both dose
FIGURE 1

Patient selection process. N, number of patients; Trop-T, Troponin-T.
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distributions and CT images were resampled to an isotropic 1 mm

resolution using B-spline interpolation. No filtering was applied; the

original images were included in the model.

Voxel addition was performed for patients who underwent

sequential radiotherapy to combine the boost dose with the whole-

breast radiotherapy dose distributions using the SimpleITK library

(26). During the extraction of these features, heart contours

delineated by the patient’s physician in clinical practice were used

(27). Dose and contouring files were processed in the plastimatch

library for masking, and the ITK-SNAP interface was employed for

accuracy control and visualization (28). Masking of CT images was

conducted using the 3D Slicer interface (29). Patients with significant

metal artifacts in their CT images were excluded from the study.
Extraction of radiomic and dosiomic
features

Radiomic features were extracted from 3D CT images using heart

regions previously contoured by patients’ physicians during routine

clinical practice, employing the 3D Slicer interface for segmentation,

resampling, and feature extraction. Dose distributions were

isotropically resampled to 1 mm within the Treatment Planning

System, utilizing a cumulative dose intensity range of 1 Gy for

dosiomic texture features and a voxel intensity bin width of 64

Hounsfield Units for radiomics. Features were extracted using the

PyRadiomics library under eight categories, including First-Order

Statistics, Shape Features, and various Gray Level Matrices (GLCM,

GLDM, GLSZM, GLRLM, NGTDM), and are consistent with the

Image Biomarker Standardisation Initiative (IBSI) guidelines (30).
Model building and evaluation

Machine learning model selection and hyperparameter

optimization were performed using the Tree-based Pipeline

Optimization Tool (TPOT), an automated machine learning library

in Python that utilizes genetic programming and evolutionary
Frontiers in Oncology 04
algorithms to identify optimal models and data processing pipelines

(31, 32). The TPOTClassifier automatically explores a wide range of

supervised classifiers including linear models (e.g., logistic regression),

naïve Bayes variants, decision trees, ensemble methods (e.g., random

forest, gradient boosting, XGBoost), and support vector machines.

The model search is performed via genetic programming to select

optimal preprocessing steps, feature selection, classifier type, and

hyperparameters. Gradient-boosted classification yielded the highest

validation AUC among the tested pipelines and was thus selected as

the final model. Model performance was assessed using the area under

the curve (AUC) method on data classified according to the hs-

TropT> 14 ng/L threshold. To evaluate the model’s generalizability,

we employed 5-fold cross-validation (33), and a non-parametric

permutation test was conducted to assess the model’s robustness

against randomness (34).
Results

Patient characteristics

42 patients (training: 33, validation: 9) were enrolled in this study.

The characteristics of the patients are presented in Table 2. This was

presented concerning hs-Troponin T levels, divided into four

categories: those with hs-Troponin T levels above 14 ng/L and those

below 14 ng/L, both with and without elevated clinical parameters.
Dosiomic features and dose-volume
factors

The features extracted from the original dose distributions in

the treatment planning system through advanced statistical

methods included first-order statistics (19), 2D shape features

(16), 3D shape features (10), Gray Level Co-occurrence Matrix

(GLCM) features (24), Gray Level Dependence Matrix (GLDM)

features (16), Gray Level Size Zone Matrix (GLSZM) features (16),

Gray Level Run Length Matrix (GLRLM) features (5), and
TABLE 1 Machine learning model evaluations.

Models Model AUC
(Gradient Boosted
Classification)

5-Fold
Cross-Validation
Mean AUC

AUC Standard
Deviation
(Cross-Validation)

Nonparametric
Permutation
Test p-value
(Cross-Validation)

Clinical + Radiomic
+ Dosiomic

0.96 0.8 0.21 0.021

Clinical + Dosimetric 0.67 0.76 0.28 0.029

Clinical + Dosiomic 0.75 0.66 0.26 0.12

Clinical + Radiomic
+ Dosimetric

0.67 0.35 0.26 0.84

Clinical 0.89 0.38 0.33 0.77

Clinical + Radiomic 0.5 0.76 0.25 0.06
AUC, Area Under the Curv; p-value, Probability value from the t-test; indicating statistical significance (p ≤ 0,05).
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FIGURE 2

Overall workflow of the study. DVH, dose-volume histogram; EHRS, electronic hospital record system.
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Neighboring Gray Tone Difference Matrix (NGTDM) features (5),

resulting in a total of 111 dosiomic based features calculated for

each patient. The dosimetric features extracted from the heart

contour are shown in Table 3.
Radiomic features

The features extracted from the CT scans taken for RT planning

through advanced statistical methods included first-order statistics

(18), 2D shape features (16), 3D shape features (10), Gray Level Co-

occurrence Matrix (GLCM) features (24), Gray Level Dependence

Matrix (GLDM) features (16), Gray Level Size Zone Matrix

(GLSZM) features (16), Gray Level Run Length Matrix (GLRLM)

features (5), and Neighboring Gray Tone Difference Matrix

(NGTDM) features (14), resulting in a total of 119 radiomic

features calculated for each patient.
Univariate analysis

The chi-square test was used for univariate analysis of clinical-

dosimetric categorical variables (Table 2). All variables were

statistically non-significant for an association with elevated cardiac

troponin (p>0.05). The independent samples t-test results indicated

that the mean age was significantly higher in individuals with elevated

troponin T levels (p = 0.044). Specifically, the mean age was 65.43 ±
Frontiers in Oncology 06
14.57 years for those with Troponin T levels >14 ng/dL, compared to

55.31 ± 11.21 years for those with Troponin T levels ≤ 14 ng/dL.

Additionally, an elevated heart V5 value was found to be borderline

statistically significant in association with elevated troponin T levels

among the dosimetric variables (p = 0,05) (Table 3). Recursive feature

elimination was performed on six different models. The top five

essential features extracted from the best-performing model (clinical

+ dosiomics + radiomics) were analyzed for their univariate

association with troponin T elevation, as shown in Table 4.
Prediction performance

The prediction models were evaluated using Gradient-Boosted

Classification, with 5-fold cross-validation and non-parametric

permutation tests to assess generalizability and model randomness.

A total of six different models incorporating clinical, radiomic,

dosiomic, and dosimetric parameters were constructed. The

combined model of clinical, radiomic, and dosiomic parameters

yielded the highest predictive performance, achieving an AUC of

0.96 for the validation cohort. This value was much lower for the

clinical + dosimetric model (validation cohort-AUC= 0.67) (Figure 3).

The internal validation using 5-fold cross-validation showed that the

generalizability performance of the clinical + dosiomic + radiomic

model was fair-to-good (mean AUC = 80.33 ± 21%). However, the

relatively high standard deviation suggests considerable variability

across folds, which may reflect model instability and potential
TABLE 2 Clinical characteristics.

Clinical/Dosimetric
Variable

Trop-T > 14 ng/L (+) Trop-T ≤ 14 ng/L (+) Trop-T > 14 ng/L (-) Trop-T ≤ 14 ng/L (-)

Hypertension 3 (7%) 8 (19%) 4 (10%) 27 (64%)

Diabetes Mellitus 4 (10%) 6 (14%) 3 (7%) 29 (69%)

Smoking 1 (3%) 9 (21%) 3 (7%) 26 (62%)

Hyperlipidemia 1 (3%) 3 (7%) 6 (14%) 32 (76%)

ACE-i 0 1 (3%) 7 (17%) 34 (80%)

ARB 3 (7%) 6 (14%) 4 (10%) 29 (69%)

B-blocker 3 (7%) 3 (7%) 6 (14%) 30 (72%)

Trastuzumab 1 (3%) 6 (14%) 1 (3%) 34 (80%)

Cyclophosphamide 5 (12%) 24 (57%) 7 (17%) 11 (26%)

5FU/Capecitabine 0 0 3 (7%) 44 (93%)

Anthracycline 3 (7%) 27 (64%) 4 (10%) 24 (57%)

Taxane 5 (12%) 27 (64%) 4 (10%) 22 (52%)

Surgery (MRM) 5 (12%) 12 (28%) 4 (10%) 23 (55%)

RT Dose (2 Gy × 15) 4 (10%) 18 (43%) 8 (19%) 12 (28%)

Boost Dose (2 Gy × 5) 3 (7%) 12 (28%) 4 (10%) 23 (55%)

RT Technique (IMRT) 2 (5%) 19 (45%) 5 (12%) 16 (38%)
(+) and (-) indicate the presence and absence of the clinical condition or treatment, respectively; Trop-T, Troponin-T; ACE-i, Angiotensin Converting Enzyme Inhibitors; ARB, Angiotensin
Receptor Blocker; MRM, Modified Radical Mastectomy; IMRT, Intensity Modulated Radiation Therapy.
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overfitting due to the limited sample size. These twomodels were non-

coincidences based on confirmation from nonparametric permutation

tests (p<0,05). Other models were considered random based on

permutation testing (p>0,05) (Table 1).
Discussions

Traditional clinical studies in oncology typically rely on long-

term follow-up and clinical, radiological, and dosimetric data.
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However, over the past decade, advancements in genomics and

biomarker discovery have positioned personalized medicine as a

central focus of scientific research. In 2017, the U.S. National

Cancer Institute emphasized the potential of using biomarkers to

evaluate the effects of radiotherapy on tissues, highlighting their

capacity to revolutionize the assessment of treatment efficacy and

average tissue damage (35). Despite the advances in precision

medicine, predicting adverse events and disease prognosis using

biomarkers remains an unmet need in medical research. This study

focuses on predicting cardiac events that may arise as a result of

breast cancer treatment before they become clinically evident. We

utilized cardiac biomarkers, such as high-sensitivity Troponin T

(hs-TropT), and imaging biomarkers derived from advanced

statistical analyses of radiological images and dose distribution

data (radiomics and dosiomics).

According to the literature, cardiovascular causes account for a

significant proportion of deaths in breast cancer survivors (36, 37).

Therefore, early prediction of cardiac events is essential for tailoring

treatment and follow-up strategies in this patient population. While

echocardiography remains the standard non-invasive method for

detecting cancer therapy-related cardiac dysfunction (CTRCD) (7,

12), several studies suggest that it may not detect subclinical

myocardial injury in its early stages, which can lead to missed

opportunities for intervention (13, 14). The European Society of

Cardiology has recommended that evaluating serum cardiac

biomarkers, such as Troponin-T (Trop-T) and NT-proBNP, both

at baseline and during or after treatment, may serve as a valuable

diagnostic tool in the detection of subclinical cancer therapy-related

cardiac dysfunction (CTRCD) and in tailoring oncological therapies

based on individual risk profiles (16). Our findings corroborate

previous reports, emphasizing the significance of imaging

biomarkers like radiomics and dosiomics in improving early

detection rates of such adverse events.

Our findings may emphasize the significant potential of models

based on imaging biomarkers for early predicting cardiac events

related to breast cancer treatment, compared to traditional clinical

and dosimetric features. Furthermore, this may highlight the

importance of a multidisciplinary approach, demonstrating that

integrating clinical, dosimetric, imaging, and cardiological data can
TABLE 3 Dosimetric variables.

Dosimetric
Features

Trop-T ≤ 14
(mean±std)

Trop-T > 14
(mean±std)

T-test
p-value

Heart/Dmean 3.06±1.85 3.91±1.99 0.27

Heart/Dmax 31.26±17.76 30.76±13.96 0.94

Heart/V5 12.05±11.48 22.33±16.42 0.05

Heart/V25 2.53±3.21 1.28±1.85 0.32
Dmean, Mean dose; Dmax, Maximum dose; V5, Volume of the heart receiving 5 Gy or more;
V25, Volume of the heart receiving 25 Gy or more; Trop-T, Troponin-T; mean±std, Mean
value ± standard deviation; p-value, Probability value from the t-test, indicating statistical
significance (p ≤ 0,05).
TABLE 4 Most important features extracted from the most effective
model (clinical + dosiomics + radiomics).

Biomarker Classes Features T-test (Target =
Troponin-T)

Dosiomic First-
order Statistics

Maximum P<0.001

Radiomic First-
order Statistics

Minimum P= 0.002

Dosiomic First-
order Statistics

10th
Percentile

P= 0.406

Radiomic Gray-Level Run
Length Matrix

Run
Entropy

P=0.159

Radiomic First-
order Statistics

Maximum P=0.88
FIGURE 3

Receiver operating characteristic (ROC) curves for prediction models. Left: ROC curve for the clinical + radiomic + dosiomic model with an Area
Under the Curve (AUC) of 0.96. Right: ROC curve for the clinical + dosimetric model with an AUC of 0.67. ROC, Receiver Operating Characteristic;
AUC, Area Under the Carve.
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contribute to better management and personalization of patient

treatment processes. The results of this study could provide a

valuable foundation for future research focused on breast cancer

treatment and side effect management.

Extracting three-dimensional (3D) radiomic and dosiomic

features from imaging data provides a more comprehensive and

objective assessment than traditional two-dimensional approaches.

This study used PyRadiomics, an open-source Python library, to

extract 3D features from medical images. While various methods can

address calibration and noise issues in multi-center imaging studies,

our images were acquired from a single center, minimizing these

challenges. Consequently, we extracted radiomic features from the

original planning CT images without additional filtering.

The only previous study utilizing dosiomics to investigate

cardiac toxicity was conducted in a pediatric cohort to predict

cardiac valvulopathy (38). This study is the first to develop a

predictive model for adult breast cancer patients by integrating

clinical, dosimetric, radiomic, and dosiomic data. The strength of

this study is that no previous studies have specifically employed

segmented cardiac dosiomic data in adult patients, underscoring the

novelty of our research and its potential to serve as a foundation for

future investigations.

Despite these promising results, our study has several limitations.

The cumulative dose of cardiotoxic agents, particularly anthracyclines,

is known to be strongly associated with cancer therapy-related cardiac

dysfunction (CTRCD), with a recommended cumulative dose

threshold of 550 mg/m². In our study, chemotherapy-related

variables—including the use of anthracyclines, trastuzumab, and

taxanes—were encoded as binary categorical inputs (administered

vs. not administered). However, detailed cumulative dosing data were

not available. This limitation may have hindered the predictive

capacity of the clinical model regarding treatment-related cardiac

toxicity (39, 40).

Moreover, the relatively small sample size, particularly the 9-

patient validation cohort, presents a limitation regarding model

generalizability and the potential risk of overfitting. As this study

was conducted within the scope of a completed and ethically

approved academic thesis, adding new patients retrospectively or

implementing synthetic data augmentation techniques (e.g., SMOTE)

was not feasible. Therefore, while the findings are promising, they

should be interpreted as exploratory and hypothesis-generating,

warranting validation in larger prospective cohorts.

This limitation was also reflected in the internal validation results.

The relatively high standard deviation in AUC values across the cross-

validation folds (80.33 ± 21%) indicates potential model instability and

overfitting risk. Such variability is commonly observed in small

datasets, and highlights the importance of future validation using

larger, independent cohorts or more robust validation schemes such as

repeated or nested cross-validation. Future studies should employ

repeated or nested cross-validation frameworks to enhance the

reliability of performance estimates, especially in datasets with

limited sample sizes.

Small-sample machine learning studies are increasingly

reported in emerging fields such as cardio-oncology, where access
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to large annotated datasets is limited. Despite their limitations, such

studies often play a critical role in hypothesis generation and

feasibility assessment, especially when novel biomarkers or data

types are explored. In our case, the integration of heart-segmented

dosiomics represents a unique and innovative dimension that

justifies the use of a pilot-scale dataset. We believe that our

findings contribute valuable preliminary insights that warrant

future validation in larger, prospective studies.

However, dosiomic features were extracted from the original

treatment plan’s dose distribution, and the model still achieved high

performance (AUC = 0.96). Extracting features from Biological

Effective Dose (BED) distributions could be considered as an

alternative approach. Evaluating the impact of BED-based

dosiomic features on model performance warrants further

investigation in future studies.

Class imbalance is a significant challenge in medical side-effect

prediction studies involving machine learning. In our dataset, the

target variable hs-TropT> 14 ng/L represented only 16.66% of the

data, resulting in an imbalanced dataset. Class imbalance can

cause models to favor the majority class, thereby reducing

accuracy in predicting minority class instances. Gradient-

boosted classification algorithms help mitigate class imbalance

by automatically adjusting weights to define minority classes

better, and the AUC metric remains unaffected by class

imbalance. However, despite using these methods, performance

in other models remained lower, suggesting that alternative

techniques (e.g., synthetic data generation or data reduction)

may be necessary to address the imbalance, representing a key

area for improvement in our study.

Another challenge in radiomic studies is respiratory and cardiac

motion, which can reduce the quality of extracted features. Our study

did not include patients with controlled breathing; future research

could explore this area. Moreover, considering the potential of

respiratory control to reduce cardiac events, evaluating its impact

on predictive models would be valuable. We also excluded patients

with significant metal artifacts in their planning CT scans, as such

artifacts could affect both dose distribution and radiomic feature

extraction. Investigating prediction models for this patient group

remains an area for future research.
Future perspectives

This study highlights the potential of integrating imaging

biomarkers such as radiomic and dosiomic features into

predictive models for early detection of treatment-related cardiac

events in breast cancer patients. However, several areas require

further investigation to realize these models’ clinical applicability

fully. One key area for future research is the inclusion of more

precise cumulative anthracycline doses in predictive models. As

anthracycline dosage is closely associated with cancer therapy-

related cardiac dysfunction (CTRCD), moving beyond categorical

variables to incorporate exact dosage values could significantly

enhance the predictive accuracy of such models. This will enable
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more personalized treatment adjustments, potentially mitigating

the risk of cardiac events for high-risk patients.

Another avenue for future research is the exploration of Biological

Effective Dose (BED) distributions for dosiomic feature extraction.

While our study demonstrated high model performance using

traditional dose distributions, BED-based dosiomics may provide an

even more accurate representation of the actual biological impact of

radiotherapy on cardiac tissues. Evaluating the contribution of BED-

based dosiomic features could improve model precision and further

tailor treatment plans to individual patient risk profiles.

Moreover, future studies should aim to conduct more extensive,

multi-center investigations to validate the generalizability of the

proposed models across diverse patient populations and clinical

settings. This broader scope would provide more robust evidence

and ensure that the models are applicable in varied healthcare

environments. Additionally, incorporating the effects of cardiac and

respiratory motion into predictive models is essential. Since these

motions can impact dose distribution and radiomic feature

extraction, addressing these factors in future research could

significantly enhance model accuracy and the early detection of

subclinical cardiac events.

Lastly, addressing the challenge of class imbalance remains

critical in enhancing the robustness of machine learning models

in medical side-effect studies. Future studies should explore

alternative techniques, such as synthetic data generation or

advanced data reduction methods, to mitigate this issue. By

overcoming these challenges and continuing to refine predictive

models by integrating diverse clinical, imaging, and dosimetric data,

future research could significantly improve the prediction and

prevention of treatment-related cardiac events, ultimately leading

to better patient outcomes and personalized medicine applications.
Conclusions

This study can demonstrate that imaging biomarkers (radiomic

and dosiomic parameters) significantly outperform traditional

clinical and dosimetric parameters in predicting treatment-related

cardiac events in breast cancer patients (96% vs. 67% AUC). When

integrated into clinical practice, these radiomic and dosiomic

parameters could become critical patient factors, potentially altering

treatment and follow-up strategies by predicting cardiac side effects

with nearly perfect (%96) accuracy. However, the moderate-to-good

generalizability observed in cross-validation suggests that these

models need to be supported by real-world data. This underscores

the necessity for further research to integrate imaging biomarkers,

which currently require complex statistical processes and have yet to

be widely adopted in personalized medicine applications.
Data availability statement

The original contributions presented in the study are

included in the article. Further inquiries can be directed to the

corresponding author.
Frontiers in Oncology 09
Ethics statement

The studies involving humans were approved by The Gazi

University Ethics Committee approved the study on April 16,

2024 (Research Code No: 2024-619). The studies were conducted

in accordance with the local legislation and institutional

requirements. The participants provided their written informed

consent to participate in this study.
Author contributions

SD: Conceptualization, Data curation, Formal Analysis, Funding

acquisition, Investigation, Methodology, Project administration,

Resources, Software, Supervision, Validation, Visualization, Writing

– original draft, Writing – review & editing. MA: Project

administration, Resources, Supervision, Writing – review & editing.

OA: Data curation, Writing – original draft.
Funding

The author(s) declare that no financial support was received for

the research and/or publication of this article.
Acknowledgments

The authors thank the Gazi University Department of Radiation

Oncology team.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that Generative AI was used in the

creation of this manuscript. We utilized ChatGPT to assist in

language editing and improving the manuscript’s clarity. All

scientific content and conclusions were authored and reviewed by

the study team.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1557382
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Dincer et al. 10.3389/fonc.2025.1557382
References
1. Broder H, Gottlieb RA, Lepor NE. Chemotherapy and cardiotoxicity. Rev
Cardiovasc Med. (2008) 9:75. doi: 10.1016/s1470-2045(08)70003-2

2. Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Brønnum D,
et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. New
Engl J Med. (2013) 368:987–98. doi: 10.1056/NEJMoa1209825

3. Baillet F, Housset M, Maylin C, Boisserie G, Bettahar R, Delanian S, et al. The use
of a specific hypofractionated radiation therapy reg imen versus classical fractionation
in the treatment of breast cancer: A randomized study of 230 patients. Int J Radiat
Oncol Biol Physics. (1990) 19:1131–3. doi: 10.1016/0360-3016(90)90216-7

4. Wu Q, Bai B, Tian C, Li D, Yu H, Song B, et al. The molecular mechanisms of
cardiotoxicity induced by HER2, VEGF, and tyrosine kinase inhibitors: an updated
review. Cardiovasc Drugs Ther. (2022) 36(3):511–24. doi: 10.1007/s10557-021-07181-3

5. Sara JD, Kaur J, Khodadadi R, Rehman M, Lobo R, Chakrabarti S, et al. 5-
fluorouracil and cardiotoxicity: a review. Ther Adv Med Oncol. (2018)
10:1758835918780140. doi: 10.1177/1758835918780140

6. Romond EH, Jeong J-H, Rastogi P, Swain SM, Geyer CEJr., Ewer MS, et al. Seven-
year follow-up assessment of cardiac function in NSABP B-31, a randomized trial
comparing doxorubicin and cyclophosphamide followed by paclitaxel (ACP) with ACP
plus trastuzumab as adjuvant therapy for patients with node-positive, human
epidermal growth factor receptor 2–positive breast cancer. J Clin Oncol. (2012)
30:3792. doi: 10.1200/JCO.2011.40.0010

7. Leong DP, Lenihan DJ. Clinical practice guidelines in cardio-oncology. Heart
Failure Clinics. (2022) 18:489–501. doi: 10.1016/j.hfc.2022.02.002

8. Zamorano JL, Lancellotti P, Rodriguez Munoz D, Aboyans V, Asteggiano R,
Galderisi M, et al. ESC Position Paper on cancer treatments and cardiovascular toxicity
developed under the auspices of the ESC Committee for Practice Guidelines: The Task
Force for cancer treatments and cardiovascular toxicity of the European Society of
Cardiology (ESC). Eur Heart J. (2016) 37:2768–801. doi: 10.1093/eurheartj/ehw211

9. Zhang P, Hu X, Yue J, Meng X, Han D, Sun X, et al. Early detection of radiation-
induced heart disease using 99mTc-MIBI SPECT gated myocardial perfusion imaging
in patients with oesophageal cancer during radiotherapy. Radiotherapy Oncol. (2015)
115:171–8. doi: 10.1016/j.radonc.2015.04.009

10. Ferreira de Souza T, Quinaglia AC Silva T, Osorio Costa F, Shah R, Neilan TG,
Velloso L, et al. Anthracycline therapy is associated with cardiomyocyte atrophy and
preclinical manifestations of heart disease. JACC: Cardiovasc Imaging. (2018) 11:1045–
55. doi: 10.1016/j.jcmg.2018.05.012
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ACE-i Angiotensin Converting Enzyme Inhibitors
Frontiers in Oncology
ARB Angiotensin Receptor Blocker
AUC Area Under the Curve
BED Biological Effective Dose
CTRCD Cancer Therapy-Related Cardiac Dysfunction
CT Computed Tomography
DICOM Digital Imaging and Communications in Medicine
DVH Dose-Volume Histogram
Dmax Maximum Dose;
Dmean Mean Dose
EHRS Electronic Hospital Record System
GLCM Gray Level Co-occurrence Matrix
GLDM Gray Level Dependence Matrix
GLRLM Gray Level Run Length Matrix
GLSZM Gray Level Size Zone Matrix
hs-TropT High-Sensitivity Troponin-T
11
IBSI Image Biomarker Standardization Initiative
IMRT Intensity Modulated Radiation Therapy
ITK Insight Segmentation and Registration Toolkit
LVEF Left Ventricular Ejection Fraction
MRM Modified Radical Mastectomy
NGTDM Neighboring Gray Tone Difference Matrix
NT-proBNP N-Terminal Pro B-Type Natriuretic Peptide
PET Positron Emission Tomography
PyRadiomics Python-based Radiomics Extraction Library
ROC Receiver Operating Characteristic
RT Radiotherapy
TPS Treatment Planning System
TPOT Tree-Based Pipeline Optimization Tool
V5 Volume of the Heart Receiving 5 Gy or More
V25 Volume of the Heart Receiving 25 Gy or More
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